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Abstract

We study the e�ciency of greedy type algorithms with regard to redundant
dictionaries in Hilbert space� In Section � we prove a general result which gives
a su�cient condition on a dictionary to guarantee that Pure Greedy Algorithm is
near best in the sense of power decay of error of approximation� We discuss also
some important examples in Section ��

It is known �see �DT	
� that the Pure Greedy Algorithm for to some dictionaries
has a saturation property� In Section � we construct an example which shows that a
natural generalization of the Pure Greedy Algorithm also has a saturation property�

In Section  we discuss some new phenomena which occur in approximation by
a greedy type algorithm with regards to a highly redundant dictionary�
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�� Introduction

Nonlinear approximation is an important tool in many numerical algorithms� We
consider in this paper one particular method of nonlinear approximation� namely�
m�term approximation� The m�term approximation is used in image and signal
processing as well as in the design of neural networks� One of the basic questions
in nonlinear approximation is how to construct an algorithm which realizes best
or near best approximation� This question was discussed in many papers for dif�
ferent settings of nonlinear approximation problem �see for instance �B
� �DDGS	
�
�DDGS�
� �DJP
� �DMA
� �DT	
� �DT�
� �J
� �T	
� �T�
�� In this paper we present
some recent results in studying the settings discussed in �DT	
 and �DT�
� The ma�
jor question we try to answer is� how does redundancy e�ect the e�ciency of best
m�term approximation and the e�ciency of greedy type algorithms with regards to
a given dictionary�

We shall con�ne ourselves to studying in this paper only approximation in Hilbert
space� Let H be a real� separable Hilbert space equipped with an inner product h�� �i
and the norm kxk �� hx� xi���� We brie�y recall some de�nitions and notations from
�DT	
 and �DT�
� We call a system D of elements �functions� from H a dictionary
if each g � D has norm one �kgk � 	� and its linear span is dense in H�

We let �m�D� denote the collection of all functions in H which can be expressed
as a linear combination of at most m elements of D� Thus each function s � �m ��
�m�D� can be written in the form

s �
X
g��

cgg� � � D� j�j � m� �	�	�

with the cg � R�
For a function f � H� we de�ne its m�term approximation error by

�m�f� �� �m�f�D� �� inf
s��m

kf � sk� �	���

The quantity �m�f�D� gives the best possible error of approximation of f by a
linear combination of m elements from a given dictionary D� We de�ne now an
algorithm �Pure Greedy Algorithm� which realizes the best m�term approximation
in the particular case when D is an orthonormal basis for H�

We describe this algorithm for a general dictionary D �in which case it does not
generally produce a best approximation�� If f � H� we let g � g�f� � D be an
element from D which maximizes jhf� gij� We shall assume for simplicity that such
a maximizer exists� if not� some modi�cations are necessary in the algorithms that
follow� We de�ne

G�f� �� G�f�D� �� hf� gig �	���

and
R�f� �� R�f�D� �� f �G�f��

Pure Greedy Algorithm� We de�ne R��f� �� R��f�D� �� f and G��f� �� ��
Then� for each m � 	� we inductively de�ne

Gm�f� � � Gm�f�D� �� Gm���f� �G�Rm���f��

Rm�f� � � Rm�f�D� �� f �Gm�f� � R�Rm���f���
�	��

�



The above algorithm is greedy in the sense that at each iteration it approximates
the residual Rm�f� as best possible by a single function from D� One of advantages
of the Pure Greedy Algorithm is that it is simple � the repetition of one basic step�

In Section � we present some partial progress in the following general problem�

Problem ���� Let � � r � 	�� be given� Characterize dictionaries D which posses
the property� for any f � H such that

�m�f�D� � m�r� m � 	� �� � � � �

we have
kf �Gm�f�D�k � C�r�D�m�r� m � 	� �� � � � �

We impose the restriction r � 	�� in Problem 	�	 because of the following result
from �DT	
� We constructed in �DT	
 a dictionary D � f�kg

�
k�� such that for the

function f � �� � �� we have

kf �Gm�f�D�k � m����� m � �

It is clear that �m�f�D� � � for m � �� This example of dictionary shows that in
general we cannot get better than m���� rate of approximation by the Pure Greedy
Algorithm even if we impose extremely tough restrictions on �m�f�D�� We call this
phenomenon a saturation property�

In Section � we give a su�cient condition on D to have the property formulated
in Problem 	�	� We consider dictionaries which we call ��quasiorthogonal�

De�nition ���� We say D is a ��quasiorthogonal dictionary if for any n � N and
any gi � D� i � 	� � � � � n� there exists a collection �j � D� j � 	� � � � �M� M �
N �� �n� with the properties�

gi � XM �� span���� � � � � �M �� �	���

and for any f � XM we have

max
��j�M

jhf� �jij � N����kfk� �	���

Remark ���� It is clear that an orthonormal dictionary is a ��quasiorthogonal
dictionary�

We shall prove in Section � the following theorem and its slight generalization
on asymptotically ��quasiorthogonal dictionary� Examples of asymptotically ��
quasiorthogonal dictionaries are also given in Section ��

