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Abstract
This paper is concerned with the construction and analysis of wavelet-based

adaptive algorithms for the numerical solution of elliptic equations. These algo-
rithms approximate the solution u of the equation by a linear combination of N
wavelets. Therefore, a benchmark for their performance is provided by the rate of
best approximation to u by an arbitrary linear combination of N wavelets (so called
N -term approximation), which would be obtained by keeping the N largest wavelet
coefficients of the real solution (which of course is unknown). The main result of the
paper is the construction of an adaptive scheme which produces an approximation
to u with error O(N−s) in the energy norm, whenever such a rate is possible by
N -term approximation. The range of s > 0 for which this holds is only limited by
the approximation properties of the wavelets together with their ability to compress
the elliptic operator. Moreover, it is shown that the number of arithmetic opera-
tions needed to compute the approximate solution stays proportional to N . The
adaptive algorithm applies to a wide class of elliptic problems and wavelet bases.
The analysis in this paper puts forward new techniques for treating elliptic problems
as well as the linear systems of equations that arise from the wavelet discretization.

AMS subject classification: 41A25, 41A46, 65F99, 65N12, 65N55.
Key Words: Elliptic operator equations, quasi sparse matrices and vectors, best
N -term approximation, fast matrix vector multiplication, thresholding, adaptive
space refinement, convergence rates.

1 Introduction

1.1 Background

Adaptive methods, such as adaptive Finite Elements Methods (FEM), are frequently used
to numerically solve elliptic equations when the solution is known to have singularities.

∗This work has been supported in part by the Deutsche Forschungsgemeinschaft grants Da 117/8–2,
the Office of Naval Research Contract N0014-91-J1343 and the TMR network “Wavelets in Numerical
Simulation”
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A typical algorithm uses information gained during a given stage of the computation to
produce a new mesh for the next iteration. Thus, the adaptive procedure depends on the
current numerical resolution of u. Accordingly, these methods produce a form of nonlinear
approximation of the solution, in contrast with linear methods in which the numerical
procedure is set in advance and does not depend on the solution to be resolved.

The motivation for adaptive methods is that they provide flexibility to use finer resolu-
tion near singularities of the solution and thereby improve on the approximation efficiency.
Since the startling papers [2, 3] the understanding and practical realization of adaptive
refinement schemes in a finite element context has been documented in numerous pub-
lications [3, 4, 5, 10, 31]. A key ingredient in most adaptive algorithms are a-posteriori
error estimators or indicators derived from the current residual or the solution of local
problems. They consist of local quantities such as jumps of derivatives across the interface
between adjacent triangles or simplices. One often succeeds in bounding the (global) error
of the current solution with respect to the energy norm, say, by sums of these quantities
from below and above. Thus refining the mesh where these local quantities are large is
hoped to reduce the bounds and hence the error in the next computation. Computational
experience frequently confirms the success of such techniques for elliptic boundary value
problems in the sense that adaptively generated highly nonuniform meshes indeed give
rise to an accuracy that would require the solution of much larger systems of equations
based on uniform refinements. However, on a rigorous level the quantitative gain of adap-
tive techniques is usually not clear. The central question is whether the mesh refinements
actually result, at each step, in some fixed error reduction. To our knowledge only in [30]
convergence of an adaptive scheme has been established for a rather special case namely a
piecewise linear finite element discretization of the classical Dirichlet problem for Laplace’s
equation. There is usually no rigorous proof of the overall convergence of such schemes
unless one assumes some quantitative information such as the saturation property about
the unknown solution [10]. Saturation properties are assumed but not proven to hold.

Moreover, the derivation of error indicators in conventional discretizations hinges on
the locality of differential operators. Additional difficulties are therefore encountered when
considering elliptic operators with nonlocal Schwartz kernel arising, for instance, in con-
nection with boundary integral equations.

In summary there seem to be at least two reasons for this state of affairs: (i) There
is an inherent difficulty even for local operators in utilizing the information available at
a given stage in the adaptive computation to guarantee that a suitable reduction will
occur in the residual error during the next adaptive step. (ii) Finite element analysis is
traditionally based on Sobolev regularity (see e.g. [11] or [12]) which is known to govern
the performance of linear methods. Only recent developments in the understanding of
nonlinear methods have revealed that Besov regularity is a decidedly different and more
appropriate smoothness scale for the analysis of adaptive schemes, see e.g. [26].

