College of Engineering & Information Technology
Civil & Environmental Engineering


 Undergraduate Index

M. Hanif Chaudhry, Chair of the Department


    Ronald L. Baus, Ph.D., Pennsylvania State University, 1979
    M. Hanif Chaudhry, Ph.D., University of British Columbia, 1970
    Mr. and Mrs. Irwin B. Kahn Professor of Civil Engineering

Associate Professors

    Joseph Hugh Bradburn, Ph.D., North Carolina State University, 1968
    John R. Dickerson, Ph.D., California Institute of Technology, 1967
    Joseph Raymond V. Flora, Ph.D., University of Cincinnati, 1993
    Anthony S. McAnally, Ph.D., Auburn University, 1989
    Michael E. Meadows, Ph.D., University of Tennessee, 1976
    Michael F. Petrou, Ph.D., Case Western Reserve University, 1993
    Graduate Director
    Richard P. Ray, Ph.D., University of Michigan, 1983
    Undergraduate Director

Assistant Professors

    Erik Anderson, Ph.D., University of Minnesota-Minneapolis, 1999
    Adrienne Cooper, Ph.D., University of Florida, 1998
    Sarah L. Gassman, Ph.D., Northwestern University, 1997
    Kent A. Harries, Ph.D., McGill University, 1995
    Jasim Imran, Ph.D., University of Minnesota, 1997
    Charles Pierce, Ph.D., Northwestern University, 1998
    Dimitri Rizos, Ph.D., University of South Carolina, 1993

Distinguished Professors Emeriti

    Richard Boykin Pool, Ph.D., University of Illinois, 1963
    W.K. Humphries, Ph.D., North Carolina State University, 1966
    James B. Radziminski, Ph.D., University of Illinois, 1965
    J.D. Waugh, M.S., Yale University, 1964

Professors Emeriti

    William Lovett Anderson, M.S., University of California, 1935
    Robert R. Roberts, Ph.D., West Virginia University, 1975


Civil engineering is concerned with the planning, design, and construction of an engineering project, including energy, environmental, and economic considerations. Civil engineers are responsible for the design of such structures as industrial and commercial buildings, bridges, towers, dams, tunnels, and mass transportation facilities. They are involved in urban planning, public works projects and their administration, air quality monitoring, and solid waste system planning and design.
The objectives of the civil and environmental engineering undergraduate program are to:

  • provide a broad education that prepares students for the future challenges of the civil engineering profession
  • provide an education in which the students will be able to integrate fundamental mathematics and science concepts to understand and solve civil engineering problems
  • provide an education in which the students will be able to acquire and apply broad-based knowledge of fundamental principles in a minimum of four discipline areas of civil engineering
  • provide an education that develops business and other professional skills necessary to practice engineering.

The first two years of the undergraduate curriculum form the necessary foundation in mathematics, computer programming, the physical sciences, and basic engineering sciences, together with courses in the liberal arts, to provide the student with a well-balanced educational experience. The upper-division civil engineering program includes the study of construction materials, structural analysis and design, soil behavior, systems analysis, water supply, and pollution control. The department offers elective courses through which the student can specialize in such areas as geotechnical engineering, water resources and environmental engineering, structures and transportation engineering.

The civil and environmental engineering graduate is prepared to enter the job market with federal, state, and municipal agencies, with private consulting firms involved with aspects of planning, design, construction, or environmental control. Students may, following graduate study, also pursue careers in teaching and in research and development.

Bachelor’s/Master’s Accelerated Program

A combined B.S./M.S. or M.E. degree program is available to undergraduate Civil and Environmental Engineering students with GPAs of 3.50 or above and 90 or more hours earned toward their baccalaureate degrees. Up to six credit hours of 500-level or above courses may be applied toward both the B.S. and M.S. or M.E. in Civil and Environmental Engineering degree requirements. The approval of the student’s advisor and the Department of Civil and Environmental Engineering graduate director are required. Questions about this program may be directed to the Civil and Environmental Engineering graduate director.

