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Abstract

Consider the minimum number f(m, n) of zeroes in a 2m×2n (0, 1)-matrix M that
contains no m×n submatrix of ones. This special case of the well-known Zarankiewicz
problem was studied by Griggs and Ouyang, who showed, for m ≤ n, that 2n+m+1 ≤
f(m, n) ≤ 2n + 2m − gcd(m, n) + 1. The lower bound is sharp when m is fixed for
all large n. They proposed determining limm→∞{f(m, m + 1)/m}. In this paper, we
show that this limit is 3. Indeed, we determine the actual value of f(m, km + 1) for
all k, m. For general m, n, we derive a new upper bound on f(m, n). We also give the
actual value of f(m, n) for all m ≤ 7 and n ≤ 20.
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The Half-Half Problem

Section 1. Introduction

The terminology and notation in this paper are the same as in the paper [4] by
Griggs and Ouyang. We consider rectangular matrices M with entries that are 0 or
1. The intersection of a rows and b columns of a matrix is called an a × b submatrix .
We say that a 2m × 2n matrix M has Property Z if every m × n submatrix has at
least one zero, i.e., M has no half-half all ones submatrix. An equivalent formulation
of Property Z, that is typically more useful in our study, is to require that for every m
rows of M at least n + 1 columns contain a zero somewhere in those rows. We denote
by f(m, n) the minimum number of zeroes in such a matrix M with Property Z. For
simplicity, we often assume that m ≤ n, since we may switch to the transpose when
m > n.

In general, we may ask the maximum number Z = Zm,n(k, l) of ones in a k×l ma-
trix M avoiding m×n all ones submatrix. (Note that f(m, n) = 4mn−Zm,n(2m, 2n).)
In 1951 Zarankiewicz [5] posed the problem of determining Zm,m(k, k) for k ≥ 4, and
the general problem concerning Zm,n(k, l) has also become known as the problem of
Zarankiewicz .

By viewing M as the incidence matrix for a bipartite graph, we can obtain the
graph-theoretic formulation of Zarankiewicz problem that asks for the maximum num-
ber of edges in a bipartite graph (K, L) with part sizes |K| = k, |L| = l such that there
is no complete bipartite subgraph Km,n with m vertices in K and n vertices in L.

A survey of work on the Zarankiewicz problem appears in [1, Sec. VI.2]. Some of
the more recent work includes the papers [2, 3, 4].

For the half-half case of the Zarankiewicz problem, Griggs and Ouyang obtained
the following results on f(m, n):

Theorem 1.1. [4] Assume m ≤ n. Then

f(m, n) ≥ 2n + m + 1,

where the equality holds precisely when
(1) n is a multiple of m, or
(2) k + r ≥ m, where n = km + r, and 0 < r < m.

Theorem 1.2. [4] Assume m < n. Then
(1) f(m, n) ≤ 2km + f(r, m), where n = km + r, and 0 < r ≤ m,
(2) f(m, n) ≤ 2n + 2m− gcd(m, n) + 1, where gcd(m, n) is the greatest common

divisor of m and n.

By Theorem 1.1 and Theorem 1.2(2), they observed that 3m+4 ≤ f(m, m+1) ≤
4m + 2 and proposed determining limm→∞{f(m, m + 1)/m}. In this paper we show
that this limit is 3. Indeed, we prove that for all k, m, f(m, km+1) = 2(km+1)+m+i,
where i is the largest integer such that

⌊
i2/4

⌋
k + i− 1 < m. For general m, n, we also

derive a new upper bound on f(m, n).
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The Half-Half Problem

In Section 2 we consider n = km + 1 and construct 2m × 2n matrices Mt for
1 ≤ t ≤ m such that each matrix Mt has Property Z. Denoting the number of zeroes
in Mt by g(t), we prove f(m, n) = min{g(t) : 1 ≤ t ≤ m} and derive the formula for
f(m, n).

In Section 3 we consider an extension of matrices Mt for general m, n, and derive a
new upper bound on f(m, n). In Section 4 we give the actual value of f(m, n) for small
m, n. Some of these values are obtained by tedious analysis of several cases. Finally,
in Section 5 we summarize what we now know.