In view of the significant computational overhead and severe complications caused by
handling appropriate data structures for adaptive schemes, not only guaranteeing conver-
gence but above all knowing its speed is of paramount importance for deciding whether
or under which circumstances adaptive techniques actually pay off. To our knowledge
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nothing is known so far about the actual rate of convergence of adaptive FEM solvers by
which we mean the relation between the accuracy of the approximate solution and the
involved degrees of freedom, or better yet the number of arithmetic operations.

1.2 Wavelet methods

An alternative to FEM are wavelet based methods. Similarily to mesh refinement in FEM,
these methods offer the possibility to compress smooth functions with isolated singulari-
ties, into high-order adaptive approximations involving a small number of basis functions.
In addition, it has been recognized for some time [8] that for a large class of operators
(including integral operators) wavelet bases give rise to matrix representations that are
quasi-sparse (see §§2-3 for a definition of quasi-sparse) and admit simple diagonal pre-
conditioners in the case of elliptic operators. Therefore, it is natural to develop adaptive
strategies based on wavelet discretizations in order to solve numerically elliptic operator
equations.

The state of wavelet-based solvers is still in its infancy, and certain inherent imped-
iments to their numerical use remain. These are mainly due to the difficulty of dealing
with realistic domain geometries. Nevertheless, these solvers show great promise, espe-
cially for adaptive approximation (see e.g.[1, 9, 13, 15, 20]) . Most adaptive strategies
exploit the fact that wavelet coefficients convey detailed information on the local regular-
ity of a function and thereby allow the detection of its singularities. The rule of thumb is
that wherever wavelet coefficients of the currently computed solution are large in modulus
additional refinements are necessary. In some sense, this amounts to using the size of the
computed coefficients as local a-posteriori error indicators. Note that here refinement
has a somewhat different meaning than in the finite element setting. There the adapted
spaces result from refining a mesh. The mesh is the primary controlling device and may
create its own problems (of geometric nature) that have nothing to do with the underlying
analytic task. In the wavelet context refinement means to add suitably selected further
basis functions to those that are used to approximate the current solution. We refer to
this as space refinement.

In spite of promising numerical performances, the problem remains (as in the finite
element context) to quantify these strategies, that is, to decide which and how many
additional wavelets need to be added in a refinement step in order to guarantee a fixed
error reduction rate at the next resolution step. An adaptive wavelet scheme based on
a-posteriori error estimators has been recently developed in [17], which ensures this fixed
error reduction for a wide class of elliptic operators including those of negative order.
This shows that making use of the characteristic features of wavelet expansions, such as
the sparsification and preconditioning of elliptic operators, allows one to go beyond what
is typically known in the conventional framework of adaptive FEM. However, similar to
FEM, there are so far no results about the rate of convergence of adaptive wavelet based
solvers, i.e., the dependence of the error on the number of degrees of freedom.
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1.3 The objectives

The purpose of the present paper is twofold. Firstly, we provide analytical tools that
can be utilized in studying the theoretical performance of adaptive algorithms. Secondly,
we show how these tools can be used to construct and analyze wavelet based adaptive
algorithms which display optimal approximation and complexity properties in the sense
that we describe below.

The adaptive methods we analyze in this paper take the following form. We assume
that we have in hand a wavelet basis {ψλ}λ∈∇ to be used for numerically resolving the
elliptic equation. Our adaptive scheme will iteratively produce finite sets Λj ⊂ ∇, j =
1, 2, . . ., and the Galerkin approximation uΛj to u from the space SΛj := span({ψλ}λ∈Λj).
The function uΛj is a linear combination of Nj := #Λj wavelets. Thus the adaptive
method can be viewed as a particular form of nonlinear N-term wavelet approximation and
a benchmark for the performance of such an adaptive method is provided by comparison
with best N-term approximation (in the energy norm) when full knowledge of u is available.

