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Abstract

Free �non�linear� ridge L��approximation NRAn�f�� n � �� �� � � � � of a function f�x� �
f�x�� x�� in the unit disc IB� is considered������f �

nX
�

Fj�x � �j�� L
��IB��

����� �� inf in fFj�t�g
n
� and f�jg

n
� � S� �

where fFj�t�g
n
� denotes a set of n single variate functions� Geometrically	 the NRA�problem

means approximation of f by a linear combination of n planar waves of arbitrary shapes Fj and
directions of propagation �wave vectors� �j �

A duality relation is established between the NRA problem and that of optimal quadrature
formulas	 in the sense of Kolmogorov 
 Nikol�skii	 for classes of trigonometric polynomials�

On the base of this duality and lower estimates of errors of quadrature formulas	 it is proved
that if f�x� is radial	 f�x� � f�jxj�	 then algebraic polynomials in two variables provide �almost
best tool for ridge approximation�

�

c�
PA�n�f� � NRAn�f� � PAn���f�� n � �� �� � � � �

where c� is an absolute positive constant	 and PAn�f� denotes the n�th best algebraic polyno�
mial approximation of f in L��IB���

PAn�f� �� min
p�x��P�

n

���f � p� L��IB��
��� � P�

n �� Span
n
xk�x

l
�

o
k�l�n

�

It is known that algebraic polynomials of degree n in two variables can be represented as linear
combinations of n� � planar wave polynomials� Radon 
 Fourier analysis via Chebyshev ridge
polynomials is crucial in the proof�

�
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� Introduction

Let n be a natural number� IR� Denote Rn the set of linear combinations of n planar waves on the
real plane R�� i� e�

R�x� � Rn �� R�x� �
nX
�

Fj�x � �j��

where Fj�t� are functions of a single real variable t� �j are unit vectors� i�e� �j � S� �wave vectors��
and x � � denotes the usual inner product of vectors x� �� Thus� functions from Rn are linear
combinations of n planar waves� in general� of arbitrary shapes and directions of propagation�

Obviously� double trigonometric polynomials

T �x� �
nX
�

cje
i�j��j�x�

are elements of Rn for every choice of frequencies �j and wave vectors �j�
The fact that algebraic polynomials in two variables of degree n� � also belong to the set Rn�

P�
n�� �� Span

n
xk�x

l
�

o
k�l�n��

� Rn� n � �� �� � � � ���

is somewhat less obvious �cf� ���� below�� Its signi	cance in problems of Radon inversion and the
so called non�linear ridge approximation �for brevity� NRA in the sequel�� was demonstrated in 
���
cf� also 
���

A particular case of the latter problem� answering the functions f�x� � f�x�� x��� x � IB�

supported in the unit disc IB� �� fx � jxj � �g� and the usual L��IB�� norm�

���f � L��IB��
��� ��

sZ
IB�

jf�x�j� dx �

�



is formulated as follows� Given a function f � L��IB��� and a natural n� �nd the quantity

NRAn�f� � NRAn

�
f � L��IB��

�
�� inf

R�Rn

���f �R� L��IB��
��� �

and the corresponding minimizer R��f� � Rn� if the latter exists� Thus� geometrically the NRA
problem consists in searching for linear combinations of n planar waves� of arbitrary shapes and
directions� that are best 	t to f�x� in the sense of L� distance� It obviously follows from the classical
K� Weierstrass approximation theorem that NRAn�f� � �� n��� 	f � L��IB�� � Moreover� it
follows directly from ��� that the following inequalities hold true

NRAn�f� � PAn���f�� n � �� �� � � � ���

where PAn�f� denote the values of best algebraic polynomial approximations of f �

PAn�f� � PAn

�
f � L��IB��

�
�� min

P�P�
n

���f � p� L��IB��
��� � n � �� �� � � � �

It should be noted that even in the simplest case of the metric L�� the extremal problem of
NRA is of highly non�linear nature� This non�linearity dwells in the selection of the optimal set
of wave vectors ��� � � � � �n� that are allowed to depend upon the given function f�x�� Neither
of the basic mathematical questions of existence� uniquenness of the optimal linear combination
R�
n�x� � R�

n�f�x� � Rn of n planar waves can be solved in general terms� An a priori reason for the
e�ect of non�existence can be seen in non�compactness of the class of all admissible single variate
functions fFj�t�g� generating planar waves Fj�x � �j�� As a result� some of the wave vectors� in
approach to inf in the de	nition of NRAn�f�� can tend to couple� or asymptotically stick together�
The set Rn is not closed for n 
 �� since no restrictions are imposed on the distribution of the wave
vectors �j � S� � Indeed� if F �t�� t � R� is a di�erentiable function� � �� e� � hcos �� sin�i � a 	xed

unit vector� �� �� h� sin �� cos�i� then the function

f�x� � f��x� �� �x � ���F ��x � �� � �F �x� cos �� x� sin ��

��

� lim
�������

�
F �x� cos�� � x� sin���

�� � ��
�
F �x� cos �� � x� sin���

�� � ��

�

is a limit of a sequence of linear combinations of � planar waves� i� e belongs to the closure of R��
Consequently� for every function f�x� of the type f�x� � �x ����F ��x ��� one has NRA��f� � �� but

