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Abstract

An analogue of the Littlewood-Offord problem posed by the first author is to find the
maximum number of subset sums equal to the same vector over all ways of select-
ing n vectors in R

d in general position. This note reviews past progress and motiva-
tion for this problem, and presents a construction that gives a respectable new lower
bound, Ω(2nn1−3d/2), which compares for d ≥ 2 to the previously known upper bound
O(2nn−1−d/2).
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Sums of Vectors in General Position

One version of the famous Littlewood-Offord problem [11] asks how to select
complex numbers a1, . . . , an, not necessarily distinct, with each |ai| ≥ 1, and a target
open ball T ⊆ C of unit diameter to maximize the number of the 2n subset sums∑

i∈I ai, where I ⊆ [n], lying in T . Viewing C as R2, one can extend this problem to
arbitrary dimension d, and ask the same thing, where now the ai’s are vectors in Rd.
By setting all ai equal to the same vector, it is possible to have

(
n

�n
2 �

)
subset sums

lying inside T . Erdős [3] showed this was best-possible for the reals (d = 1); Katona
[8] and Kleitman [9] independently proved the same for the original case of complex
numbers (d = 2); Kleitman [10] later found an ingenious inductive proof that

(
n

�n
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)
is

best-possible for general d.
Even if we restrict the target set to just a single point t, this bound is still achieved.

But what if we must also spread out the vectors ai in the sense of asking that any
d of them be linearly independent? Had we only needed to hit a unit diameter ball
target, the answer would have remained at

(
n

�n
2 �

)
, but by shrinking the target to a

single point, it will be tougher in general to get as many sums to hit the target. With
a single point target, the restriction that each |ai| ≥ 1 no longer affects the answer, so
it can be dropped. Therefore, we are now interested in the following:

General Position Subset Sum Problem. Given positive integers n, d, how can one
select vectors a1, . . . , an ∈ Rd and a target t ∈ Rd to achieve the maximum number
fd(n) of the 2n subset sums

∑
i∈I ai, where I ⊆ [n], equal to t, provided that every d

of the vectors ai are linearly independent?

Griggs [5] arrived at exactly this problem in connection with a model of database
security. In the database security studies of Mirka Miller et al. [13,12,1, cf. 4], there is
a database of numerical records, {x1, . . . , xn}, e.g., the salaries of the n members of
a department. One may request the sums

∑
j∈J xj of certain subsets J ⊆ {1, . . . , n},

and an answer will be given by the control mechanism, provided that no “compromise”
results. In the basic model, a compromise means that the requester is able to determine,
by taking an appropriate linear combination of the answered queries (sums), some
individual entry xi. The problem is to maximize the number of queries that can be
answered without compromising the database. Griggs proposed an extension of this
problem to prevent compromise by anyone with prior knowledge of d − 1 records: We
say a compromise results whenever one can determine some linear combination of at
most d records,

∑
j∈J αjxj , where all αj �= 0 and 0 < |J | ≤ d. It turns out that the

maximum number of queries that can be answered without compromise is precisely
fd(n).

In one dimension, f1(n) is equivalent to the real case of the Littlewood-Offord
problem, and so

f1(n) =
(

n⌊
n
2

⌋).

Determining fd(n) for fixed dimension d ≥ 2 remains an intriguing and funda-
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mental open problem with connections to many fields of mathematics. As shown in
[5], an O(2nn−�d/2�) upper bound on fd(n) can be deduced by a simple sphere-packing
argument applied to the equivalent database security problem.

Deeper work of Halász provides a slight improvement, an O(2nn−1−d/2) upper
bound for d ≥ 2. More sophisticated analytical methods, especially Fourier analysis,
are apparently needed to obtain this bound. An accessible proof would be valuable, in
that it may adapt nicely to other variations of the Littlewood-Offord problem, such as
when varying lower bounds on different vectors ai are imposed.

Is the Halász bound correct for general d to within a constant factor? We still
cannot say, not having a suitable construction achieving the bound for d > 2. In
[5] two sets of vectors for d = 2 are presented, each achieving the Halász bound, to
within a constant factor, for general n. Until the DIMATIA-DIMACS conference on
“The Future of Discrete Mathematics” in Štǐŕın castle in May, 1997, no reasonable
lower bound for dimensions d > 2 had been described. In this note, we provide such a
construction.