Much is known about N-term approximation. In particular, there is a characterization
of the functions v that can be approximated in the energy norm with accuracy O(N−s) by
using linear combinations of N wavelets. As we already mentioned this class Bs is typically
a Besov space, which is substantially larger than the corresponding Sobolev space W s

which ensures O(N−s) accuracy for uniform discretization with N parameters. In several
instances of the elliptic problems, e.g. when the right hand side f has singularities, or
when the boundary of Ω has corners, the Besov regularity of the solution will exceed
its Sobolev regularity (see [16] and [18]). So these solutions can be approximated better
by best N-term approximation than by uniformly refined spaces and the use of adaptive
methods is suggested. Another important feature of N-term approximation is that a
near best approximation is produced by thresholding, i.e., simply keeping the N largest
contributions (measured in the same metric as the approximation error) of the wavelet
expansion of v.

Of course, since best N-term approximation requires complete information on the
approximated function it cannot be applied directly to the unknown solution. It is cer-
tainly not clear beforehand whether at all a concrete numerical scheme can produce at
least asymptotically the same convergence rate. Thus ideally an optimal adaptive wavelet
algorithm should produce a similar result as thresholding the exact solution. In more
quantitative terms this means whenever the solution u is in Bs, the approximations uΛj

should satisfy
‖u − uΛj‖ ≤ C‖u‖BsN−s

j , Nj := #Λj, (1.1)

where ‖·‖ is the energy norm and ‖·‖Bs is the norm for Bs. Since in practice one is mostly
interested in controlling a prescribed accuracy with a minimal number of parameters, we
shall rather say that the adaptive algorithm is of optimal order s > 0 if whenever the
solution u is in Bs, then for all ε > 0, there exists j(ε) such that

‖u − uΛj‖ ≤ ε, j ≥ j(ε), (1.2)
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and such that
#(Λj(ε)) ≤ C‖u‖1/s

Bs ε−1/s. (1.3)

Such a property ensures an optimal memory size for the description of the approximate
solution.

Another crucial aspect of the adaptive algorithms is their computational complexity:
we shall say that the adaptive algorithm is computationally optimal if, in addition to
((1.2)-(1.3)), the number of arithmetic operation needed to derive uΛj is proportional to
#Λj. Note that an instance of computational optimality in the context of linear methods
is provided by the full multigrid algorithm when N represents the number of unknowns
necessary to achieve a given accuracy on a uniform grid. We are thus interested in
algorithms that exhibit the same type of computational optimality with respect to an
optimal adaptive grid which is not known in advance and should itself be generated by
the algorithm.

The main accomplishment of this paper is the development of an adaptive numerical
scheme which for a wide class of operator equations (including those of negative order) is
optimal with regard to best N-term approximation and also computationally optimal in
the above sense.

1.4 Organization of the paper

In §2, we introduce the general setting of elliptic operator equations where our results
apply. In this context, after applying a diagonal preconditioner, wavelet discretizations
allow us to view the equation as a discrete well conditioned �2 linear system.

In § 3, we review certain aspects of nonlinear approximation, quasi-sparse matrices and
fast multiplication using such matrices. The main result of this section is an algorithm
for the fast computation of the application of a quasi-sparse matrix to a vector.

In § 4, we analyze the rate of convergence of the refinement procedure introduced
earlier in [17]. We will refer to this scheme here as Algorithm I. We show that this
algorithm is optimal for a small range of s > 0. However, the full range of optimality
should be limited only by the properties of the wavelet basis (smoothness and vanishing
moments) and the operator which is not the case for Algorithm I. The analysis in § 4
identifies however the barrier that keeps Algorithm I from being optimal in the full range
of s.

In § 5, we introduce a second strategy – Algorithm II – for adaptively generating the
sets Λj that is shown to provide optimal approximation of order s > 0 for the full range
of s. The new ingredient that distinguishes Algorithm II from Algorithm I is the addition
of thresholding steps which delete some indices from Λj. This would be the analogue of
coarsening the mesh in FEM.

Although we have qualified so far both procedures in § 4 and § 5 as “algorithms”, we
have actually ignored any issue concerning practical realization. They are idealized in
the sense that the exact assessment of residuals and Galerkin solutions is assumed. This
was done in order to identify clearly the essential analytical tasks. Practical realizations
require truncations and approximations of these quantities. § 6 is devoted to developing
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the ingredients of a realistic numerical scheme. This includes quantitative thresholding
procedures, approximate matrix/vector multiplication, approximate Galerkin solvers and
the approximate evaluation of residuals.