Theorem ���� Let a given dictionary D be ��quasiorthogonal and let � � r �
������ be a real number� Then for any f such that

�m�f�D� � m�r� m � 	� �� � � � �

we have
kf �Gm�f�D�k � C�r� ��m�r� m � 	� �� � � � �
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In Section � we consider a generalization of the Pure Greedy Algorithm� We
study the n�Greedy Algorithm which di�ers from the Pure Greedy Algorithm in the
basic step� instead of �nding a single element g�f� � D with the largest projection
of f on it we are looking for n elements g��f�� � � � � gn�f� � D with the largest
projection Gn�f�D� of f onto their span� It is clear that

kf �Gn�f�D�k � kf �Gn�f�D�k� �	���

However� we construct in Section � an example of a dictionary D and a nonzero
function f � ��n�D� such that

kf �Gn
m�f�D�k � C�nm�����kfk�

This relation implies that like the Pure Greedy Algorithm the n�Greedy Algorithm
has a saturation property for �for details see Section ���

Section  deals with approximation of functions in L�� We consider the peri�
odic one�variable case� In the linear theory of approximation there is a powerful
discretization method which allows us to reduce an approximation problem for
smooth functions to the corresponding problem in a �nite dimensional subspace�
for instance� in the space T �n� of trigonometric polynomials of degree n� In Section
 we make an attempt to use the idea of discretization in the case of nonlinear ap�
proximation with regards to a highly redundant dictionary� The di�culty arises in
studying nonlinear algorithms� for instance� Pure Greedy Algorithm� The standard
way of studying a linear approximation problem for classes of smooth functions is
the following� We expand a function f into a series

f �
X
s

fs�

and get some restrictions on kfsk from the assumption about smoothness of f �
Then we deal with each fs separately and using the linearity of the operator under
investigation we sum the corresponding errors� It is clear that this method does not
work for a nonlinear algorithm� For instance� if we take a dictionary D � f�kg

�
k��

from Theorem �	 in �DT	
 we have for f � �� � ��

kf �Gm�f�D�k � Cm����

despite the relations
�i � G���i�D�� i � 	� ��

In Section  we study among other problems the e�ciency of the Pure Greedy
Algorithm in the H�older smoothness class Hr

� � We consider a highly redundant
dictionary T V that consists of all trigonometric polynomials t with ktk� � 	 and
such that all nonzero Fourier coe�cients of t are of the same absolute value� We
prove that redundancy helps very much in this particular case� We obtain an
exponential decay of the error� for any f � Hr

� we have

kf �Gm�f� T V�k� � C�r�e�A�rm����

with absolute positive constant A�

�



�� Some special redundant dictionaries

In this section we prove Theorem 	�	 and discuss ��quasiorthogonal dictionaries�
We begin with a numerical lemma�

Lemma ���� Let three positive numbers � � � � 	� A 	 	 be given and let a
sequence of positive numbers 	 � a� � a� � � � � satisfy the condition� if for some

 � N we have

a� � A
��

then
a�	� � a��	� ��
�� ���	�

Then there exists B � B�A��� �� such that for all n � 	� �� � � � we have

an � Bn���

Proof� We have a� � 	 � A which implies that the set

V �� f
 � a� � A
��g

does not contain 
 � 	� We prove now that for any segment �n� n� k
 � V we have
k � C��� ��n� Indeed� let n � � be such that n� 	 �� V � which means

an�� � A�n� 	���� �����

and �n� n � k
 � V � which in turn means

an	j � A�n � j���� j � �� 	� � � � � k� �����

Then by the condition ���	� of the lemma we get

an	k � an

n	k��Y
��n

�	� ��
� � an��

n	k��Y
��n

�	� ��
�� ����

Combining ����� � ���� we obtain

�n� k��� � �n� 	���
n	k��Y
��n

�	� ��
�� �����

Taking logarithms and using the inequalities

ln�	� x� � �x� x � ��� 	��

m��X
��n


�� �

Z m

n

x��dx � ln�m�n��

	



we get from �����

�� ln
n� k

n� 	
�

n	k��X
��n

ln�	� ��
� � �
n	k��X
��n

��
 � �� ln
n � k

n
�

Hence
�� � �� ln�n � k� � �� � �� lnn � � ln

n

n� 	
�

which implies
n� k � �

�
���n

and
k � C��� ��n�

Let us take any � � N� If � �� V we have the desired inequality with B � A�
Assume � � V � and let �n� n� k
 be the maximal segment in V containing �� Then

a� � an�� � A�n� 	��� � A���
�
n� 	

�

���
� �����

Using the inequality k � C��� ��n proved above we get

�

n� 	
�

n � k

n� 	
� C���� ��� �����

Substituting ����� into ����� we complete the proof of Lemma ��	 with B � AC���� ����
�

Proof of Theorem ����� Let 
�r� �� be such that for 
 	 
�r� �� we have

���
 � 	���� � �r�� � �������
�

Take two positive numbers C � 
�r� ��r and � which will be chosen later�
We consider the sequence a� �� 	 for 
 � 
�r� �� and a� �� kf�k

