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State of Numerical Computation

# Many pressing scientific problems challenge our

-

computational ability

o o @ @ o o ©

o

Atmospheric modeling: predicting climate change
Monitoring threat activities

Contaminant transport

Optimal engineering design

Medical diagnostics

Modeling the internet

Option pricing, bond valuation

o GOAL OF NUMERICAL COMPUTATION: Build the
most efficient numerical procedures to treat these

problems J
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The Computational Task
-

o Generally one of the following:
s Approximate an unknown function « - called the
target function

s Compute a quantity of interest about « such as an
integral of « or the max or min of «

# An important issue is what information is available
about «: This is described by a model class i

s In numerical PDEs we know « Is the solution to a
PDE with known coefficients, initial values, boundary
values

» Classically, model classes describe the smoothness
that is known about the target function «

s Selection of the correct model class is a key issue
since it governs best algorithms and expected J
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Outline of this Talk
-

# This talk will emphasize the following issues:
s |. The Role of Approximation Theory

s |l. Finding the best approximation scheme given the
model class K

s |lI. Building optimal algorithms
s We will emphasize this for problems of data fitting

|
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Role of Approximation Theory
-

# Any numerical procedure is based on some form of
approximation: polynomials, splines, Fourier, wavelets,
etc.

# Approximation Theory aims at exactly characterizing
the performance of any proposed method of
approximation and thereby giving a benchmark for the
optimal numerical procedure based on the chosen
method of approximation

# It can also provide a guide to
s which method of approximation to chose

s how to build an optimal algorithm for the chosen
method

|
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Types of Approximation
-

o We fixanorm || - || x in which to measure error, e.g.
lullz, ) = (fou(@)[P dz)'/?

o ApprOX|mat|on methods are linear or nonlinear
s Linear methods of approximation

s Xg,Xq1---,X,, - linear spaces with dim(X, ) =n

s We approximate u by the elements of X, giving
error E,(u)x := E(u, X,)x = 1inf, € X, ||lu — ¢

s If K is a model class then performance of X, on K
IS dist(K, X;,) := sup,ex En(u)

s Optimal performance on K given by the nb- width
dn(K)X = infdim(Y):n diSt(K, Y)X

o Approximation Classes: For o > 0
A%(Xp)n>1) = {u € X : Bp(u) < Mn~%} J

® ||ul| 4 Is the smallest M QO Qi — o &A1



Nonlinear Approximation

-

# X, Is replaced by a nonlinear space ¥,

s n term approximation: D a dictionary (redundant
family of functions)

Yip =19 = Z?Z1Qj¢j  @1,...,0n € D}

s Library approximation: £ := {Y : dim(Y) = n} with
#(L) = N finite dist(f, £)x := infyep dist(f,Y)x

» Piecewise Polynomial Approximation of functions on
() ¢ IR?: Divide Q into n cells ©; depending on « and

approximate « by g which is a piecewise polynomial
of degree m on each cell O,

» Adaptive piecewise polynomial approximation:
Generate the partition by an adaptive algorithm:
typically subdividing the cell which has biggest error

|
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Canonical results of Approximation

-

® Canonical results in AT characterize A“

°

Example: Approximate functions in X := C'[0, 1]

# Linear Approximation:

s Divide [0, 1] into n equally spaced intervals. X, the
space of piecewise constant functions on this
partition

# Nonlinear Approximation:

» Y, :={S5: 95 is piecewise constant with n pieces}
o Characterization of approximation spaces

s AYX,)n>1)=Lip1

s AY(Z,)n>1) =BV NCI,1]

® This shows the typical advantage of nonlinear o

approximation: need less smoothness for f
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Performance in L - one Variable

-

Sobolev Embedding Line
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Curse of Dimensionality

-

o Most of our numerical challenges involve functions that
depend on many (say D) variables/parameters

# The classical numerical methods such as splines or
FEM fail in this case because of the so-called curse of
dimensionality

» Suppose the assumption is that the targets function
f is real valued and has smoothness (of order s)
s Approximation theory tells us with » computations

we can only capture F to accuracy C(D, s)n /"
where D is the number of variables

s When D is large than s must also be very large to
guarantee any reasonable accuracy

s No control over s which is inherent in the problem

s SO0 conventional assumptions on F' and J

conventional numerical methods will not work
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Example (Novak-Wozniakowski)