�



obviously in general f��x� �� R�� Further� consider the function f�x� �� x�x�� For � �� k�

�
� k � Z

one obviously has

x�x� �
�x� cos�� x� sin���

� sin ��
� �x� cos�� x� sin���

� sin ��
�

so that again NRA��f� � �� the optimal combination of � planar waves exists� but is essentially

non�unique�

Let us also note the example of the function

f�x� �� jxj� � jxj� � x�� � x�� � �x�� � x���
��

which is a radial algebraic polynomial of degree � �� This function provides a warning against
possible �naive� conjectures about the structure of the set of optimal wave vectors� Such an apparent
conjecture �on the run�� without thorough analysis� is that the optimal wave vectors should be selected

equidistributed on the circle S�� simply because the function is radial� In the case n � �� this would
mean that the two optimal wave vectors should be mutually perpendicular� i� e� �� ��� � �� However�
we will prove that the latter is not true� for f�x� �� jxj� � jxj� and n � �� the optimal wave vectors

��� �� are de�ned by the relation

�� � �� �
s
�

�
� ���

The main goal of the present paper is to establish the following statement�

Theorem � There exists an absolute positive constant c� such that nonlinear ridge� and polynomial

approximations of every radial function f�x� � f�jxj� are related by the following inequalities�

�

c�
PA�n�f� � NRAn�f� � PAn���f�� n � �� �� � � � � ���

As mentioned above� cf� ���� only the lower estimate NRAn�f� 
 �
c�
PA�n�f� in this statement is

new� The meaning of this statement is that for each radial function f�jxj� that is �not too smooth��

namely� PAn�f� � O �PA�n�f�� � n � �� orthogonal projections onto subspaces of algebraic poly�

nomials represent the optimal in order and linear tool of ridge approximation�

In connection with the latter corollary� recent results of V�E� Majorov 
�� and V�N� Temlyakov

�� can be quoted� on estimates from below of upper bounds of NRAn�f� on variants of Sobolev
classes W r�IB��� In somewhat loose words� the class W r�IB�� in the papers 
�� and 
�� consists of
functions f�x� whose polynomial approximations satisfy the estimate PAn�f� � O �n�r� � n � ��
and existence of a function f�x� � W r�IB�� is established for which

NRAn�f� 
 �n lnn��r� n � �� �� � � � �

�



It follows from ��� that the factors �lnn��r in this result can be dropped� for every radial function

whose polynomial approximationsPAn�f� are of exact order n�r� the non�linear ridge approximations
NRAn�f� are of the same order of magnitude�

The proof of Theorem � relies upon Radon inversion formula and the corresponding Fourier �
Chebyshev analysis in IB�� In the next section we list the necessary facts �for more details� the reader
may be referred to 
��� 
�� or 
����

� Radon inversion formula via Chebyshev � Fourier series

A general approach to the problem of ridge approximation can be seen from the following� On the
	rst step� 	nd an integral representation of the function f�x� of the form

f�x� � �

��

Z
S�
F ���x � �� d�� ���

where F ��� t� � F �f � �� t�� Then discretize the integral on the righthand side by a suitable quadrature
formula �Riemannian sum�

Z
S�

F ���x � �� d� �
nX
�

j��jjF ��j�x � �j�� ���

The 	rst step is accomplished by applying direct and inverse Radon transforms� For f�x� �
L��IR��� denote R�f � �� t�� � � S�� t � IR� the direct Radon transform�

R�f � �� t� ��
Z
y���t

f�y�m��dy��

where m��dy� stands for the �d Lebesgue measure on the real lineR�� Then each su�ciently smooth
and rapidly decreasing function f�x� can be reconstructed by applying to R�f � �� t� the inverse

Radon transform�

f�x� �
�

��

Z
S�

�HD�R�f � �� ��
����
t�x��

d�� ���

Here �HD� denotes the composition of commuting one�dimensional operators of Hilbert transform
H and di�erentiation D� i�e�

�HD�R�f � �� ���t� �� �

��

�

�t

Z
R�

R�f � �� s� cot
t� s

�
ds �

�



Thus� in capacity of F �f � �� t� in the integral representation ��� one can take the function

F �f � �� t� �� �HD�R�f � �� ���t� � �

��

�

�t

Z
R�

R�f � �� s� cot
t� s

�
ds �

Obviously� Radon inversion operator ��� is a composition of two operators of polarly di�erent nature�
Singular part �HD� is applied to the direct Radon transform R�f � �� t� in the space variable t� After
it and the substitution t � x � �� the smoothing operator of averaging �

��

R
S� in the angular variable

� is applied� Thus� the di�culty in the second step of construction of ridge approximation consists
in search of a suitable quadrature formula ��� for the image of the singular operator �HD��

For functions f�x� supported in IB�� the direct Radon transforms R�f � �� t� are obviously sup�
ported on the interval t � IB� �� ���� ��� Restriction of the general Radon inversion operator ��� on
the class of such functions naturally generates Fourier analysis where Chebyshev polynomials of the
second kind

un�t� ��
�p
�
Dn�arccos t�� where Dn��� ��

sin �n� ���

sin�
� n � �� �� � � � �

play the crucial role� cf� 
��� 
��� These classical polynomials constitute a complete orthonormal
system U � fun���t�g�n�� in L�

w���� �� with the weight w�t� � �
p
�� t��

Moreover� these polynomials constitute the complete system of eigen�functions of the operator
�HDw� in the �d spectral problem �HD�w�t�u�t� � �u�t�� t � IB��

After substitution t � x � �� x � IB�� � � S�� un�x � �� generate a family of complete orthonormal

systems of ridge polynomials in L��IB��� The fundamental properties of this system

US� �� ffun���x � ��g�n��g��S�
are expressed by the following
�� Orthogonality relation�

Z
IB�

un�x � ��P �x� dx � � 	P �x� � P�
n��� n � �� �� � � � � 	� � S�� ���

or un�x � ��  P�
n�� in L��IB���

A proof of this property can be carried out using Chebyshevs general ideas of polynomials of best
approximation and symmetry of IB�� First of all� not loosing generality we can take � � h�� �i� Next�
let f�x� � f�x�� � L��IB�� be a single variate function in L��IB��� or f�t� � L�

w�IB
��� w�t� � �

p
�� t��

�



Consider the problem of best approximation of this function by all polynomials in two variables

x� �� t� x�� of the class P�
n��� in L��IB���

kf�t�� P �x�� L��IB��k �� min in P �x� � P�
n���

Then using Jensens inequality and symmetry of IB� it is not hard to see� that the minimizer P � of
this problem is indeed a single variate polynomial� P ��x� � P ��t� � P�

n��� Obviously� we have also
f�t�� P ��t�  P�

n�� in L��IB�� and in particular

Z
IB�

�f�t�� P ��t��P �t� dx �
Z �

��
�f�t�� P ��t��P �t�w�t� dt � � 	P �t� � P�

n���

If we take f�t� �� tn� we easily see that the corresponding mimimizer tn � P ��t� is a multiple of the
n�th Chebyshev polynomial un�t�� and ��� follows� because we have tn � P ��t�  P�

n�� in L��IB���
�� Inner products of Chebyshev ridge polynomials�

Z
IB�

un�x � ��un�x � �� dx �
un�� � ��
un���

�

p
�

n � �
un�� � ��� 	��� � S�� ���

Furtermore� let T 	
n denote the subspace of trigonometric polynomials a���� � � S�� of degree deg a �

n and satisfying a���� � ����na���� � � S�� Then

�

��

Z
S�

p
�un�� � �� a��� d� � a���� a��� � T 	

n � � � S� ����

and in particular

�

�
p
�

Z
S�

un��� � ��un�� � ��� d� � un��� � ���� ��� �� � S�

The latter two relations simply means that the convolution
p
�un �a represents the identity operator

on T 	
n � i�e�

p
�un is the Dirichlet kernel�

�� Integral representation�

Given a function f�x� � L��IB��� consider the following Chebyshev � Fourier coe�cients� depending
on � � S� as a parameter�

an�f� �� ��
Z
IB�

f�y�un�y � �� dy � n � �� �� � � � � � � S��

�



The following relation represents the integral form of Chebyshev ridge polynomial Fourier series�
which is in fact Radon inversion formula ��� for f�x� expressed via Chebyshev ridge polynomials�

f�x�
L��IB��
�

�

��

�X
n��

n
Z
S�

an���f� ��un���x � �� d� � ����

�� Integral form of Parceval�s identity�

If f�x�� g�x� � L��IB��� then an�f� ��� an�g� �� � T 	
n and

Z
IB�

f�x�g�x� dx �
�

��

�X
n��

n
Z
S�

an���f� ��an���g� �� d� �

In particular� if f�x� � L��IB��� then

kf�x�� L��IB��k� � �

��

�X
n��

nkan������ L��S��k�� ����

These relations easily follow from ��� and �����
�� Plancherel�s theorem�

If fan���g�n�� is a sequence of trigonometric polynomials� satisfying the conditions

an��� � T 	
n �

�X
n��

n kan������ L��S��k� 	�

then there exists a unique function f�x� � L��IB�� such that an�f� �� � an���� n � �� �� � � � �
�� Partial sums and orthogonal projections onto P�

n�
Let n � �� �� � � � �� Then the 	nite partial sum of the Fourier expansion ����

Sn�f� x� ��
�

��

nX
m��

m
Z
S�

am���f� ��um���x � �� d�

coincides with orthogonal projection of f�x� onto the subspace of algebraic polynomials P�
n�� in