�� 
 � 
�r� ���
where

f� �� f �G��f�D��

The assumption ���f�D� � 	 implies

a��r��� �� kf��r���k
� � kf�k

� � 	�

Let us assume that for some 
 we have a� � C�
��r� We want to prove that for
those same 
 we have

a�	� � a��	� ��
�

with some � 	 �r� We shall specify the numbers C and � in this proof� The
assumptions C � 
�r� ��r and a� � C�
��r imply 
 � 
�r� �� and kf�k � C
�r� or


�r � C��kf�k� �����






We know that f� has the form

f� � f �
�X
i��

cii� i � D� i � 	� � � � � 
�

Therefore� by the assumption of Theorem 	�	 we have

�
��	����	��f�� � �
���	��f� � ��
��r�

where �x
 denotes the integer part of the number x� This inequality implies that
there are l �� ��	 � ��

 � 	 elements g�� � � � � gl � D such that

kf� �
lX

i��

cigik � ��
��r� �����

Now we use the assumption that D is a ��quasiorthogonal dictionary� We �nd
M � N � �l elements �j � D� j � 	� � � � �M � satisfying the properties �	��� and
�	���� Denote by u an orthogonal projection of f� onto XM � span���� � � � �M � and
set v �� f� � u� The property �	��� and the inequality ����� imply

kvk � ��
��r�

and� therefore� by ����� we have

kuk� � kf�k
� � kvk� � kf�k

��	� �C�r�����

Making use of property �	��� we get

sup
g�D

jhf� � gij � max
��j�M

jhf� � �jij � max
��j�M

jhu� �jij � N����kuk�

Hence�

kf�	�k
� � kf�k

� � kuk��N � kf�k
��	� �	� �C�r���������	 � ��

 � 	������

It is clear that taking a small enough � 	 � and a su�ciently large C we can make
for 
 � 
�r� ��

�	� �C�r���������	 � ��

 � 	���� � � 	 �r�

With theC as chosen we get a sequence fa�g
�
��� satisfying the hypotheses of Lemma

��	 with A � C�� � � �r� � 	 �� Applying Lemma ��	 we obtain

kfnk � a���n � C�r� ��n�r� n � 	� �� � � � �

which completes the proof of Theorem 	�	� �

The above proof of Theorem 	�	 gives a slightly more general result� with a
��quasiorthogonal dictionary replaced by an asymptoticaly ��quasiorthogonal dic�
tionary� We formulate the corresponding de�nition and statements�

�



De�nition ���� We say D is an asymptotically ��quasiorthogonal dictionary if for
any n � N and any gi � D� i � 	� � � � � n� there exists a collection �j � D� j �
	� � � � �M� M � N�n�� with the properties�

lim sup
n��

N�n��n � ��

gi � XM �� span���� � � � � �M �� �	��a�

and for any f � XM we have

max
��j�M

jhf� �jij � N�n�����kfk� �	��a�

Theorem ���� Let a given dictionary D be asymptotically ��quasiorthogonal and
let � � r � ������ be a real number� Then for any f such that

�m�f�D� � m�r� m � 	� �� � � � �

we have
kf �Gm�f�D�k � C�r� ��m�r� m � 	� �� � � � �

In the proof of this theorem we use the following Lemma ��� instead of Lemma
��	�

Lemma ���� Let four positive numbers � � � � 	� A 	 	� U � N be given and
let a sequence of positive numbers 	 � a� � a� � � � � satisfy the condition� if for
some 
 � N� 
 � U we have

a� � A
��

then
a�	� � a��	� ��
��

Then there exists B � B�A��� �� U� such that for all n � 	� �� � � � we have

an � Bn���

We proceed now to a discussion of ��quasiorthogonal dictionaries�

Proposition ���� Let a system f��� � � � � �Mg and its linear span XM satisfy ������
If M � N and dimXM � N � then f�jg

N
j�� is an orthonormal system�

Proof� Our proof is by contradiction� The system f�jg
N
j�� is normalized and we as�

sume that it is not orthogonal� Consider a system fvjg
N
j�� biorthogonal to f�jg

N
j��

�
h�i� vji � �i�j� 	 � i� j � N�

Our assumption implies that fvjg
N
j�� is also not orthogonal� Consider

uj �� vj�kvjk� j � 	� �� � � � N�

��



and form a vector

yt �� N����
NX
i��

ri�t�ui�

where the rn�t� are the Rademacher functions� Then for all j � 	� �� � � � � N and
t � ��� 	
 we have

jhyt� �jij � N����jhuj � �jij � N����� ���	��

and

kytk
� � N��

NX
i��

hui� uii�N��
X
i��j

ri�t�rj�t�hui� uji �

� 	 � �N��
X

��i�j�N

ri�t�rj�t�hui� uji�

From this we get

Z �

�

kytk
�dt � 	 � N��

X
��i�j�N

jhui� ujij
� 	 	�

This inequality implies that for some t� we have kyt�k 	 	 and by ���	�� for this t�

we get for all 	 � j � N
jhyt� � �jij � N����kyt�k�

which contradicts �	����

De�nition ���� For given �� � � 	 a dictionary D is called ��� ���semistable if for
any gi � D� i � 	� � � � � n� there exist elements hj � D� j � 	� � � � �M � �n� such
that