In § 7 we employ these ingredients to formulate a computable version of Algorithm
II which is shown to be computationally optimal for the full range of s. Recall that
this means that it realizes for this range the order of best N-term approximation at the
expense of a number of arithmetic operations that stays proportional to the number N
of significant coefficients. Computational optimality hinges to a great extent on the fast
approximate matrix/vector multiplication from § 3.

It should be noted however that an additional cost in our wavelet adaptive algorithm
is incurred by sorting the coefficients in the currently computed solution. This cost at
stage j is of order N log N where N = #Λj, thus slightly larger than the cost in arithmetic
operations. It should be stressed that the complexity of the algorithm is analysed under
the assumption that the solution exhibits a certain rate of best N-term approximation
which is, for instance, implied by a certain Besov regularity. The algorithm itself does
not require any a-priori assumption of that sort.

We have decided to carry out the (admittedly more technical) analysis of the numerical
ingredients in some detail in order to substantiate our claim that the optimality analysis
is not based on any hidden assumptions (beyond those hypotheses that are explicitly
stated) such as accessing infinitely many data. Nevertheless the main message of this
paper can be read in § 4 and § 5: optimal adaptive approximations of elliptic equations
can be computed by iterative wavelet refinements using a-posteriori error estimators,
provided that the computed solution is regularly updated by appropriate thresholding
procedures. This fact was already suggested by numerical experiments in [15] that show
similar behavior between the numerical error generated by such adaptive algorithms and
by thresholding the exact solution.

2 The Setting

In this section, we shall introduce the setting in which our results apply. In essence,
our analysis applies whenever the elliptic operator equation takes place on a manifold or
domain which admits a biorthogonal wavelet basis.

2.1 Ellipticity Assumptions

This subsection gives the assumptions we make on the operator equation to be numerically
solved. These assumptions are quite mild and apply in great generality.

Let Ω denote a bounded open domain in the Euclidean space IRd with Lipschitz bound-
ary or, more generally, a Lipschitz manifold of dimension d. In particular, Ω could be
a closed surface which arises as a domain for a boundary integral equation. The space
L2(Ω) consists of all square integrable functions on Ω with respect to the (canonically
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induced) Lebesgue measure. The corresponding inner product is denoted by

〈·, ·〉L2(Ω). (2.1)

Let A be a linear operator mapping a Hilbert space H into H∗ (its dual relative to
the pairing 〈·, ·〉L2(Ω)) where H is a space with the property that either H or its dual H∗

is embedded in L2(Ω). The operator A induces the bilinear form a defined on H × H by

a(u, v) := 〈Au, v〉, (2.2)

where 〈·, ·〉 denotes the (H∗, H) duality product.

(A1): We assume that the bilinear form a is symmetric positive definite and elliptic
in the sense that

a(v, v) ∼ ‖v‖2
H , v ∈ H. (2.3)

Here, and throughout this paper, ∼ means that both quantities can be uniformly bounded
by constant multiples of each other. Likewise <∼ indicates inequalities up to constant
factors.

It follows that H is also a Hilbert space with respect to the inner product a and that
this inner product induces an equivalent norm (called the energy norm) on H by

‖ · ‖2
a := a(·, ·). (2.4)

By duality, A thus defines an isomorphism from H onto H∗. We shall study the equation

Au = f (2.5)

with f ∈ H∗. From our assumptions, it follows that for any f ∈ H∗, this equation has a
unique solution in H, which will always be denoted by u. This is also the unique solution
of the variational equation

a(u, v) = 〈f, v〉, for all v ∈ H. (2.6)

The typical examples included in the above assumptions are Poisson’s, Helmholtz or
the biharmonic equations on bounded domains in IRd; single or double layer potentials
and hypersingular operators on closed surfaces arising in the context of boundary integral
equations. In these examples H is a Sobolev space, e.g. H = H1

0 (Ω), H2
0 (Ω), or H =

H−1/2(Ω); see [19, 17, 36] for examples.

2.2 Wavelet Assumptions

By now wavelet bases are available for various types of domains that are relevant for
the formulation of operator equations. This covers, for instance, polyhedral surfaces of
dimension two and three [24] as well as manifolds or domains that can be represented as
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a disjoint union of smooth regular parametric images of a simple parameter domain such
as the unit cube [22].