L��IB���
kf�x�� Sn�f� x�� L

��IB�k � min
P�P�

n��

kf�x�� P �x�� L��IB�k � PAn���f��

Obviously� Sn�f� x� is a linear integral operator�

Sn�f� x� �
Z
IB�

Dn�x�y�f�y� dy� where Dn�x�y� ��
�

��

nX
m��

m
Z
S�
um���x � ��um���y � �� d��

�



The functions Dn�x�y� are the corresponding Chebyshev � Dirichlet kernels �
The kernels Dn�x�y� are complicated� with complete absence of localization in the usual sense�

They are strongly oscillatory� with large amplitudes of oscillations� It seems interesting to investigate
these kernels more closely� as well as possibilities of other summation methods of the series ����� In
particular� such investigation may be worthy for understanding of ridge approximation in Lp�metrics
for p �� ��
�� Discretization�

For a 	xed natural n� consider a set of n points �n � �n��n� � f�nkgnk�� equidistributed on a
semicircle�

�n �� f� � e�g��	n
� where e� � hcos �� sin�i� �n ��

�
k�

n
� �n

�n
k��

�

where �n is an arbitrary 	xed real number� Then using the relations

�

n

nX
k��

e
��ijk

n �

�
� if j � � �mod n��
� if j �� � �mod n�

����

it is easy to see that Z
S�

a��� d� �
��

n

X
���n

a���� 	a��� � T 	
��n���� ����

Next note that for 	xed x� y� the product un���x � ��un���y � ��� as a function of � � S�� is a
trigonometric polynomial of the class T 	

��n���� Therefore�Z
S�
un���x � ��un���y � �� d� �

��

n

X
���n

un���x � ��un���y � ���

Cosequently� the integral Chebyshev ridge polynomial Fourier series ���� can be rewritten in discrete
form as follows�

f�x�
L��IB��
�

�X
n��

X
���n

an���f� ��un���x � ��� an�f� �� �
Z
IB�

f�y�un�y � �� dy� ����

It follows that for an arbitrary choice of �n in the de�nition of �n��n� the corresponding� double

indexed� discrete set of Chebyshev ridge polynomials

US���� ��
n
fun���x � ��g���n

o�
n��

� �� �� f�ng�� �

�



is a complete orthonormal system in L��IB��� The Parcevals identity answering such a system is
given by

Z
IB�

f�x�g�x� dx �
�X
n��

X
���n

an���f� ��an���g� ���
���f� L��IB��

���� � �X
n��

X
���n

jan���f� ��j��

However note� that such classical aspects of Fourier analysis as proper analogues of Riemann�
Lebesgue theorem for systems US���� and functions f�x� � Lp�IB�� with p 	 � are by far not
clari	ed yet�

The following discrete representation of the Dirichlet kernel Dn�x�y� is also an easy corollary of
�����

Dn�x�y� �
nX

m��

nX
k��

m

n
um���x � �kn�um���y � �kn� � �kn ��

�
cos

k�

n
� sin

k�

n

	
�

This relation implies� in particular� that a general polynomial of two variables can be represented as
linear combination of ridge polynomials of same degree� Indeed� if P �x� � P�

n��� then

P �x� �
nX

k��

Pk�x � �kn�� Pk�t� �
nX

m��

m

n


Z
IB�

P �y�um���y � �kn� dy
�
um���t� � ����

and obviously Pk�t� � P�
n���

However� for our direct goal � the proof of Theorem � � we will use the integral form ���� of
Chebyshev ridge polynomial Fourier series�
	� A relation between Chebyshev and Legendre polynomials�

Let L �� fln�t�g�n�� denote the system of Legendre polynomials orthonormal in L���� ��� Then
following relations are true�

�

��

Z
S�

un�x � �� d� �

s
�

��n� ��

�
ln
�

�jxj�� for even n

� for odd n�
����

Indeed� Chebyshev polynomials un�t� with odd indices n are odd functions� so the integral on the
left is obviously �� On the other hand� if n is even� say n � �m� it is easy to see that the integral
is a polynomial in jxj� of the form P �jxj��� where P � P�

m� Due to the orthogonality relation ����
we also have P �jxj��  P�

�m�� in L��IB��� and in particular P �jxj��  	Q�jxj�� where Q � P�
m��� In

polar coordinates�

� �
Z
IB�

P �jxj��Q�jxj�� dx � ��
Z �

�
rP �r��Q�r�� dr � �

Z �

�
P �t�Q�t� dt� 	Q � P�

m���

��



and consequently P �t� is indeed a constant multiple of the m�th Legendre polynomial� i�e� P �t� �

mlm�t�� A calculation of these constants is based on ��� and can be carried out for n � �m as
follows�


�m �
Z �

�
P ��t� dt � �

Z �

�
rP �r�� dr �

�

�

Z
IB�

P ��jxj�� dx �
�

���

Z
IB�


Z
S�
un�x � �� d�

��
dx

�
�

���

Z
S�

Z
S�


Z
IB�

un�x � ��un�x � �� dx
�
d�d� �

�

���

Z
S�

Z
S�

un�� � ��
un���

d�d�

�

p
�

����n� ��

Z
S�

Z
S�

un�� � �� d�d� �
�

����n� ��

Z ��

�

Z ��

�
Dn��� �� d�d� �

�

��n� ��
�

whence ���� follows�

� Chebyshev ridge polynomial Fourier series of radial functions�

Let f�x� is a radial function� f�x� � f�jxj�� Then it is easy to see that the corresponding Chebyshev
ridge Fourier coe�cients an�f� �� in ���� are trigonometric polynomials of degree �� i�e� simply
constants� an�f� �� � an�f�� Moreover� for odd n one has an�f� � �� and thus

f�jxj� L��IB��
�

�

��

�X
m��

��m� ��a�m�f�
Z
S�

u�m�x � �� d�� ����

Using ���� one can express a�m�f� via Fourier�Legendre coe�cients of the function f�
p
t�� t � ��� ���

a�m�f� � �

��

Z
S�

a�m�f� d� �
Z
IB�

f�jxj�



�

��

Z
S�
un�x � �� d�

�
dx ����

�
Z
IB�

f�jxj�
s

�

���m� ��
lm�jxj�� dx � ��

s
�

���m� ��

Z �

�
rf�r� lm�r

�� dr

�

s
�

�m � �

Z �

�
f�
p
t� lm�t� dt�

Respectively� the partial sums Sn�f�x� for radial functions f�x� � f�jxj� can be rewritten as follows�

Sn



f�
q
jxj
�
� �

X
�m�n��


Z �

�
f�
p
t� lm�t� dt

�
lm�jxj� �

��� Chebyshev Fourier series of ridge functions�

Let � � S� be a 	xed wave vector� and F �t� � L�
w�IB

��� w�t� � �
p
�� t� � a single variate function�

��



with Chebyshev�Fourier expansion

F �t�
L�
w�IB

��
�

�X
m��

 F �m�um�t� � where  F �m� � �
Z �

��
F �t�um�t�

p
�� t� dt� ����

and obviously

F �x � �� L��IB��
�

�X
m��

 F �m�um�x � �� �

Therefore �cf� ������

am�F �x � ��� �� �  F �m�
Z
S�

um�y � ��um�y � �� dy �  F �m�
um�� � ��
um���

�

p
�  F �m�

m� �
um�� � ���

and if R�x� �
Pn

� Fj�x � �j� is a function of the class Rn� then

am�R� �� �

p
�

m� �

nX
j��

 Fj�m�um�� � �j� � m � �� �� � � � � ����

� NRA and optimal quadrature formulas for trigonometric

polynomials

Denote T 	
m �L�� the unit L��S���ball in the subspace of trigonometric polynomials T 	

m �

T 	
m �L�� ��

n
t��� � T 	

m � kt���� L��S��k � �
o
�

and let f�x� � L��IB��� By duality� the Parcevals identity ���� can be rewritten as follows�

���f�x�� L��IB��
���� � �X

m��

�m� �� sup
t�T �m �L��

����
Z
S�

am�f� ��t��� d�
����� � ����

The next simple statement contains a duality relation between ridge approximation and errors of

quadrature formulas for computation of linear functionals
R
S� am�f� ��d� on T 	

m �L��� The latter
formulas correspond to the nodes f�jg and weights  Fj�m�� generated by the given linear combination
of ridge functions R�x� �

Pn
� Fj�x � �j� � Rn�

��



Lemma � Let R�x� �
Pn

� Fj�x � �j�� Then

���f�x��R�x�� L��IB��
����

�
�

��

�X
m��

�m� �� sup
t�T �m �L��

������
Z
S�
am�f� ��t��� d� � ��

m� �

nX
j��

 Fj�m� t��j�

������
�

� ����

where  Fj�m� denote the Fourier � Chebyshev coe	cients of the function Fj�t��

 Fj�m� � �
Z �

��
Fj�t�um�t�

p
�� t� dt�

This statement is a corollary of ����� ���� and ����� because for t��� � T 	
m �L��

Z
S�

am�R� ��t��� d� �
�

m� �

nX
j��

 Fj�m�
Z
S�

p
� um��j � ��t��� d� �

��

m� �

nX
j��

 Fj�m� t��j� �

Note the for each m � �� �� � � � � the expression

Q�m�n�  R��t� ��
��

m� �

nX
j��

 Fj�m� t��j�

on the right of ���� can be interpreted as a quadrature formula with n nodes f�jgn� and weights

wj �� wj�m�  R� ��
��

m� �
 Fj�m�� j � �� �� � � � � n

for computation of the linear functional

Am�f� t� ��
Z
S�

am�f� ��t��� d� � Q�m�n�  R��t� ��
nX

j��

wjt��j�

on the class of trigonometric polynomials t � T 	
m �L��� Moreover� the upper bound

sup
t�T �m �L��

������
Z
S�

am�f� ��t��� d� � ��

m� �

nX
j��

 Fj�m� t��j�

������ � sup
t�T �m �L��

���Am�f� t��Q�m�n�  R�
���

on the right of ���� represents the value of the global error of the quadrature formula Q�m�n�  R� on
this class�

��



At this point� it is convenient to introduce the following variant of the general notion of optimal

quadrature formulas� due to A�N� Kolmogorov and S�M� Nikolskii� cf� 
��� adjusted to the special
case of compact classes of trigonometric polynomials�
De�nition� Let m� n � �� �� � � � � Denote Tm the subspace of trigonometric polynomials of degree
m� and let for � � p � � Tm�Lp� be the Lp�unit ball in Tm�

Tm�Lp� �� Span
n
eik�

on
k��n

� Tm�L�� �� fT ��� � Tm � kT ���� Lp��� ���k � �g �
Then the quantity

Q�m�n��Lp� �� inf
fwjg

n
�
�f�jg

n
�

�
� sup
T�Tm�Lp�

������
Z ��

�
T ��� d��

nX
j��

wjt��j�

������
��
�

is called optimal quadrature error with n nodes for the class Tm�Lp� � If inf in this de	nition
is attained for certain sets of nodes and weights �n � f��jgn� � Wn � fw�jgn� � the corresponding
quadrature formula

Pn
� w

�
jT ��

�
j� is called optimal for the class Tm�Lp� �

This de	nition� ���� and ���� imply a lower eslimate for NRA of each 	xed radial function�

Lemma � Let f�x� � f�jxj� be a radial function in L��IB��� Then the following estimates hold true�

NRAn�f� 

vuut �

��

�X
m��

��m� ��ja�mj� �Q�m�n��L���� � n � �� �� � � � � ����

Indeed� as mentioned above� in the case of radial functions� the corresponding Chebyshev � Fourier
coe�cients am�f� �� are in fact constants� and the latter are non�zero only for even indices m� Thus�
���� for a radial function f can be rewritten as follows�������f�jxj��

nX
j��

Fj�x � �j�� L��IB��

������
�


 �

��

�X
m��

��m� �� sup
t�T �

�m�L��

������a�m�f�
Z ��

�
t��� d�� ��

�m� �

NX
j��

 Fj��m� t��j�

������
�

� ����

A polynomial t��� � T 	
�m is of the form t��� � T ����� where T ��� � Tm� Thus� the following estimate

from below holds true for each term of the series on the righthand side�

sup
t�T �

�m�L��

������a�m�f�
Z ��

�
t��� d�� ��

�m� �

nX
j��

 Fj��m� t��j�

������
�


 ja�m�f�j�
�
Q�m�n��L��

��
�

��



and ���� follows�
The following inequalities are obvious�

Q�m�n��Lp� � Q�m�n��Lr�� �p 
 q�� Q�m�n��Lp� � Q�m�� n��L
p�� �m� 
 m��

Q�m�n��Lp� � Q�m�n���L
p�� �n� � n��

Since �cf� ����� Z ��

�
T ��� d� �

��

n

nX
�

T


��j

n

�
� 	T � Tm� n � m

�i�e�� quadrature formula of rectangles is exact�� one obviously has Q�m�n��Lp� � � if n � m�
To 	nish the proof of Theorem �� now we need explicit estimates of Q�m�n��L�� from below�
These estimates are discussed in V�N� Temlyakovs monograph 
��� For our goal� the following

particular case of Lemma ���� p� ���� and also Theorem ���� p� ��� from 
�� is crucial� Part �� of
this assertion is a result of B�S�Kashin 
�� �for a stronger result� involving the norm U of uniform
convergence in Tm� see also 
����

Lemma � Let � � � be a �xed number� Then there exists a constant C��� � � such that�

�� in every subspace ! � Tm of dimension dim ! 
 ���m� �� there exists a polynomial T � ! with

equivalent norms in all Lp� � � p � ��

kt� L���� ���k 
 C��� kt� L���� ���k � �� ����

�� if n � ��� ��m� then the following estimates of Q�m�n� from below hold true

Q�n�m��L�� 
 C���� ����

For completeness sake� let us reproduce a deduction of ���� from ����� see 
��� Lemma ���� p� ����
Given a set of n nodes � � f�jgn� � denote ! �� !��� the subspace of all polynomials T ��� � Tm

�

which vanish at all nodal points� i�e� T ��� � �� 	� � � �if nodes are multiple � all corresponding

derivatives must also vanish�� Clearly we have dim! 
 �
h
m

�

i
� � � n 
 m � n � � 
 �m � � 


�

���m � �� for all su�ciently large m� Thus� according to ����� there exists a polynomial t��� � !
such that kt� L���� ���k � � and kt� L���� ���k� 
 C ����� Take T ��� �� jt���j�� Then obviously
T � Tm� kT� L���� ���k � �� T ��� � �� 	� � �� so that every quadrature formula with the
nodal points � provides zero result for this polynomial� On the other hand� one has

R ��
� T ��� d� �

kt� L���� ���k� 
 C ����� which completes the deduction of �����

��



It follows from ���� and ���� that for each � � � there is a constant C ����� � � such that for all
radial functions f