gi � spanfh�� � � � � hMg

and for any c�� � � � � cM we have

k
MX
j��

cjhjk � �����
� MX
j��

c�j

����
� ���		�

Proposition ���� A ��� ���semistable dictionary D is ���quasiorthogonal�

Proof� It is clear from ���		� that fh�� � � � � hMg are linearly independent� Let
��� � � � � �M be the biorthogonal system to fh�� � � � � hMg� We shall derive from
���		� that for any a�� � � � � aM we have

k
MX
j��

aj�jk � ����
� MX
j��

a�j

����
� ���	��

Indeed� using the representation

g �
MX
j��

cj�g�hj

��



and ���		� we get

k
MX
j��

aj�jk � sup
kgk��

h
MX
j��

aj�j � gi � sup
kgk��

MX
j��

ajcj�g� �

� sup
k�c������cM�k�	���

MX
j��

ajcj � ����
� MX
j��

a�j

����
�

Take any f � spanfh�� � � � � hMg � spanf��� � � � � �Mg� Let

f �
MX
j��

aj�f��j �

Then

hf� hji � aj�f�

The inequality ���	�� implies

max
��j�M

jaj�f�j � ��M�����kfk � ���n�����kfk�

The proof of Proposition ��� is complete� �

We give now two concrete examples of asymptotically ��quasiorthogonal dictio�
naries�

Example ���� The dictionary � �� ff � jJ j�����J � J � ��� 	�g where �J is
the characteristic function of an interval J is an asymptotically ��quasiorthogonal
dictionary�

Proof� The statement of this example follows from Remark 	�	 and from the known
simple Lemma ����

Lemma ���� For any system of intervals Ji � ��� 	�� i � 	� � � � � n� there exists
a system of disjoint intervals Jdi � ��� 	�� i � 	� � � � � �n � 	� ��� 	� � ��n	�i�� Jdi �
such that each Ji can be represented as a union of some Jdj �

Proof� Our proof is by induction� Let n � 	 and J� � �a� b�� Take Jd� � ��� a�� Jd� �
�a� b�� and Jd � �b� 	�� Assume now that the statement is true for n � 	� Consider
n intervals J�� � � � � Jn��� Jn� Let Jdj � �aj � aj	��� j � 	� � � � � �n� 	 be the disjoint
system of intervals corresponding to J�� � � � � Jn�� and let Jn � �a� b�� Then for at
most two intervals Jdk and Jdl we have a � Jdk and b � Jdl � If k � l we split Jdk into
three intervals �ak� a�� �a� b�� and �b� ak	��� If k �� l we split each Jdk and Jdl into
two intervals �ak� a�� �a� ak	�� and �al� b�� �b� al	��� In both cases the total number
of intervals is �n� 	� �

Another corollary of Lemma ��� can be formulated as follows�

��



Example ���� The dictionary P�r� that consists of functions of the form f �
p�J � kfk � 	� where p is an algebraic polynomial of degree r � 	 and �J is the
characteristic function of an interval J� is asymptotically �r�quasiorthogonal�

Theorems 	�	 and ��	 work for small smoothness r � ������� It is known �see
�DT	
� Theorem �	� that there are dictionaries which have the saturation property
for the Pure Greedy Algorithm� Namely� there is a dictionary D such that

sup
f����D�

kf �Gm�f�D�k�kfk � Cm�����

We shall prove that the dictionary � from Example ��	 does not have the saturation
property�

Theorem ���� For any f � �n��� we have

kf �Gm�f� ��k �

�
	�

	

�n � 	

�m��

kfk�

Proof� We prove a variant of Theorem ��� for functions of the form

f �
nX

j��

cjgIj � �nj��Ij � ��� 	�� gJ �� jJ j�����J � ���	��

where the I�� � � � � In are disjoint�

Lemma ���� For any f of the form �	��
� we have

kf �Gm�f� ��k � �	� 	�n�m��kfk�

Proof� We begin with the following lemma�

Lemma ���� Let I� � �a� b� and I� � �b� d� be two adjacent intervals� Assume that
a function f is integrable on I� and equals a constant c on I�� Then we have the
inequality �gI �� jIj�����I�

jhf� gJ ij � max�jhf� gI�ij� jhf� gI��I�ij� ���	�

for any J � �a� y�� b � y � d� Moreover� if the right hand side in �	���� is
nonzero we have a strict inequality in �	���� for all b � y � d�

Proof� Denote

A ��

Z
I�
f�x�dx�

Then we have

hf� gJ i � jJ j�����A�

Z y

b

cdx� � �jI�j� y � b������A� c�y � b���

��



hence

hf� gJ i �
P � cy

�Q� y����
� b � y � d�

where P � A� cb and Q � jI�j � b� Let z � �Q� y����� Then

P � cy

�Q� y����
� �P � c�z� �Q���z � �P � cQ��z � cz �� F �z��

In the cases P � cQ � �� c �� � or P � cQ �� �� c � � the statement is trivial�
It remains to consider the case P � cQ �� �� c �� �� Assume P � cQ � �� c 	 ��
Then