There are many excellent accounts of wavelets on IRd (see e.g. [33] or [25]). For the
construction and description of wavelet bases on domains and manifolds, we refer the
reader to the survey paper [19] and the references therein. This survey also sets forth
the notation we shall employ below for indexing the elements in a wavelet basis. To
understand this notation, it may be useful for the reader to keep in mind the case of
wavelet bases on IRd. In this setting, a typical biorthogonal wavelet basis of compactly
supported functions is given by the shifted dilates of a set Γ of 2d − 1 functions. Namely,
the collection of functions

2jd/2γ(2j · −k), j ∈ ZZ, k ∈ ZZd, γ ∈ Γ, (2.7)

form a Riesz basis for L2(IR
d). The dual basis is given by

2jd/2γ̃(2j · −k), j ∈ ZZ, k ∈ ZZd, γ̃ ∈ Γ̃, (2.8)

with Γ̃ again a set of 2d − 1 functions. The integer j gives the dyadic level (2j the
frequency) of the wavelet. The multiinteger k gives the position (2−jk) of the wavelet.
Namely, the wavelet has support contained in a cube of diameter <∼ 2−j centered at the

point 2−jk. Note that there are 2d−1 functions with the same dyadic level j and position
2−jk.

Another way to construct a wavelet basis for IRd is to start the multiscale decompo-
sition at a finite dyadic level j0. In this case, the basis consists of the functions of (2.7)
with j ≥ j0, together with a family of functions

2j0d/2φ(2j0 · −k), k ∈ ZZd, (2.9)

with φ a fixed (scaling) function. Wavelet bases for domains take a similar form except
that some alterations are necessary near the boundary.

We shall denote wavelet bases by {ψλ}λ∈∇. In the particular case above, this notation
incorporates the three parameters j, k, γ into the one λ. We use |λ| := j to denote the
dyadic level of the wavelet. We let Ψj = {ψλ : λ ∈ ∇j}, ∇j := {λ ∈ ∇ : |λ| = j}, consist
of the wavelets at level j.

In all classical constructions of compactly supported wavelets, there exists fixed con-
stants C and M such that diam(supp(ψλ)) ≤ C2−|λ| and such that for all λ ∈ ∇j there
are at most M indices µ ∈ ∇j such that meas(supp(ψλ) ∩ supp(ψµ)) �= 0.

Since we shall consider only bounded domains in this paper, the wavelet decomposition
will begin at some fixed level j0. For notational convenience only, we assume j0 = 1. We
define Ψ0 to be the set of scaling functions in the wavelet basis. We shall assume that Ω
is a domain or manifold which admits two sets of functions:

Ψ = {ψλ : λ ∈ ∇} ⊂ L2(Ω), Ψ̃ = {ψ̃λ : λ ∈ ∇} ⊂ L2(Ω) (2.10)

that form a biorthogonal wavelet bases on Ω: writing 〈Θ, Φ〉 := (〈θ, φ〉L2(Ω))θ∈Θ,φ∈Φ for
any two collections Θ, Φ of functions in L2(Ω), one has

〈Ψ, Ψ̃〉 = I, (2.11)
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where I is the identity matrix.
A typical feature in the theory of biorthogonal bases is that the sequences Ψ, Ψ̃ are

Riesz-bases. That is, using the shorthand notation dT Ψ :=
∑

λ∈∇ dλψλ, one has

‖d‖�2(∇) ∼ ‖dT Ψ‖L2(Ω) ∼ ‖dT Ψ̃‖L2(Ω). (2.12)

This property means that the wavelet bases characterize L2(Ω). In the present context of
elliptic equations, we shall not need (2.12) but rather that these bases provide a charac-
terization of H and H∗ in terms of wavelet coefficients. This is expressed by the following
specific assumption.

(A2): Let the energy space H be equipped with the norm ‖ · ‖H and its dual space H∗ be
equipped with the norm ‖v‖H∗ := sup‖w‖H=1 |〈v, w〉|. We assume that the wavelets in Ψ

are in H, whereas those in Ψ̃ are in H∗ (in this context, we can assume that (2.11) simply
holds in the sense of the duality (H, H∗)). We assume that each v ∈ H has a wavelet
expansion v = dT Ψ (with coordinates dλ = 〈v, ψ̃λ〉) and that

‖D−1d‖�2(∇) ∼ ‖dT Ψ‖H . (2.13)

with D a fixed positive diagonal matrix.