We first review and extend the method which was applied in [5] to obtain a lower
bound from a construction. Suppose we have a set of integer vectors a1, . . . , an ∈ Rd

such that any d of them are linearly independent, n ≥ d. Consider any particular
coordinate of the ai’s, say coordinate j, and denote this component of ai by ui ∈ R.
Then the distribution of the jth components of the 2n subset sums

∑
i∈I ai, when

multiplied by 2−n, is the same as the probability distribution for the random variable
X =

∑n
i=1 uiXi, where the Xi are i.i.d. random variables, each equal to 0 or 1 with

probability 1/2. One checks routinely that X has mean µj :=
∑

ui/2 and variance
σ2

j :=
∑

i u2
i /4. Chebyshev’s inequality implies that a proportion at most 1/K2 out of

our 2n subset sums have jth component differing from µj by more than Kσj.
Applying this for all j with K =

√
2d, we learn that at least half of the 2n subset

sums vectors are within Kσj of µj for all j. That is, at least 2n−1 of the subset sums
lie within a box, with sides parallel to the coordinate planes, with side lengths 2Kσj,
1 ≤ j ≤ d. Since our vectors ai have integer coordinates, the lattice points are the only
possible subset sums. The number of lattice points in this box is roughly

d∏
j=1

2Kσj = (8d)d/2
d∏

j=1

σj .

Consequently, some lattice point occurs as a subset sum for at least

(1/2)2n

⎛
⎝(8d)d/2

d∏
j=1

σj

⎞
⎠

−1

different subset sums.
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Here is one construction that gives the desired independence, yet keeps the product
of σj ’s under control: Let ai = (1, i, i2, . . . , id−1), 1 ≤ i ≤ n. Then any d of these
vectors, say ai1 , . . . , aid

with i1 < i2 < · · · < id, are linearly independent, since they
form a Vandermonde matrix, with determinant∏

j<k

(ik − ij) �= 0.

Thus, our n vectors are in general position. As for the bound they give, we have

σj =

(∑
i

i2(j−1)/4

)1/2

= Θ(n
2j−1

2 ).

Thus,
∏d

j=1 σj = Θ(nd2/2), giving us a lower bound on fd(n) of order Θ(2nn−d2/2).
For d = 1 and d = 2, this bound is best-possible, up to a constant factor. For d > 2

we can modify this construction so that it still works, while the vector coordinates stay
much smaller (< 2n). Several months of continued reflection on the problem have not
led to any further improvement, so we shall describe this progress now. Perhaps it is
the upper bound that needs tightening, rather than the lower bound. Here is our new
result.

Theorem. For fixed d ≥ 2, there exist constants C, C′ > 0 such that the maximum
number fd(n) of subset sums equal to the same value, for any set of n vectors in Rd

in general position, satisfies

C2nn1−(3/2)d < fd(n) < C′2nn−1−d/2.

Proof. As noted above, the upper bound follows from a result of Halász [7]. We present
a construction for the lower bound. Choose a prime number p with n ≤ p < 2n, which
is well-known to exist. Take the ai as in the construction above, except reduce the
coordinates modulo p, so that every coordinate belongs to {0, . . . , p − 1}. The new
vectors are in general position: For any d of them, each entry of the corresponding
determinant is the same, mod p, as before. Thus, the new determinant is congruent
mod p to

∏
j<k (ik − ij), which is not zero mod p since each of its factors is a positive

integer < n ≤ p. It follows that the new determinant is not zero, since it is not divisible
by p.

The first coordinates are all 1, so we have σ2
1 = n/4. For j > 1, since all coordinates

are at most p − 1, we get that σj = O((np2)1/2) = O(n3/2). Completing the analysis
as before gives us the stated lower bound.

The point sets in general position with limited coordinates which were constructed
above have also been proposed in computational geometry, where they were useful to
deal with problems of geometric degeneracy by perturbation methods, see Emiris,
Canny, and Seidel [2].
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