F ��z� � �
P � cQ

z�
� c 	 �

and the statement is true� Assume P � cQ 	 �� c 	 �� Then

F ���z� � �
P � cQ

z
	 �� z 	 ��

It follows that F �z� 	 � is a convex function and the statement is also true� �

We use this lemma to prove one more lemma�

Lemma ���� For each function f of the form �	��
� the maxJ jhf� gJ ij is attained
on an interval J� of the form J� � �lj�kIj �

Proof� The function

F �x� y� �� �y � x�����
Z y

x

f�t�dt� � � x � y � 	� F �x� x� � �� � � x � 	�

is continuous on Y �� f�x� y� � � � x � y � 	g for any f of the form ���	��� This
implies the existence of J� such that

jhf� gJ� ij � max
J

jhf� gJ ij� ���	��

Clearly� jhf� gJ� ij 	 � if f is nontrivial� We complete the proof by contradiction�
Assume J� � �a� t� and� for instance� t is an interior point of Is � �b� d�� Apply
Lemma ��� with I� � �a� b�� I� � �b� d�� J � J�� We get strict inequality which
contradicts ���	��� Hence� t is an endpoint of one of the intervals Ij � The same
argument proves that a is also an endpoint of one of the intervals Ij � This comletes
the proof of Lemma ���� �

Lemma ��� implies that for f of the form ���	�� all Rj�f� �see �	��� are also of
the form ���	��� Next� for f of the form ���	�� we have

max
J

jhf� gJ ij � max
Ij

jhf� gIj ij � n����kfk�

Consequently�

kRm�f�k� � �	� 	�n�kRm���f�k� � � � � � �	� 	�n�mkfk��

which completes the proof of Lemma ��� �

The statement of Theorem ��� follows from Lemma �� and Lemma ����

��



�� An example for the n�Greedy Algorithm

We consider in this section a generalization of the Pure Greedy Algorithm� Take
a �xed number n � N and de�ne the basic step of the n�Greedy Algorithm as
follows� Find an n�term polynomial

pn�f� �� pn�f�D� �
nX

n��

cigi� gi � D� i � 	� � � � � n�

such that �we assume its existence�

kf � pn�f�k � �n�f�D��

Denote

Gn�f� �� Gn�f�D� �� pn�f�� Rn�f� �� Rn�f�D� �� f � pn�f��

n�Greedy Algorithm� We de�ne Rn
� �f� �� Rn

� �f�D� �� f and Gn
� �f� �� ��

Then� for each m � 	� we inductively de�ne

Gn
m�f� � � Gn

m�f�D� �� Gn
m���f� �Gn�Rn

m���f��

Rn
m�f� � � Rn

m�f�D� �� f �Gn
m�f� � Rn�Rn

m���f���
���	�

It is clear that a 	�Greedy Algorithm is a Pure Greedy Algorithm�
For a general dictionary D� and for any � � � � 	� we de�ne the class of functions

Ao

 �D�M� �� ff � H � f �

X
k��

ckwk� wk � D� j�j �� and
X
k��

jckj

 �M
 g�

and we de�ne A
 �D�M� as the closure �in H� of Ao

 �D�M�� Furthermore� we de�ne

A
 �D� as the union of the classes A
 �D�M� over all M 	 �� For f � A
 �D�� we
de�ne the �quasinorm�

jf jA� �D�

as the smallest M such that f � A
 �D�M��
We prove in this section that the n�Greedy Algorithm� like the Pure Greedy

Algorithm has a saturation property�

Theorem ���� For any orthonormal basis f�kg
�
k�� there exists an element g such

that for the dictionary D � g�f�kg
�
k�� there is an element f which has the property�

for any � � � � 	

kf �Gn
m�f�k�jf jA� �D� � C�� �n���
 �m � �������

Proof� Let n � � be given� De�ne

g �� An����
�nX
k��

�k � 	��
�X

k�n

�k�k � 	�������k�

��



with

A ��

�
	

�
�

	

�n

����
� �	�������

Then
kgk� � �A� � 	����n� � 	�

Take

f �� An����
n��X
k��

�k � ���
�n��X
k�n

�k�k � 	�������k�

�� First step� We prove that for the dictionary D � g � f�kg
�
k�� we have

Gn�f�D� � u �� g �An����
n��X

k��n	�

�k�

First of all� it is easy to check that f�u is orthogonal to g and �k� k � 	� � � � � �n�
	� and

kf � uk� � 	��
�X

k�n

	

k�k � 	�
�

	

��n
�

We shall prove that

�n�f�D�� �
	

��n

and that the only approximant which provides equality in this estimate is u�
�	� Assume that g is not among the approximating elements� Then for � �

f�kg
�
k�� we have

�n�f���� � A���n� 	��n � �����	��n� 	
	

��n
�

�	� Assume g is among approximating elements� then we should estimate

� �� inf
a
�n���f � ag�����

Denote

gs ��
�X
k�s

�k�k � 	�������k�

We have

f � ag � �	� a�An����
�nX
k��

�k �An����
n��X

k��n	�

�k � ��� a��gn� g�n���� ag�n���

If j	 � aj � 	 then

�n���f � ag���� � �	� a��A� 	
	

��n
�

��



It remains to consider � � a � �� In this case the n � 	 largest in absolute value
coe�cients of f � ag are those of �k� k � �n� 	� � � � � �n� 	� We have