Observe that (2.13) implies that Dλ,λ ∼ ‖ψλ‖−1
H , and that Ψ (resp. D−1Ψ) is an un-

conditional (resp. Riesz) basis for H. By duality, one easily obtains that each v ∈ H∗ has
a wavelet expansion v = dT Ψ̃ (with coordinates dλ = 〈v, ψλ〉) that satisfies

‖Dd‖�2(∇) ∼ ‖dT Ψ̃‖H∗. (2.14)

One should keep in mind though that Ψ̃ is only needed for analysis purposes. The Galerkin
schemes to be considered below only involve Ψ while Ψ̃ never enters any computation and
need not even be known explicitly.

It is well known (see e.g. [22]) that wavelet bases provide such characterizations
for a large variety of spaces (in particular the Sobolev and Besov spaces for a certain
parameter range which depends on the smoothness of the wavelets). In the context of
elliptic equations, H is typically some Sobolev space H t. In this case (A2) is satisfied
whenever the wavelets are sufficiently smooth, with Dλ,λ = 2−|λ|t. For instance, when
A = −∆, one has t = 1.

2.3 Discretization and preconditioning of the elliptic equation

Using wavelets, we can rewrite (2.5) as an infinite system of linear equations. We take
wavelet bases Ψ and Ψ̃ satisfying (A2) and write the unknown solution u = dT Ψ and the
given right hand side f in terms of the basis Ψ̃. This gives the system of equations

〈AΨ, Ψ〉Td = 〈f, Ψ〉T . (2.15)
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The solution d to (2.15) gives the wavelet coefficients of the solution u to (2.5).
An advantage of wavelet bases is that they allow for trivial preconditiong of the linear

system (2.15). This preconditioning is given by the matrix D of (A2) and results in the
system of equations:

D〈AΨ, Ψ〉TDD−1d = D〈f, Ψ〉T , (2.16)

or more compactly,
Au = f , (2.17)

where
A := D〈AΨ, Ψ〉TD, u := D−1d, f := D〈f, Ψ〉T ∈ �2(∇). (2.18)

Let us briefly explain the effect of the above diagonal scaling with regard to precondition-
ing. To this end, note that by (A1), the matrix A is symmetric positive definite. We
define its associated bilinear form a by

a(v,w) := 〈Av,w〉�2(∇), (2.19)

where 〈·, ·〉�2(∇) is the standard inner product in �2(∇), and denote the norm associated
with this bilinear form by ‖ · ‖. In other words,

‖v‖2 := a(v,v), v ∈ �2(∇). (2.20)

Combining the ellipticity assumption (A1) together with the wavelet characterization of
H (A2), we obtain that ‖ · ‖ and ‖ · ‖�2(∇) are equivalent norms, i.e., there exist constants
c1, c2 > 0 such that

c1‖v‖2
�2(∇) ≤ ‖v‖2 ≤ c2‖v‖2

�2(∇). (2.21)

It is immediate that these constants are also such that

c1‖v‖�2(∇) ≤ ‖Av‖�2(∇) ≤ c2‖v‖�2(∇), (2.22)

and
c−1
2 ‖v‖�2(∇) ≤ ‖A−1v‖�2(∇) ≤ c−1

1 ‖v‖�2(∇). (2.23)

In particular, the condition number κ := ‖A‖‖A−1‖ of A satisfies

κ ≤ c2c
−1
1 . (2.24)

The fact that the diagonal scaling turns the original operator into an isomorphism on
�2(∇) will be a cornerstone of the subsequent development. Denoting by aλ,λ′ the entries
of A and by AΛ = (aλ,λ′)λ,λ′∈Λ the section of A restricted to the set Λ, it follows from the
positive definiteness of A that

‖AΛ‖ ≤ ‖A‖, ‖A−1
Λ ‖ ≤ ‖A−1‖, (2.25)

and that the condition numbers of the submatrices remain for any subset Λ ⊂ ∇ uniformly
bounded, i.e.,

κ(AΛ) := ‖AΛ‖‖A−1
Λ ‖ ≤ κ. (2.26)
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Finally, it is easy to check that the constants c1 and c2 also provide the equivalence

c
1/2
1 ‖v‖ ≤ ‖Av‖�2(∇) ≤ c

1/2
2 ‖v‖. (2.27)

Here and later, we adopt the following rule about denoting constants. We shall denote
constants which appear later in our analysis by c1, c2, · · ·. Other constants, whose value is
not so important for us, will be denoted by C or incorporated into the <∼ ,∼ notation.