NRAn�f� 
 C �����

vuut �X
�m�������n

��m� ��ja�mj� � C �����PA������n � n � �� �� � � � � ����

Theorem � is a corollary of this relation� corresponding to � �� �
�
�

� Comments and open problems�

�� An interesting open problem is to elaborate approach to NRA in metrics of "Lp for p �� �� in
particular� for p ��� Here� it is natural to expect that an analogue of Theorem � is true in all Lp�
Also� NRA of functions of higher number of variables f�x� � f�x�� x�� � � � � xd� is the 	eld of big
theoretical and applied interest�

�� Surprisingly little is known concerning classical problem of optimal quadrature formulas for
classes of trigonometric polynomials Tn�Lp� in case of de�ciency of nodes� i�e� for n � m� It seems
to be interesting to 	nd a direct and simpler proof of the lower estimate ���� of Q�m�n�� avoiding
reference to the very deep result ���� of Kashin�

Even the problem of existence of optimal quadrature formula seems to be open� Here� the main
source of di�culty is in non�compactness of the class of admissible weights fwjgn� � Thus� a priori
it may be more pro	table to measure at certain nodal points �j not only the point values of the
polynomials T ��j�� but also those of their derivatives T �k���j� up to a certain order� The nature
of this di�culty is quite analogous to that of existence of the element of best non�linear ridge
approximation� discussed in the Introduction�

It is not hard to see that

Q�m�n��L�� � inf
fwjgn� �f�jg

n
�

������� �
nX
j��

wj

�
Dm��� �j�� L

���� ���

������ � Dm��� ��
sin
�
m� �

�

�
�

� sin �

�

� ����

Moreover� for a 	xed set � � f�jgn� of pairwise distinct nodes� the corresponding optimal weights
W �W ��� � fwjgn� can be selected as a solution of the following system of linear equations�

nX
j��

wj

�
Dm��k � �j� � �� k � �� �� � � � n� ����

��



If �m�� 
 n� the system of shifted Dirichlet kernels
n
�
�
Dm��� �j�

on
�
is linearly independent� Thus

the Gram matrix
h
�
�
Dm��k � �j�

in
k�j��

is nondegenerate� the solution W � W ��� of ���� is unique�

and the error of the corresponding formula with optimally chosen weights �
q
�� �Pn

� wj�

�� Let us apply ����� ���� to the analysis of the simplest non�trivial case�

Lemma � The optimal quadrature formula with two nodes ���� ��� for the class of trigonometric

polynomials of second order T��L�� exists� The optimal nodes satisfy the relation

�� � �� � � � arccos
�

�
	 �� ����

i�e�� they are not equidistant on the period 
�� ���� One has Q��� ���L�� �
q

���
�
 and the optimal

weights are given by w� � w� �
��
�

�

Without loss of generality� we may assume that �� � �� Let �� �� � �� �� and consider the system
����� answering the case n � m � p � ��

�
w�D��� � w�D��� � �
w�D��� � w�D��� � �

where D��� �� D���� �
sin 


�
�

� sin �

�

Obviously� the weights are equal w� � w� � w��� � �
D����D��� � and further� choosing � optimally�

one has

Q���� ���L�� � min
�

��� � �w���� � ��

�
� �max

�

�

D��� �D���

�
�

Thus� we need to 	nd the minimizer � in min�D���� It is not hard to see that such � can be found
as the smallest positive solution of the equation D���� � � sin�� � sin �� � � sin����� cos �� � ��
Thus�

� � � � arccos
�

�
� D��� �

�

�
� cos�� cos �� � ��

�
�

D��� �D��� �
�

�
� �

�
�

��

�
� w� � w� �

��

��
�

�
Q��� ���L��

��
� �� � w� � w� �

���

��
�

which completes the proof�
�� Let us prove the result mentioned in the Introduction� see ���� concerning geometric peculiarity

in NRA of the radial function f�jxj� � jxj� � jxj��

��



Lemma � The exact solution of the NRA��problem

NRA��f� � inf
�
�
��

�
�F��F�

����jxj� � jxj� � �

�
� F��x � ���� F��x � ���� L��IB��

����
is attained for ��� �� satisfying

�� � �� �
s
�

�
�� �� ����

which means that the optimal wave vectors are not mutually perpendicular� The corresponding optimal

functions F��t�� F��t� are constant multiples of Chebyshev polynomial u��t� of �th degree� F��t� �
F��t� � const � u��t��

This statement is a corollary of the previous lemma and ����� ����� Indeed� we have

f�jxj� �� jxj� � jxj� � �

�
� const � l��jxj��� where l��t� � �

p
�


t� � t�

�

�

�

is Legendre polynomial of order � on ��� ��� By �����

f�jxj� � const �
Z
S�

u��x � �� d��

so that the representation ���� reduces to a single non�zero term answering m � �� The NRA��
problem for such function is reduced to minimization

min
�
�
��

�
�w��w�

����
Z
S�

u��x � �� d� � w�u��x � ���� w�u��x � ���� L��IB��
����

and� further� according to ���� � to search of a single optimal quadrature formula with � nodes for
trigonometric polynomials of the class T 	