�n���f � ag���� � ��	� a��A� � ���� a�� � a�����n�� �����

It is clear that the right hand side of ����� is greater than or equal to 	����n�
for all a� and equals 	����n� only for a � 	� This implies that the best n�term
approximant to f with regards to D is unique and coincides with u� This concludes
the �rst step�

After the �rst step we get

f� �� Rn�f� � �gn � �g�n����

�� General step� We prove now the following lemma�

Lemma ���� Consider

hs �� 	��
�X
k�s

ek�k�k � 	�������k � ek � 		� s � �n�

We have

�n�hs�D�� � 	����s � n���

and the best n�term approximant with regards to D is unique and equal to

vn �� 	��
s	n��X
k�s

ek�k�k � 	�������k�

Proof� It is easy to verify that

khs � vnk
� � 	����s � n���

and that vn is the unique best n�term approximant with regard to �� We prove
now that for each a we have

�n���hs � ag���� 	 	����s � n���

We use the representation

hs � ag � �aAn����
�nX
k��

�k � a��
s��X
k�n

�k�k � 	�������k

� 	��
�X
k�s

�ek � a��k�k � 	�������k�

�	



Let us assume that an �n � 	��term approximant to hs � ag with regards to �
consists of �� � � � � n�	� elements with indices k � s and n�	��� with indices
k � s� Then for the error e�a� �� of this approximation we get

e�a� ��� � a�A��n � � � 	��n � a��	���n�� 	�s��� � �	� jaj������s � ���� �����

Taking into account that

inf
a
�n���hs � ag���� � inf

����n��
inf
a
e�a� ���

we conclude that we need to prove the corresponding lower estimate for the right
hand side of ����� for all � and a� We have

e�a� ��� � a��� � �	� jaj������s � ��� � a��� � �	� jaj������s � n� 	��� ����

We use now the following simple relation� for b� c 	 � we have

inf
a

�a�b � �	� a��c� �
bc

b� c
� c�	 � c�b���� �����

Specifying b � 	�� and c � 	����s � n� 	�� we get for all a and �

e�a� ��� � ���s� n�� ���� 	 ���s� n�����

Lemma ��	 is proved� �

Applying Lemma ��	 to the second step and to the following steps we obtain
that

Rn
m�f� � 	��

�X
k�n	n�m���

ek�k�k � 	�������k

and
kRn

m�f�k� � 	���n�m � ����

This relation and the estimate kfk � C imply �	��� from Section 	�
In order to complete the proof of Theorem ��	 it remains to note that

jf jA� �D� � C�� �n��
�����

�

�� Some examples of highly redundant dictionaries

In Sections � and � we studied dictionaries which di�er only slighly from an
orthonormal dictionary� It is clear that if D� � D� then for any f we have

�m�f�D�� � �m�f�D���

However� the example of Section � shows that even a slight perturbation of an
orthonormal dictionary can result in a dramatic change of e�ciency of the corre�
sponding greedy type algorithm�

In this section we consider some dictionaries that are far from orthogonal dic�
tionaries� In order to help the reader we formulate several statements on approxi�
mation in Rn which are corollaries of the corresponding results in �DT�
� We shall
use these results later in this section�

Let Bn
� denote the unit Euclidean ball in R

n� For a dictionary D and a set
F � Rn we de�ne

�m�F�D� �� sup
f�F

�m�f�D�� Gm�F�D� �� sup
f�F

kf �Gm�f�D�k�

�




Theorem ���� For any D in Rn with jDj � N we have

�m�Bn
� �D� � CN� m

n�m � m � n���

See �DT�
� Corollary ����

Theorem ���� For any N there exists a system D� jDj � N � such that

�m�Bn
� �D� � min�	� ���N��n � 	����m��

See �DT�
� Theorem ��	� Consider the system

V �� fg � y�kyk�� y � �y�� � � � � yn� �� ��� � � � � ��� yj � �	� �� 	� j � 	� � � � � ng�

Theorem ���� We have

�m�Bn
� �V� � n�����m�

See �DT�
� Theorem �	�

Theorem ���� We have the estimate

Gm�Bn
� �V� �

�
	�

	

	 � lnn

�m��

�

See �DT�
� Theorem ��	�

Theorem ���� For any m � ��	 � lnn��	� we have

Gm�Bn
� �V� � 	���

See �DT�
� Theorem ����
In this section we are going to discuss some applications of the results about m�

term approximation in Rn to approximation of functions� For simplicity of notation
we consider approximation of functions of a single variable� Denote by T �n� the
set of real trigonometric polynomials

t�x� �
nX

k��

�ak�t�ck�x� � bk�t�sk�x��

where ck�x� �� cos kx� sk�x� �� sin kx for k � 	� �� � � � and c��x� �� 	��� s��x� 