A typical instance of the above setting involves Sobolev spaces H = H t in which case
the entries of the diagonal matrix D can be chosen as 2−t|λ|δλ,λ′. Of course, the constants
in (2.24) will then depend on the relation between the energy norm (2.20) and the Sobolev
norm. In some cases such a detour through a Sobolev space is not necessary and (2.13)
can be arranged to hold for a suitable D when ‖ · ‖H already coincides with the energy
norm. A simple example is Au = −ε∆u + u where (D)λ,λ′ := max {1,

√
ε2|λ|}δλ,λ′ is an

appropriate choice. In fact, (2.13) will then hold independently of ε.

2.4 Quasi-sparsity assumptions on the stiffness matrix

Another advantage of the wavelet basis is that for a large class of elliptic operators,
the resulting preconditioned matrix A exhibits fast decay away from the diagonal. This
will later be crucial with regard to storage economy and efficiency of (approximate) ma-
trix/vector multiplication.

Consider for example the (typical) case when H is the Sobolev space H t of order t or
its subspace H t

0. Then, for a large class of elliptic operators, we have

2−(|λ′|+|λ|)t|〈Aψλ′ , ψλ〉| <∼ 2−||λ|−|λ′||σ(1 + d(λ, λ′))−β, (2.28)

with σ > d/2 and β > d and

d(λ, λ′) := 2min(|λ|,|λ′|) dist(supp(ψλ), supp(ψλ′)). (2.29)

The validity of (2.28) has been established in numerous settings (see e.g. [19, 8, 35, 37]).
Decay estimates of the form (2.28) were initially introduced in [32] in the context of
Littlewood-Paley analysis. The constant σ depends on the smoothness of the wavelets
whereas β is related to the approximation order of the dual multiresolution (resp. the
vanishing moments of the wavelets) and the order of the operator A. Estimates of the type
(2.28) are known to hold for a wide range of cases including classical pseudo-differential
operators and Calderón-Zygmund operators (see e.g. [21, 36]). In particular, the single
and double layer potential operators fall into this category. We refer the reader to [19]
for a full discussion of settings where (2.28) is valid.

We introduce the class Aσ,β of all matrices B = (bλ,λ′)λ,λ′∈∇ which satisfy

|bλ,λ′ | ≤ cB2−||λ|−|λ′||σ(1 + d(λ, λ′))−β, (2.30)

with d(λ, λ′) defined by (2.29). We say that a matrix B is quasi-sparse if it is in the class
Aσ,β for some σ > d/2 and β > d. Properties of quasi-sparse matrices will be discussed
in §3.

11



(A3): We assume that, for some σ > d/2, β > d, the matrix A of (2.17) is in the
class Aσ,β .

Let us note that in the case H = H t discussed earlier, we obtain (2.30) from (2.28)
because D = (2−t|λ|δλ,λ′)λ,λ′∈∇.

2.5 Wavelet Galerkin methods

A wavelet based Galerkin method for solving (2.5) takes the following form. We choose
a finite set Λ of wavelet indices and use the space SΛ := span{ψλ : λ ∈ Λ} as our trial
and analysis space. The approximate Galerkin solution uΛ from SΛ is defined by the
conditions

a(uΛ, v) = 〈f, v〉L2(Ω), v ∈ SΛ. (2.31)

We introduce some notation which will help embed the finite dimensional problem
(2.31) into the infinite dimensional space �2(∇). For any set Λ ⊂ ∇, we let

�2(Λ) := {v = (vλ)λ∈∇ ∈ �2(∇) : vλ = 0, λ /∈ Λ}.

Thus, we will for convenience identify a vector with finitely many components with the
sequence obtained by setting all components outside its support to zero. Moreover, let PΛ

denote the orthogonal projector from �2(∇) onto �2(Λ), that is, PΛv is simply obtained
from v by setting all coordinates outside Λ to zero.