Section 2. The Actual Value of f(m, km + 1)

When n = km+r with 0 < r < m and k+r ≥ m, Griggs and Ouyang [4] presented
a matrix achieving f(m, n) = 2n + m + 1. By permuting columns and rearranging the
entries in the last row of this matrix, we obtain the matrix shown in Figure 1. (All the
blank entries in this figure are ones.)

 

     

k k k k k k

 0 ... 0
 0 ... 0

 0 ... 0
 0 ... 0 0

 

 0

 00 ...  0

 k+r-m

m+r

1

 0 ... 0

 0 ... 0

. . . . . .

. ..

.. . . . .

m-r

0

-1

+1k+r -1r

m+r

Figure 1. A matrix achieving f(m, n) = 2n + m + 1.

This matrix inspires us to consider the following construction: Assume 2 ≤ m < n
and n = km + 1. For 1 ≤ t ≤ m, we construct a 2m × 2n (0, 1)-matrix Mt illustrated
in Figure 2. In this construction, q, α, and β are the integers satisfying 2n = k(m −
t) + k(t − 1)q + kα + q + β, i.e.,

km + kt + 2 = (kt − k + 1)q + kα + β,

where 0 < kα + β ≤ kt − k + 1 and 0 < β ≤ k. For example, when m = 3 and n = 4,
Figure 3 displays the matrices M1, M2, and M3.

Denote the number of zeroes in Mt by g(t). Then we have
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0

0

0

0

0 ... 0 0

0 0 ... 0 0

 t -1

k+2

 0 ... 0
 0 ... 0  . . .

 0 ... 0
 0 ... 0

   0 ... 0
 0 ... 0

0 0 ... 0 0 
0 0 ... 0 0

  0 ... 0

k k k kk k k k  q

t -1

t -1

+2k +2k

1) q

α

. . .

.. .

. . .

...

...

...

.
.

.
.
.
.

. . .

...

(t-

0

0

0

0

q+ -2β
k

   m-t

β

   0 ... 0

 . . . . . . . . . . . . .

. . . . . . . .
. . . . . .

.

  . . .

Figure 2. The matrix Mt for n = km + 1.

M1 =

⎡
⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

,

M2 =

⎡
⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1 1 1
1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

,

M3 =

⎡
⎢⎢⎢⎢⎢⎣

0 1 1 1 1 0 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 0 1 1 0 1
1 1 1 1 0 1 1 0
1 1 1 1 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

.

Figure 3. The matrices Mt for (m, n) = (3, 4).
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Proposition 2.1. Assume 2 ≤ m < n, n = km + 1, and 1 ≤ t ≤ m. Then
(1) The matrix Mt has Property Z;

(2) g(t) = (2k + 1 + 1
kt−k+1 )m + t + −t+2

kt−k+1 + −α+(t−1)β
kt−k+1 ;

(3) g(t) =
⌈
(2k + 1 + 1

kt−k+1 )m + t + −t+2
kt−k+1

⌉
.

Proof. (1) We consider a two-coloring on all zeroes in Mt: We assign blue to the first
k zeroes in each row, and assign red to all the rest. Then in any m rows, we can
find exactly km blue zeroes and at least 2 red zeroes such that all these zeroes are
in different columns. Therefore, any m rows have zeroes in at least km + 2 = n + 1
columns, and Property Z holds for the matrix Mt.

(2) Note that the number of zeroes in Mt is k(m − t) + (k + 1)((t − 1)q + α) +
(k + 2) q+β−2

k . Since km + kt + 2 = (kt− k + 1)q + kα + β, we can write q in terms of
other variables and obtain the formula for g(t).

(3) From the conditions 0 < kα + β ≤ kt − k + 1 and 0 < β ≤ k, we have
0 ≤ α ≤ t − 1. Thus 0 ≤ −α+(t−1)β

kt−k+1 < 1 and the formula for g(t) is verified.

Lemma 2.2. Assume 2 ≤ m < n and n = km + 1. Then

f(m, n) = min{g(t) : 1 ≤ t ≤ m}.

Proof. Let M = [Mi,j] be a 2m × 2n (0, 1)-matrix with Property Z. By Proposition
2.1(1), it suffices to show that the number of zeroes in M is not less than g(t) for some
t, 1 ≤ t ≤ m.