To drive home the debilitating effect of high dimensions T
consider the following example

Q:=100,1", X=CK), K:={F:|D'F|,. <1, vV}

Any algorithm which computes for each £ € £ an
approximation 7' to accuracy 1/2 in L., will need at
least 2°/2 FLOPS

So if D = 100, we would need at least 2°" = 10
computations to achieve even the coarsest resolution

This phenomenon is referred to as The Curse of
Dimensionality

How can we overcome this Curse”?

|
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o Conventional thought is that most real world HD

The Remedy
-

functions do not suffer the curse because they have
properties other than traditional smoothness

o

Sparsity : /' is a sum of a small number of functions
from a fixed basis/frame/dictionary

Anisotropy/Variable Reduction: not all variables are
equally important - get rid of the weak ones

Tensor structures: variable separability

Superposition: F'is a composition of functions of few
variables - Hilbert’s 13-th problem

Many new approaches based on these ideas:
Manifold Learning; Laplacians on Graphs; Sparse
Grids; Sensitivity Analysis; ANOVA Decompositions;
Tensor Formats; Discrepancy; Deep Learning

(Superposition)
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Finding a good Subspace
-

When building a linear numerical algorithm we have the
option of choosing the subspace X,

Suppose K is our model class for the target function «
and we measure error in a Banach space norm || - || x

The best choice for X,, given the value of n is the
n-width space - but it is generally impossible to find

As a substitute we describe a method to find a space
that is almost as good as the »n-width space

|
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The (Pure) Greedy Algorithm
-

fo = argmax{|| f|| : f € K}
If fo,..., fn—1 have been chosen, define

o Vn L= span{fo, Ce ey fn—l}

s fn = Argmaxdist(f,V,)x
fex

Thus at each step, the function f,, is chosen in a
greedy manner

For the purposes of numerical implementation the
algorithm is usually modified to a weak greedy algorithm

This means that at each step we weaken the selection
criteria: For a fixed v € (0, 1], we choose f,, so that

dist(fn, Vi) x > vsup dist(f, Vi) x
fex J
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Performance

-

Binev - Cohen - Dahmen - DeVore -Petrova
-Wojtaszczyk prove the following theorem for the
spaces V,,, n > 1, generated by the weak greedy
algorithm with parameter ~ in the case X is a Hilbert
space

Theorem: If » > 0, then there is a constant C'(r,~) > 0
such that whenever d,,(K)x < Mn~", n > 1 we have
dist(K, V) x < C(r,vy)Mn™", n>1

Finding the greedy space X, requires querying i

This is done by discretizing K to the accuracy of the
current error

In parametric PDEs the space X, is referred to as
model reduction J
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A Specific Task: Data Fitting
-

o We turn next to the following Common Scientific
Problem: We are given data about some underlying
function f (scientific process) and we wish to ‘fit the
data’ to answer some question about f

o We put forward general principles that can be tailored to
any specific application

|
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our Favorite Application

Groundwater Modeling Manifold Learning
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Data Tasks
-

# Two types of tasks
s Prediction: Given any query =+ we want to compute

f(z)
s Since x is arbitrary, we need to approximate f
s We call this the full appproximation problem

» Quantity of Interest: calculate some narrower
quantity
s Mmaximum/minimum of f
s average behavior: calculate an integral of f
s value of f at some designated point

o We seek algorithms that can be proven optimal for
recovering f or answering questions of interest about
optimal and certifiable performance
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Mathematical Formulation

-

o Consider the full approximation problem for f

s Form of the Data?: We assume
w; =1;(f), 7=1,...,m,where(; are linear
functionals
s Measurement map M(f) = w = (wy, ..., wy)

s How to measure performance? We measure
distortion by a norm || - [ x with X" a Banach space

# An algorithm is a mapping A : IR™ — X where A(M(f))
IS an approximation to f € X giving error

E(f,A)x =E(f,M,A)x = ||f — AM(f))||x

|
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Model Classes
-

With no other information we can say nothing about the
error or discuss best algorithms

To state a meaningful problem we need to have
additional information about f

This additional information is typically given in an
assumption that f € C ¢ X with I a model class

An accurate description of the model class I is the
most important ingredient in data assimilation