�� We set up a one�to�one correspondence between T �n� and R

�n	�� De�ne
Tn � R�n	� � T �n� by

Tn�y�� � � � � y�n� �
nX

k��

�y�kck�x� � y�k��sk�x���

where the term y��s��x� disappears because s��x� 
 �� We keep this term for
notational convenience� Considering the standard L��norm in T �n�

ktk�� �� ktk�L� ��
	

�

Z ��

�

jt�x�j�dx

we get by Parseval s Identity

kTn�y�kL� � kykl� �

The above standard construction allows us to reformulate the l� results in R�n	�

as the corresponding L� results in T �n�� For example� Theorem �� takes the form

��



Theorem ���� For any N there exists a system D� jDj � N � of trigonometric
polynomials in T �n� such that for any t � T �n� we have

�m�t�D�� � min�	� ���N����n	�� � 	����m�ktk��

Let us take an arbitrary increasing sequence fnkg
�
k�� of natural numbers and

consider the sequence Nk � �nk	�� k � 	� �� � � � � Denote by Q�nk� a system with
jQ�nk�j � Nk which is provided by Theorem ��� Then we have for any t � T �nk�

�m�t�Q�nk��� � �����mktk�� m � 	� �� � � � � ��	�

Consider the following system in L�

Q �� ��k��Q�nk��

It turns out that this system is good for approximation of functions in L� regardless
of their smoothness�

Proposition ���� For each function f � L� and any � 	 � there exists g � Q such
that

kf � hf� gigk� � ���� � ��kfk��

Proof� Denote by Sn the orthogonal projector onto T �n�� i�e� Sn�f� is the n�th
Fourier sum of f � Find k such that

kf � Snk�f�k� � �kfk�� ����

By ��	� with m � 	 we �nd g � Q�nk� such that

kSnk�f�� hSnk�f�� gigk� � ���kSnk�f�k�� ����

Approximate now f by hf� gig� Denoting Un�f� �� f � Sn�f� we get

kf � hf� gigk� � kSnk�f�� hSnk�f�� gig � Unk �f�k� �

kSnk�f�� hSnk�f�� gigk� � kUnk �f�k� � ���� � ��kfk��

which proves Proposition �	� �

We say that a system D admits a Greedy type q�fast� � � q � 	� algorithm if for
each f � L� we can �nd g � D such that

kf � hf� gigk� � qkfk��

Proposition �	 shows that for any � 	 � the system Q admits the Greedy type
���� � ���fast algorithm� In particular� this implies

�m�f�Q�� � �����mkfk��

Let us consider now one special simply de�ned system in L�� Denote by T V the
set of all trigonometric polynomials t� ktk� � 	� whose non�zero Fourier coe�cients
are equal in absolute value� The restriction of this system onto T �n� will be denoted
T V�n�� It is easy to see that the system T V�n� coincides with Tn�V� with V
de�ned for R�n	�� Recall that V was de�ned in the beginning of this section and
its cardinality �in R�n	�� is ��n	�� 	� Note that the above described system is not
as big as the system Q is� We prove some results for T V which are qualitatively
di�erent from those for Q�

��



Proposition ���� For any � � q � 	 the system T V does not admit a Greedy type
q�fast algorithm�

Proof� The statement of Proposition �� can be derived from the following example
which was constructed in the proof of Theorem ��� in �DT�
� Fix n and consider

f �
nX

k��

zkck�x��

where z � �z�� � � � � zn� is de�ned as follows z� �� 	� zk �� k��� � �k � 	����� k �
�� �� � � � � n� Then

kzk�� � 	 �
nX

k��

�k��� � �k � 	������ � 	 �
nX

k��

�
	

�k���
�� �

	 �
	



nX
k��

	

k
� 	 �

	



Z n	�

�

dx

x
�

	


�	 � lnn��

and for each l � n�
lX

k��

zk � l����

which implies that for each g � T V we have

jhf� gij � 	�

Therefore� for any g � T V we have

kf � hf� gigk�� � kfk�� � hf� gi� � �	� ��	 � lnn��kfk���

Taking n such that 	� ��	 � lnn� 	 q completes the proof� �

We study the e�ciency of T V for classes of smooth functions� De�neHr
� � r 	 ��

as the class of functions f � L� which allow a representation

f�x� �
�X
s��

ts�x�� ts � T ��s�� ktsk� � ��rs� s � 	� �� � � � �

Theorem ��
� There exist two absolute positive constants A� and A� such that

C��r�e�A�m � �m�Hr
� � T V�� � C��r�e�A��m�

where � �� min�r� 	����

Proof� Let us begin with the lower estimate� It is clear that for f � T �n� we have

�m�f� T V�� � �m�f� T V�n����

��



Next� the set of trigonometric polynomials t � T V�n� satisfying ktk� � ��n��r is
embedded into Hr

� � Denote by T �n�� the unit L��ball in T �n�� For a given m take
n � m and use Theorem �	 for R�n	�� This gives

�m�Hr
� � T V�� � �m�T �m��� T V�m�����m��r � ��m��r�m�B�m	�

� �V� �

C��m��r����m	��m��m	�� � C��r�e�A�m�

We proceed to the upper estimate� For a �xed n of the form n � �l we represent
f in the form f � Sn�f� � Un�f� and get from the de�nition of the class Hr