Let R0 = ∅. For i = 1, . . . , 2m, let Ri = {j : Mi,j = 0} and ri = |Ri|. Without loss
of generality, we may assume 0 ≤ r1 ≤ r2 ≤ · · · ≤ r2m. Choose the integer t as small
as possible such that 1 ≤ t ≤ m and |R0 ∪ R1 ∪ · · · ∪ Rm−t| ≤ k(m − t). We consider
three cases:
Case (1) t = 1: Since M has Property Z, we have |R1∪ · · · ∪Rm| ≥ km+2. Then the
condition “t = 1” forces rm ≥ k + 2. Thus the number of zeroes in M ≥ (km + 2) +
m(k + 2) = g(1).
Case (2) 2 ≤ t ≤ m − 1 and |R0 ∪ R1 ∪ · · · ∪ Rm−t| < k(m − t): Note that g(t) ≤
(2k + 2)m + t, since we have Proposition 2.1(3) and t ≥ 2. Let |R1 ∪ · · · ∪ Rm−t| = p.
Then the choice of t implies rm−t+1 ≥ k(m − t + 1)− p + 1, and hence the number of
zeroes in M ≥ p + (k(m − t + 1) − p + 1)(m + t). Replacing p with k(m − t) − 1, we
obtain that the number of zeroes in M ≥ (2k + 2)m + 2t − 1 > (2k + 2)m + t ≥ g(t).
Case (3) 2 ≤ t ≤ m and |R0 ∪ R1 ∪ · · · ∪ Rm−t| = k(m − t): For i = m − t + 1, m −
t + 2, . . . , 2m, let R′

i = Ri\(R0 ∪ R1 ∪ · · · ∪ Rm−t) and r′i = |R′
i|. Then the choice

of t implies r′m−t+1 ≥ k + 1. Write km + kt + 2 = (kt − k + 1)q + kα + β, where
0 < kα + β ≤ kt − k + 1 and 0 < β ≤ k. Comparing M with Mt, we note that it is
enough to show r′m−t+(t−1)q+α+1 ≥ k + 2.

Assume the contrary. Then r′m−t+1 = · · · = r′m−t+(t−1)q+α+1 = k + 1. Divide the
index set I = {m − t + 1, . . . , m − t + (t − 1)q + α + 1} into as many disjoint subsets
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I1, . . . , Ip as possible such that for all i, j in different subsets, R′
i ∩ R′

j = ∅. Then the
choice of t implies that for any index subset Ix, | ∪i∈Ix R′

i| = k|Ix|+1 and |Ix| ≤ t− 1.
Now we count | ∪i∈I R′

i| in two ways: On the one hand, we have | ∪i∈I R′
i| =∑p

x=1(k|Ix| + 1) = k
∑p

x=1 |Ix| + p ≥ k|I| + �|I|/(t− 1)� ≥ k|I| + q + 1; on the other
hand, we note that | ∪i∈I R′

i| ≤ k((t− 1)q + α) + q + β ≤ k(|I| − 1) + q + k ≤ k|I|+ q,
a contradiction.

Lemma 2.2 will facilitate our search for f(m, km + 1). It allows us to confine our
analysis to the values of g(t) only. Using some fundamental Calculus, we obtain the
minimum of g(t):

Theorem 2.3. Assume 2 ≤ m < n and n = km + 1. Let t0 = k−1+
√

km+k+1
k . Then

f(m, n) = min{g(�t0	), g(�t0�)}.

Proof. It is easy to verify that 1 < t0 ≤ m. So g(�t0	) and g(�t0�) are well-defined.
By Lemma 2.2, it suffices to show that min{g(t) : 1 ≤ t ≤ m} = min{g(�t0	), g(�t0�)}.
Consider a continuous function h(x) = (2k + 1 + 1

kx−k+1 )m + x + −x+2
kx−k+1 , where

x ∈ (1− 1
k , m+1). Then h(t) = g(t) for t = 1, . . . , m, since we have Proposition 2.1(3).

By taking the first and second derivatives for h(x), we verify that h(t0) is a minimum
and the proof is complete.