Degree Requirements

Civil and Environmental Engineering Curriculum (127 hours)

ENGL 101, 102 (6 hours)
Liberal Arts (12 hours)
MATH 141, 142, 241, 242 (14 hours)
STAT 509 (3 hours)
CHEM 111(4 hours)
PHYS 211, 211L (4 hours)
Laboratory science electives (8 hours)
ENGR 102, 200, 210, 260, 360 (14 hours)
ENGR 290 or ELCT 221 (3 hours)
ECIV 301, 303, 303L, 320, 330, 330L, 350, 350L, 362, 362L, 470 (29 hours)
ECIV electives (21 hours)
Engineering, science, or mathematics electives (6 hours)
Free elective (3 hours)


  • The liberal arts courses must include at least one history course and one fine arts course.
  • The laboratory science courses are to be with laboratory and may be chosen from biology, chemistry, geological sciences, marine science, and physics.
  • ECIV electives must include one course from each of four career areas of environmental, geotechnical, structures, and water resources. The department maintains lists of courses for each area.
  • The department maintains a list of acceptable engineering, science, or mathematics electives.

Course Descriptions (ECIV)

  • 111--Introduction to Engineering Graphics and Visualization. (3) Principles and practice of visualization and graphical representation using modern computer-aided design tools.
  • 200--Statics. (3) (Prereq: MATH 141) Fundamentals of engineering mechanics. Equilibrium of particles and rigid bodies. Free-body diagrams, analysis trusses and frames. Distributed forces, centroids, centers of gravity, and friction.
  • 210--Dynamics. (3) (Prereq: ECIV 200) Kinematics of particles and rigid bodies. Vector representation of force and motion. Free-body diagrams, application of energy and momentum methods to solve problems. Rigid body and central force motion.
  • 220--Mechanics of Solids. (3) (Prereq: ECIV 200, MATH 241) Concepts of stress and strain; stress analysis of basic structural members. Vectors, free bodies, equilibrium and elastic behavior. Combined stress, Mohr’s circle. Beams, columns, torsion, and rotation.
  • 300--Civil Engineering Measurements. (3) (Prereq: MATH 241) Theory and application of plane surveying and mapping techniques. Lecture plus laboratiory.
  • 301--Programming and Graphics for Civil Engineering. (3) (Prereq: ENGR 102) Advanced programming and CAD with emphasis on civil engineering applications. Overview of numerical methods. Use of spreadsheets to analyze data.
  • 303--Civil Engineering Materials. (3) (Prereq: ENGR 260) Mechanical and thermal properties of mineral aggregates, cements, concrete, timber, asphalt, metals, and plastics.
  • 303L--Civil Engineering Materials Laboratory. (1) (Coreq: ECIV 303) Experiments, exercises, and demonstrations to accompany ECIV 303. Three hours per week.
  • 320--Structural Analysis I. (3) (Prereq: ENGR 260) Equilibrium, shear and moment diagrams, and influence lines for statically determinate trusses, beams, and frames. Energy principles, virtual work and conjugate beam methods for displacement calculations. Introduction to indeterminate structures by method of consistent deformation, slope deflection, and moment distribution.
  • 325--Structural Steel Design. (3) (Prereq: ECIV 320) Behavior and design of steel beams, columns, and tension members; strength and stability; design of connections using welded, bolted and riveted construction.
  • 327--Reinforced Concrete Design. (3) (Prereq: ECIV 320) Behavior and design of reinforced concrete beams, columns, continuous beams and one way slabs, and footings.
  • 330--Introduction to Geotechnical Engineering. (3) (Prereq: ENGR 260) Engineering properties of soil and rock; hydraulic conductivity, flow nets, drainage design; consolidation theory, shearing strength of soil.
  • 330L--Geotechnical Laboratory. (1) (Coreq: ECIV 330) Laboratory associated with ECIV 330. Soil mechanics experiments, exercises, and demonstrations. Three hours per week.
  • 350--Introduction to Environmental Engineering. (3) (Prereq: CHEM 111, MATH 141) Concepts of environmental engineering, including air and water pollution, solid and hazardous waste disposal, and noise pollution. Qualitative and quantitative development of engineering techniques for pollution control.
  • 350L--Introduction to Environmental Engineering Laboratory. (1) (Coreq: ECIV 350) Physical, chemical, and biological analysis of water and wastewater. Three laboratory hours per week.
  • 360--Fluid Mechanics. (3) (Prereq: ECIV 210) Principles of fluid statics and dynamics. Conservation of mass, momentum, and energy. Similitude and dimensional analysis, open channel flow, lift and drag forces, and introduction to turbulent flow.