The more info we have on K the better we can do

In scientific computation this is extracted by
understanding the scientific process: for example,
bandlimits for signals, regularity theorems for PDEs

|
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Optimal Recovery: Best Algorithms
-

® C, || -||x fixed and consider any algorithm A

® Define Iy :={fec: M(f)=w}
s Membership in IC,, is all we know about f

» Pointwise error: E(IC,, M, A) == sup ||f — A(w)]| x
fey

® Worst case error:

E(K, M, A) = sup || f — AM[))|lx = sup E(Kw, M, A)
fex welR™

# Optimal Performance: | E*(IC, M) :=inf 4 E(K, M, A)

o Optimal Recovery: The best algorithm A*
s Let B(g,, R,) be the smallest ball that contains /C,,

s A" :w— gy IS an algorithm that is pointwise optimal J
E(Ky, M, A" x = E*(Kyw, M) = Ry,
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Graphic for Optimal Recovery

|
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Not so Fast!
-

# You may think that this is the end of the story

s But finding the Chebyshev ball is a substantial
problem and is only carried out in certain special
settings: for certain K and certain distortion metrics

I llx

» Results where optimal recovery is known are
summarized in Micchelli-Rivlin

#® However, there is a general setting where we can
determine optimal or near optimal algorithms and we
can determine a priori the optimal performance

s This setting will also expose when one has good
data or bad data

|
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Approximation Sets

-

Remember! Any algorithm will be based on some form
of approximation!

Let V =V, be the functions used in the approximation:
polynomials, neural nets, wavelets, sparse sums, etc.

Since we have chosen V' we think K is described by the
fact it is well approximated by 1/

Natural Model class: Approximation set:
K=K, V)={f: dist(f,V)x <€}

We shall describe algorithms which are optimal over all
e and you do not need to know ¢
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Performance estimates

-

Full approximation problem: Performance determined
by V and null space NV :={f € X : M(f) =0} via

_ _ 7]
puN, V) = pu(N,V)x = 2;1/13 Tt (. V)

When X is a Hilbert space best performance for an
approximation set L = IC(e, V) Is

EX(IC, M) = (N, V)e

When X is a general Banach space best performance
E(K, M) for an approximation set I = IC(e, V') satisfies

uN Ve < E(KK, M) < 2u(N,V)e

Important: ;1 Is easy to compute and (near) best
algorithms can be described as will follow J
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°

A simple example
Take X to be a Hilbert space T
I lj(f) — <f, wj), 17=1,...,m with (wj) ONS then

s U*(w) L= Afggf‘l"/liﬂ Hw - M( )H&
v

s A:w— v"(w)is near optimal with constant 2

s If u*(w) € Ky Is the closest element v*(w) then
A* w — w*(w) IS linear and pointwise optimal

Best algorithm is essentially least squares fit:
1 can be computed by SVD of cross Grammian

What is new?: Generally you do not see ;; and
performance estimates for least squares

Note: Data is good if 1z is small and bad if . is large J
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Hilbert space geometry

|
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© o o o o

Choosing V/

The above optimal estimates take the form
If =AM (f)llx < CuN,V)dist(f, V)

Here there is a competition between ;. and dist(f, V)

s Increasing the complexity of IV improves dist(f, V)
but increases (N, V)

| want to illustrate this with a (toy) example
X = C(D) with D a domain in R*

w; =1i(f)=flz;)withz; €e D, j=1,....m
V C C(D) alinear space of dimension n < m
PN, V) =1+ w(V,N') where

lolleoy
u(V. N') = sup
VN = s i erem [V |
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Point values

-

Near best algorithm is v* := Argmin, oy |[w — M(v)|,_
Example X = C([0,1]), &, ..., &, equally spaced,

V ="P,_1 - polynomials of degree < n. Then it is known
s If you choose n = m then u(N,P,,) ~ a”, a > 1

s Ifn=/mthen u(N,P,) <3

s This gives |/ — A(M(f))|lc < 3dist(f. P z)c

'his points out the importance of the choice of IV and
the knowledge we have about f

'he above says do not interpolate unless you know f is
very smooth - analytic

Analogy with statistical learning: Do not overfit data
computing 1 tells you what overfit means J
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High dimension

# What happens when f depends on many T
variables/parameters: many features in data

s [The mainissue is what is the correct model class K -
what is the correct V' to avoid the curse of
dimensionality