We provide in next theorem an alternative formula for f(m, km + 1).

Theorem 2.4. Assume 2 ≤ m < n, n = km+1, and i is the largest integer such that⌊
i2/4

⌋
k + i − 1 < m. Then

f(m, n) = g(�(i + 3)/2	) = 2n + m + i.

Proof. We assume that i is an odd number and let i = 2�− 1 for some integer �. (The
proof of the other case “i is even” is similar.)

First, we prove g(�(i + 3)/2	) = 2n+m+i, i.e., g(�+1) = 2n+m+2�−1. By the
choice of i, we have (�2−�)k+2�−2 < m ≤ �2k+2�−1. Then (k�+1)(k�+2) < km+
k(�+1)+2 ≤ (k�+1)(k�+2). So we can write km+k(�+1)+2 = (k�+1)q+kα+β, where
0 < kα+β ≤ k�+1, 0 < β ≤ k, and k�−k+2 ≤ q ≤ k�+1. Therefore, q+β−2

k = � and
g(�+1) = k(m−�−1)+(k+2) q+β−2

k +(k+1)(2m−(m−�−1)− q+β−2
k ) = 2n+m+2�−1.

By Lemma 2.2, it remains to prove that for 1 ≤ t ≤ m, g(t) ≥ 2n+m+ i. Indeed,
by Proposition 2.1(3), we only need to show t + m−t+2

kt−k+1 > 2�. Since the choice of i

gives m > (�2 − �)k + 2�− 2, it is enough to show that kt2 − (2�k + k)t + �2k + �k ≥ 0.
We note that this inequality is equivalent to (t − �)(t − (� + 1)) ≥ 0, which is verified
for all integers t and �.

For general m, n with n = km+1, Theorem 1.2(2) gives f(m, n) ≤ 2n+2m. Now
we can improve this upper bound:
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Corollary 2.5. Assume 2 ≤ m < n and n = km + 1. Then

2n + m + 1 ≤ f(m, n) ≤ 2n + m + 2
⌊√

m
⌋
.

Proof. Let i = 2 �
√

m	. By Theorem 2.4, it suffices to show that m ≤
⌊
(i + 1)2/4

⌋
k+i.

Let � = �
√

m	. Then
⌊
(i + 1)2/4

⌋
k + i = (�2 + �)k + 2� ≥ (� + 1)2 > (

√
m)2 = m.

Section 3. An Upper Bound on f(m, n) for General m, n

When n is a multiple of m, Theorem 1.1 gives f(m, n) = 2n+m+1. So we assume
in this section that n is not a multiple of m.

We have constructed the matrix Mt for the case n = km + 1 in Section 2. Now
we consider the following extension for general m, n: Let 2 ≤ m < n and n = km + r,
where 0 < r < m. For any integer t with 1 ≤ t ≤ m and t = r� + 1 for some integer �,
we construct a 2m × 2n (0, 1)-matrix Mt illustrated in Figure 4. In this construction,
q, α, and β are the integers satisfying

km + kt + 2r = (k� + 1)q + kα + β,

where 0 < kα + β ≤ k� + 1 and 0 < β ≤ k. For example, when m = 4 and n = 6,
Figure 5 displays the matrices M1 and M3.

In particular, when k + r ≥ m, Mr+1 is the same matrix as shown in Figure 1
that achieves f(m, n) = 2n + m + 1.

Denote the number of zeroes in Mt by g(t). Similar to Proposition 2.1 and Theorem
2.4, we can prove the following results:

Proposition 3.1. Assume 2 ≤ m < n and n = km + r, where 0 < r < m. Let t be
an integer such that 1 ≤ t ≤ m and t = r� + 1. Then
(1) The matrix Mt has Property Z;

(2) g(t) = (2k + 1 + r
k�+1 )m + r� + 1 + −r2�+r

k�+1 + −rα+r�β
k�+1 .

Theorem 3.2. Assume 2 ≤ m < n and n = km + r, where 0 < r < m. Let i be the

largest integer such that
⌊

i2

4

⌋
k +

⌊
i
2

⌋
r +

⌊
i−1
2

⌋
< m.