�

kUn�f�k� �
�X

s�l	�

��rs � C�r���rl�

and
kSn�f�k� � kfk� � C�r��

We approximate Sn�f� using Theorem ��� We get

�m�Sn�f�� T V�n��� � C�r���n� 	������m�

Selecting n such that
n�r � n�����m

we obtain
�m�Hr

� � T V�� � C��r���mr��r	���� � C��r�e�A��m�

Theorem �� is proved� �

Let us discuss the e�ciency of the Pure Greedy Algorithm with respect to the
system T V� We prove �rst that this algorithm is de�ned correctly� namely� we
prove the existence theorem�

Theorem ���� For any f � L� there exists a function g � T V such that

hf� gi � sup
g�T V

jhf� gij�

Proof� Let

f�x� �
�X
k��

�y�kck�x� � y�k	�sk�x���

The assumption f � L� implies

�X
i��

y�i � kfk�� ���

Let fzkg
�
k�� denote the decreasing rearrangement of fjyijg

�
i��� It is easy to see that

the problem of �nding supg�T V jhf� gij is equivalent to the following� �nd

sup
n

n����
nX

k��

zk�

��



We prove the existence of a solution to this last problem for z �� fzkg
�
k�� � l�� It

is su�cient to prove that

lim
n��

n����
nX

k��

zk � �� ���

Indeed� we have

n����
X

��k�n���

zk � n�����
X

��k�n���

z�k���� � n����kzkl� � ����

and
n����

X
n����k�n

zk � �
X

k	n���

z�k����� ����

The relations ���� and ���� under assumption z � l� imply ���� �

Theorem ���� There exist two absolute positive constants A and A� such that

C�r�e�A��m � Gm�Hr
� � T V�� � C��r�e�A��rm����

where � �� min�r� 	����

Proof� We begin with the lower estimate� Let us use Theorem ��� We have

Gm�Hr
� � T V�� � ��n��rGm�T �n��� T V�n��� � ��n��rGm�B�n	�

� �V�� ����

De�ne n as the smallest integer satisfying the inequality m � ��	 � ln��n� 	���	��
Then� for this n using Theorem �� we get

Gm�B�n	�
� �V� � 	��

and by ����
Gm�Hr

� � T V�� � ��n��r�� � C�r�e�A�rm�

This gives the lower estimate for small r� The case r 	 	�� follows from Theorem
���

We prove now the upper estimate� Using Theorem � we establish the following
lemma�

Lemma ���� Let Cr denote a constant such that for f we have

kUn�f�k� � Crn
�r�

Denote L�n� �� 	 � ln��n � 	�� Then for each such function f with kfk� �
��L�n�����Crn

�r we can �nd a g � T V such that

kf � hf� gigk�� �

�
	�

	

�L�n�

�
kfk���

Proof� Represent f � Sn�f��Un�f� and �nd by Theorem � g � T V�n� such that

kSn�f�� hSn�f�� gigk�� � �	� 	�L�n��kSn�f�k��� ����

��



Then
kf � hf� gigk�� � kSn�f�� hSn�f�� gigk�� � kUn�f�k�� � ����

�	� 	�L�n��kfk�� � ��L�n����kfk�� � �	�
	

�L�n�
�kfk���

Lemma �	 is proved now� �

We need now the following general property of the system T V� For any set
Y � Zwe denote by SY the orthogonal projector onto the subspace of trigonometric
polynomials with frequencies in Y �

Lemma ���� For any set Y � Z and any f � L� we have

kSY �f �G�f� T V��k� � kSY �f�k��

Proof� We prove this lemma by contradiction� Denote h �� G�f� T V� and assume
that for some Y we have

kSY �f � h�k� 	 kSY �f�k��

Let X �� Zn Y � Then we have

kf � SX�h�k� � kSX�f � h�k� � kSY �f�k� � ��	��

kSX�f � h�k� � kSY �f � h�k� � kf � hk��

Next� SX�h� has the form ag with some g � T V� Therefore ��	�� contradicts the
following minimizing property of h �

kf � hk � inf
a�R �g�T V

kf � agk�

This completes the proof of Lemma ��� �

Proof of Theorem ��� �continuation�� For a given m �nd n satisfying�
	�

	

�L�n�

�m
� L�n�n��r�

Denote
fk �� f �Gk�f� T V�� k � 	� � � � �m�

Using the assumption f � Hr
� we get

kUn�f�k� � Crn
�r�

If kfk� � ��L�n�����Crn
�r then we have

kf �Gm�f� T V�k� � kfk� � ��L�n�����Crn
�r�

If kfk� � ��L�n�����Crn
�r then we apply Lemma �	 and get

kf�k �

�
	�

	

�L�n�

����
kfk��

Applying Lemma �� we get

kUn�f��k� � kUn�f�k� � Crn
�r�

Continuing this process we obtain

kf�Gm�f� T V�k� � C�r� minf

�
	�

	

�L�n�

�m��

� ��L�n�����n�rg � C��r�e�A��rm���� �

Theorem �� is proved� �

��
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