  • 362--Introduction to Water Resources Engineering. (3) (Prereq: ECIV 360) Application of fluid mechanics principles to water resources engineering problems; pipe systems, pumps, open channel flow, peak runoff, seepage, hydraulic structures.
  • 362L--Introduction to Water Resources Engineering Laboratory. (1) (Coreq: ECIV 362) Experiments, exercises and demonstrations on flow in pipes and open channels, pumps, flow measurement, seepage, and infiltration.
  • 405--Systems Applications in Civil Engineering. (3) (Prereq: Upper division) Systems approach to analysis and design; application of engineering economic principles to the evaluation of design alternatives; deterministic modeling and optimization emphasizing civil engineering applications.
  • 426--Structural Design. (3) (Prereq: ECIV 325, ECIV 327) Design of steel structures including elastic and plastic design concepts. Design of concrete structures including continuous members and long columns.
  • 440--Coordinated Transportation. (3) (Prereq: ECIV 300, MATH 241) Transportation of passengers and commodities by various modes. Problems and requirements related to intermodal coordination, technology facilities, levels of service, and institutional barriers.
  • 470--Civil Engineering Design. (4) (Prereq: ECIV 330, ECIV 327 or ECIV 362) Application of hydraulic, geotechnical, and structural principles in design; project scheduling; cost estimation; ethics; environmental and social impact; design drawings; report documents.
  • 490--Special Problems. (3) (Prereq: advance approval of project proposal by advisor and instructor) Individual investigation or studies of special topics. A maximum of three credits may be applied toward a degree.
  • 499--Undergraduate Research in Civil and Environmental Engineering. (1–3) Research experience for undergraduates on current topics in civil and environmental engineering.
  • 503--Structural Modeling and Experimental Methods. (3) (Prereq: ECIV 327) Introduction of structural modeling; strain gauge instrumentation; force, displacement, acceleration, pressure, temperature measurements; concrete and steel modeling; size effects; analysis of experimental data.
  • 520--Structural Analysis II. (3) (Prereq: ECIV 320) Advanced methods of structural analysis with emphasis on matrix methods. Development of the generalized matrix force and matrix displacement methods of static analysis, with applications to trusses and frames.
  • 521--Numerical Methods in Mechanics. (3) (Prereq: MATH 242) Numerical modeling of typical engineering problems. Numerical solution of linear and nonlinear, boundary and initial value problems. Introduction to optimization.
  • 530--Foundation Analysis and Design. (3) (Prereq: ECIV 330) Subsurface investigation procedures. Theoretical and practical aspects of the design of earth retaining structures, spread footings, and pile foundations.
  • 533--Environmental Geotechnics. (3) (Prereq: ECIV 330) Principles for the design, construction, and performance of waste containment systems. Characterization of barrier materials; geosynthetics; design of liner and leachate collection systems; stability and deformation analyses of land fills.
  • 535--Geotechnical Engineering in Transportation. (3) (Prereq: ECIV 330) Remote sensing and engineering geology. Field and laboratory testing. Design and maintenance methods for flexible and rigid pavements. Topics in tunnel design and buried conduit.
  • 551--Elements of Water and Wastewater Treatment. (3) (Prereq: ECIV 350) Unit operations and processes employed in the physical, chemical, and biological treatment of water and wastewater. Design of water and wastewater treatment systems.
  • 555--Principles of Municipal Solid Waste Engineering. (3) (Prereq: ECIV 350, graduate standing or approval of the instructor) Fundamentals and engineering principles of solid waste generation, characterization, collection and transport, source reduction and recycling, and physical, chemical, and biological treatment strategies.
  • 560--Open Channel Hydraulics. (3) (Prereq: ECIV 360) Steady and unsteady flows in single or multiple-channel systems.
  • 562--Engineering Hydrology. (3) (Prereq: ECIV 360) Applications of hydrologic techniques to design problems; stormwater simulation models; urban stormwater.
  • 563--Subsurface Hydrology. (3) (Prereq: ECIV 360) Hydrologic cycle, subsurface physical properties, equations of groundwater flow, well flow, well design, groundwater resource development, design of dewatering systems, groundwater contamination.

Return to College of Engineering

[Bulletin Home Page] [Undergraduate Bulletin Contents] [Disclaimer] [Office of Undergraduate Admissions]

This web site updated September 2001 by Thom Harman, and copyright © 2001-2002 by the Board of Trustees of the University of South Carolina. All Rights Reserved.