(1) If 1 ≤ i ≤ 2
⌊

m−1
r

⌋
, then

f(m, n) ≤ g

(⌊
i + 1

2

⌋
r + 1

)
≤ 2n + m + 1 + (i − 1)r;

(2) If i > 2
⌊

m−1
r

⌋
, i.e., g

(⌊
i+1
2

⌋
r + 1

)
is not defined, let � =

⌊
m−1

r

⌋
, then

f(m, n) ≤ g(r� + 1) ≤ 2n + m + 1 +
(

� − 1 +
⌊⌊

kr + k − 1
k� + 1

⌋
/k

⌋)
r.
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   0 ... 0
0

0

0

0

 0 ... 0
 0 ... 0  . . .

 0 ... 0
 0 ... 0

   0 ... 0
 0 ... 0

  0 ... 0

k k k kk k k k  q

k

. . .

.. .

. . .

...

...

...

.
.

.

...

0 .. 0 ... 0 .. 0 
0 .. 0 ... 0 .. 0

0 .. 0 ... 0 .. 0
...

0 ... 0 .. 0

 l

 l

 l

.

.

.

k+r

k+r -1r

r+1 r+1

k+r

0

0

0

  . . .+1

+1 +1

    l q

-2βq+

α

β

r

0

     m-t

 . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

Figure 4. The matrix Mt for n = km + r, r �= 0.

M1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 0 1 1 1 1 1
1 1 1 1 0 0 0 0 1 1 1 1
1 1 1 1 1 0 0 0 0 1 1 1
1 1 1 1 1 1 0 0 0 0 1 1
1 1 1 1 1 1 1 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 0 1 1 1 1 1
1 1 0 1 1 1 1 0 1 1 1 1
1 1 1 0 1 1 1 1 0 1 1 1
1 1 1 1 0 1 1 1 1 0 1 1
1 1 1 1 1 0 1 1 1 1 0 1
1 1 1 1 1 1 0 0 0 0 1 1
1 1 1 1 1 1 1 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 5. The matrices M1 and M3 for (m, n) = (4, 6).
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Proof. The proof of (1) is similar to that of Theorem 2.4. To prove (2), we note that
km + k(r� + 1) + 2r ≤ (k� + 1)(2r) + kr + k, since m ≤ r(� + 1). So we can write
km + k(r� + 1) + 2r = (k� + 1)q + kα + β, where 0 < kα + β ≤ k� + 1, 0 < β ≤ k, and

q ≤ 2r +
⌊

kr+k−1
k�+1

⌋
. Therefore, g(r� + 1) = k(m − r� − 1) + (k + r + 1) q+β−2r

k
+ (k +

1)(2m − (m − r� − 1) − q+β−2r
k ) ≤ 2n + m + 1 +

(
� − 1 +

⌊⌊
kr+k−1

k�+1

⌋
/k

⌋)
r.

Note that each of Theorem 1.2 and Theorem 3.2 does not always provide a sharp
bound for given m, n. For example, when m = 4 and n = 6, both theorems give
f(4, 6) ≤ 19; however, the matrix in Figure 6 shows f(4, 6) ≤ 18. (Then it follows from
Theorem 1.1 that f(4, 6) = 18.) We will check the performance of these two theorems
for some small m, n in next section.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 0 1 1 1 1 1 1
1 0 1 1 1 1 0 1 1 1 1 1
1 1 0 1 1 1 1 0 1 1 1 1
1 1 1 0 1 1 1 1 0 1 1 1
1 1 1 1 0 1 1 1 1 0 1 1
1 1 1 1 1 0 1 1 1 1 0 1
1 1 1 1 1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 6. A matrix giving f(4, 6) ≤ 18.

By Theorem 1.1 and Theorem 1.2(2), Griggs and Ouyang [4] observed that 3m +
4 ≤ f(m, m + 1) ≤ 4m + 2 and proposed determining limm→∞{f(m, m + 1)/m}.
From Corollary 2.5, we can show that this limit is 3. In general, we have the following
extension:

Theorem 3.3. For fixed positive integers k and r,

lim
m→∞

f(m, km + r)
m

= 2k + 1.