� �L��� The latter in its turn is equivalent to Q��� ���L���
problem for trigonometric polynomials of �nd degree� considered in Lemma �� Finally� it is easy to
see that the angle  � arccos ��� � ��� between optimal wave vectors for the NRA��f��problem is
determined by

 �
�� � ��

�
�

�

�



� � arccos

�

�

�
�

whence ���� follows�

��



�� Let us note that� due to the general duality relation ����� ridge approximation of functions�
other than radial� requires a progress in the problem of optimal recovery of linear functionals for
trigonometric polynomials� of the general form

Q�m�n�A� L�� �� inf
fwjgn� �f�jg

n
�

�
� sup
T�Tm�L��

������
Z ��

�
A���T ��� d��

nX
j��

wjT ��j�

������
��
� �

where A��� is a certain 	xed trigonometric polynomial in Tm� An interesting special class of such
problems is reconstruction of a harmonic in polynomials of the class Tn�L�� �

Q�l��m�n L�� �� inf
fwjgn� � f�jg

n
�

�
� sup
T�Tm�L��

������
Z ��

�
e�iltT ��� d��

nX
j��

wjT ��j�

������
��
� � jlj � m�

It may be conjectured that� say� for n � m
� the quantities Q�l��m�n L�� are bounded below by an

absolute positive constant� Q�l��m�n L�� 
 c� � �� The latter simply means that it is impossible�
using quadrature formulas� to reconstruct the lth harmonic of all polynomials from Tn�L�� with a
small error� if measurements of point values are available at �too few� nodes� In contrast to the case
of l � �� such a generalization of ���� does not seem to be directly deductable from Kashins result
�����

The extreme case l � m corresponds to NRA of harmonic functions in the open disc IB��

�f�x� ��
��f

�x��
�
��f

�x��
� �� jxj 	 ��

It is not hard to see that in this case the polynomial Fourier coe�cients am�f� �� in ���� are mono�
mials� am�f� �� � m�f� cosm�� � �n�� In polar coordinates � � e� � hcos �� sin�i one has

Am�f� �� � am�f� e�� � m�f� cosm��� �m��

where m�f� are determined by Fourier coe�cients of the boundary value f���� � � S� of f�x��

n�f� �

p
� �n�f�

n� �
� where f�e�� �� F ��� �

�X
n��

�n�f� cos n��� �n� �

� Appendix� More on quadrature formulas

Let us provide an alternative proof of a variant of the estimate ����� not referring to �����

Q�m�n��L�� 

s
�


�� n� �

m

�
� n 	 m� ����

��



The idea is quite transparent� the sum of small number� say� n � �����m of shifted Dirichlet kernels
Dm��� �j� in ���� is a �fast� oscillating function� and thus cannot approximate f��� �� � even in

measure� We have

nX
j��

wj

�
Dm��� �j� � F ��� cosm��G��� sinm� � H��� cos �m�� ������ ����

where

F ��� �� � �

��

nX
j��

wj

�
sinm�j cot

�� �j
�

� cosm�j

�
�

G��� ��
�

��

nX
j��

wj

�
cosm�j cot

�� �j
�

� sinm�j

�
�

and H��� ��
q
F ���� �G����� ���� �� arctan G���

F ���� The result will follow� if we prove that

meas E� 
 �


� � n � �

m

�
� where E� �� f� � cos �m������� � �� � � 
�� ���g� ����

because Z ��

�
j��H��� cos �m�� �����j� d� 


Z
E�

� � d� � measE�
Although the functions F ��� and G��� can take on rather big values� they are piecewise monotonic�
In the representation ���� the phase ���� is bounded� j����j � �

� � and what is essential� the total
variation of this function satis	es the estimate

var f����� 
�� ���g � �n� ����

Indeed� for a 	xed t �
h
��

�
� �

�

i
denote N�t� the number of solutions � � 
�� ��� of the equation

���� � t� Thus N�t� coincides with the number of solutions � � 
�� ��� of G��� � �tan t�H����
which equals the the number of solutions of G���� � �tan t�H���� in � � 
�� ��� Since G��� � �� �
G����� H��� � �� � H���� we see that �N�t� � M�t�� where M�t� is the number of solutions
of the equation G���� � �tan t�H���� on 
�� ���� After multiplication of both sides by ���� ��Qn
j�� sin

�
�� �j

�

�
� the latter equation transfers into T ��� � �tan t�S��� where T� S are trigonometric

polynomials of degree n� Thus� by Fundamental Theorem of Algebra� we have M�t� � �n� or
N�t� � n� and ���� follows�

��



Further� let

E� �� f� � cos �m������� � �� � � 
�� ���g� F� �� f� � � � m�� ����� � � E�g�
G� �� f� � cos� � �� � � 
�� ��m�g�

Obviously�

measG� � �m� G�
�F� � �� G�

�F� �


��
�
� ��m�

�

�

�
� measG� �measF� � ��m� ��

so that measF� � �m��� On the other hand� measF� 
 mmeasE��var � 
 mmeasE���n� and
consequently meas E� � �

�
n��
m

� �
�
� This implies ����� because by the de	nitions E� S E� � 
�� ����
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