» Model classes K are proposed built on sparsity,
anisotropy, variable reduction, feature selection, etc.

s Typical IV are built on highly nonlinear methods such
as dictionary appproximation, neural networks

s To have a quantitative theory (certifiable
performance) we need to understand
s Which functions are approximated well by V' - if
and only if theorems
s Whatis (N, V) for given data and V J

s Computational complexity of optimal algorithms
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Additional Remarks
-

# The main references for the above are:
Binev-Cohen-Dahmen-DeVore-Petrova-Wojtaszczyk
(Hilbert space), DeVore -Petrova-Wojtaszczyk (Banach
space)

# Closely related work emphasizing more the issue of
stable computation is given by Adcock, Hansen,
Shadrin, Trefethen, et al

|
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Quantities of Interest

# A similar theory of optimal recovery exists for quan’[i’[iesT
of interest ()

# Performance now controlled by

" I (0]
PNV Q) i= p NV Q) = sup i 53

# For any Banach space X we have the performance
bounds

PN,V Q)e < B(Q,K(e, V), M) < 2u(N, V, Q)e

|
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Constructive Opt. Linear Algorithm
-

# When C is an approximation set and () is a linear
functional then one can find an optimal algorithm that is
linear by constrained optimization:

o letlyp:={l= Z L ajl l(v) = Qv), ve V}and

[* := Argmin ||Q — || x~ —Z azl;

leLg

® Then|A* :w— Y " afw;|is an optimal algorithm

# Note this may be numerically intensive constrained
minimization

® Perf:||Q(f) — A*(Mf)] < ||Q — I*|| x- dist(f, V) x
® Yousee i < ||Q — "] x- J
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® | [f=A M) <pWN,V,.Q)dist(f,V)en

Example: Quadrature

-

Integration: Option trading, uncertainty quantification,
Quasi-Monte Carlo, etc.

Data are point valuesl-(f) = f(x;), j: L,...,m,

We want to compute Q(f) = [, w(x)f(x)dz, f € K(e, V)
The optimal quadrature on X = (J( ) using the points
Tj € D Is

s A'(f) =231 a4} f(x)
s (a7) = Afgmlﬂ{zj Llagl s D250 aju(ay) =

fD r)dr}
Thisis a constralned /1 minimization problem
u(N,V, Q) = ZTzl ‘afﬂ J
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Example: Global Temperature

-

# Let 7(z,t) denote temperature at position = on earth
and time ¢

® Quantity of interest Q(T') = [, [, ., T(x,t)dzdt
# Roughly 14K sites from 1950 till 2017
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Obstacles to Mathematical Analysis

o Life would be good if T
» We knew the right model class for 7'(x, ¢) - the right /

s If data sites, equipment, and measuring times did not
change each year

o Current algorithms use models based on pw
polynomials - not clear what space

#® We will use spherical harmonics

#® We compare Spherical Harmonics versus GISTemp
(NASA) on their adjusted data set

# We can compute 1 for spherical harmonics but not for
GISTemp

|
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Current Algorithms

# There are many algorithms T

o The following flowchart gives the main steps of the
NOAA and NASA algorithms using piecewise
polynomials on a uniform grid

Surface Air
Temperature Outlier Removal

# and # Urban Adjustment

NOAA/NCEI Quality Control

GHCN v3
SCAR/READER

‘—I

Grid Generation Sea Surface
And * Temperatures * Merge Land and Sea
Temperature Data

Smoothing NOAA/NCEI ERSST v4

# Impossible to analyze accuracy because of the ad hoc J
adjustments to the data
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omparison:GISTempvs. SH6

Global Anomalies by Year
T T T

a6 L L
1980 1965 1870 175 1980 1985 1990 1998 2000 2005 2010 2018
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Comparison: GISTemp vs. SH9

Global Anomalies by Year

T T T T T T
Tncm.
——@isTEnF | |

0 1
1960 1988 1970 1975 1980 1985 1990 1995 2000 2008 2010 2018
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o Are we computing global temperature?

Typical Growth of 1

-

s This would require proving validity of our model
class: would require analysis from physical principles

» Also depends on behavior of 4

T

3

6

9

12

15

18

14

1

1.03

2.61

24.13

223.50

2779.85

o We see that even if we justify our model class, we need

to restrict the size of n

|
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