Proof. Note that if m ≥ r2 + 2, then i = 2 �
√

m	 ≤ 2 �(m − 1)/r	 in Theorem 3.2(1)
gives the upper bound f(m, km + r) ≤ (2k + 1)m + 2r �√m	 + r + 1. On the other
hand, Theorem 1.1 gives the lower bound f(m, km + r) ≥ (2k + 1)m + 2r + 1. Thus
f(m, km + r)/m → 2k + 1 as m → ∞.

Section 4. The Actual Value of f(m, n) for Small m, n

By Theorems 1.1, 1.2, 2.4, 3.2, and tedious analysis of several cases, we have
obtained in Figure 7 the actual value of f(m, n) for m ≤ 7 and n ≤ 20. In this figure,
B denotes the general lower bound 2n + m + 1.
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  7

  10        4     6     8   12   14   16   18   20   22   24   26   28   30   32   34   36   38   40   42

   9   11   13   15   17   19   21   23   25   27   29   31   33   35   37   39   41   43

  10   13   14   16   18   20   22   24   26   28   30   32   34   36   38   40   42   44

  13   16   18   19   21   24   25   27   29   31   33   35   37   39   41   43   45

  16   20   22   24   24   26   29   32   32   34   36   39   40   42   44   46

  19   23   25   27   29   29   31   34   37   39   39   41   43   46   49

  22   26   29   31   33   34   34   36   40   42   45   47   46   48
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Figure 7. The actual value of f(m, n) for m ≤ 7 and n ≤ 20.

Note that f(5, 6) > f(6, 6) and f(7, 18) > f(7, 19). Thus increasing m or n may
actually decrease f .

When n = km + r with r �= 0, r �= 1 ,and k + r < m, we may use Theorem 1.2 or
Theorem 3.2 to find an upper bound for f(m, n). For small m, n, the performance of
these two theorems is displayed in Figure 8.

f(4, 6) f(5, 7) f(5, 8) f(5, 12) f(6, 8) f(6, 9) f(6, 10) f(6, 14) f(6, 15)
actual value = 18 = 22 = 24 = 32 = 25 = 27 = 29 = 37 = 39
Theorem 1.2 ≤ 19 ≤ 23 ≤ 24 ≤ 33 ≤ 27 ≤ 28 ≤ 31 ≤ 39 ≤ 40
Theorem 3.2 ≤ 19 ≤ 22 ≤ 25 ≤ 32 ≤ 25 ≤ 28 ≤ 31 ≤ 37 ≤ 40

f(6, 20) f(7, 9) f(7, 10) f(7, 11) f(7, 12) f(7, 16) f(7, 17) f(7, 18)
actual value = 49 = 29 = 31 = 33 = 34 = 42 = 45 = 47
Theorem 1.2 ≤ 51 ≤ 31 ≤ 32 ≤ 33 ≤ 37 ≤ 45 ≤ 46 ≤ 47
Theorem 3.2 ≤ 49 ≤ 30 ≤ 31 ≤ 34 ≤ 37 ≤ 42 ≤ 45 ≤ 48

Figure 8. The performance of two upper bound theorems.

Section 5. Conclusion

We summarize the results concerning the value of f(m, n) here: Assume m ≤ n
and write n = km + r, where 0 ≤ r < m.
Case (1) If r = 0 or k + r ≥ m, then f(m, n) = 2n + m + 1;
Case (2) If r = 1, f(m, n) can be evaluated by Theorem 2.4 (or Theorem 2.3);
Case (3) If m ≤ 7 and n ≤ 20, the value of f(m, n) is given in Figure 7 in Section 4.
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If (m, n) is not in any of these three cases, then 2n + m + 2 ≤ f(m, n) ≤ u, where
u is an upper bound obtained from Theorem 1.2 or 3.2. So the value of f(m, n) for
general m, n is still undetermined.

For Case (1), Griggs and Ouyang described in [4] all extremal matrices, i.e., the
matrices attaining f(m, n). In this study we obtain the actual value of f(m, n) for
Case (2). So the extremal matrices for Case (2) deserve further investigation.

As we mentioned in Section 1, the problem of determining f(m, n) is a special
case of the famous problem of Zarankiewicz [5]. See [4] for more related open problems.
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