Using the preconditioning matrix D, (2.31) is equivalent to the finite linear system

PΛAuΛ = PΛf , (2.32)

with unknown vector uΛ ∈ �2(Λ) and where A and f refer to the preconditioned system
given in (2.18). The solution uΛ to (2.32) determines the wavelet coefficients of uΛ.
Namely,

uΛ = (DuΛ)T Ψ. (2.33)

Of course, coefficients corresponding to λ /∈ Λ are zero.
We shall work almost exclusively in the remainder of this paper with the preconditioned

discrete system (2.17). Note that the solution uΛ to (2.32) can be viewed as its Galerkin
approximation. In turn, it has the property that

‖u− uΛ‖ = inf
v∈�2(Λ)

‖u − v‖. (2.34)

Our problem then is to find a good set of indices Λ such that the Galerkin solution
uΛ ∈ �2(Λ) is a good approximation to u. In view of the equivalences (see (2.21),(2.3),
(2.20))

‖u − uΛ‖H ∼ ‖u − uΛ‖a ∼ ‖u− uΛ‖�2(∇) ∼ ‖u− uΛ‖, (2.35)

any estimate for the error ‖u−uΛ‖ translates into an estimate for how well the Galerkin
solution uΛ from the wavelet space SΛ approximates u.

12



3 N-term Approximation and Quasi-Sparse Matrices

We have seen in the previous section how the problem of finding Galerkin solutions to
u from the wavelet space SΛ is equivalent to finding Galerkin approximations to u from
the sequence spaces �2(Λ). This leads us to understand first what properties of a vector
v ∈ �2(∇) determine its approximability from the spaces �2(Λ). It turns out that this is
a simple and well understood problem in approximation theory which we now review.

3.1 N-term Approximation

In this subsection, we want to understand the properties of u that determine its approx-
imability by a uΛ with Λ of small cardinality. This is a special case of what is called
N-term approximation which is completely understood in our setting. We shall recall the
simple results in this subject that are pertinent to our analysis.

For each N = 1, 2, . . ., let ΣN := ∪{�2(Λ) : #Λ ≤ N}. Thus, ΣN is the (nonlinear)
subspace of �2(∇) consisting of all vectors with at most N nonzero coordinates. Given
v ∈ �2(∇), v = (vλ)λ∈∇, we introduce the error of approximation

σN (v) := inf
w∈ΣN

‖v −w‖�2(∇). (3.1)

A best approximation to v from ΣN is obtained by taking a set Λ with #Λ ≤ N on
which |vλ| takes its N largest values. The set Λ is not unique but all such sets yield best
approximations from ΣN . Indeed, given such a set Λ, we let PΛv be the vector in ΣN

which agrees with v on Λ. Then

σN (v) = ‖v − PΛv‖�2(∇).

We next want to understand which vectors v ∈ �2(∇) can be approximated efficiently
by the elements of ΣN . For each s > 0, we let As denote the set of all vectors v ∈ �2(∇)
such that

‖v‖As := sup
N≥0

(N + 1)sσN(v) (3.2)

is finite, where σ0(v) := ‖v‖�2(∇). Thus As consists of all vectors which can be approxi-
mated with order O(N−s) by the elements of ΣN .

It is easy to characterize As for any s > 0. For this we introduce the decreasing
rearrangement v∗ of v. For each n ≥ 1, let v∗

n be the n-th largest of the numbers |vλ| and
let v∗ := (v∗

n)∞n=1. For each 0 < τ < 2, we let �w
τ (∇) denote the collection of all vectors

v ∈ �2(∇) for which
|v|�w

τ (∇) := sup
n≥1

n1/τv∗
n (3.3)

is finite. The space �w
τ (∇) is called weak �τ and is a special case of a Lorentz sequence

space. The expression (3.3) defines its quasi-norm (it does not in general satisfy the
triangle inequality). We shall only consider the case τ < 2 in this paper. In this case
�w
τ (∇) ⊂ �2(∇) and for certain notational convenience, we define

‖v‖�w
τ (∇) := |v|�w

τ (∇) + ‖v‖�2(∇). (3.4)

13



If v,w are two sequences, then

‖v + w‖�w
τ (∇) ≤ C(τ)

(
‖v‖�w

τ (∇) + ‖w‖�w
τ (∇)

)
, (3.5)

with C(τ) depending on τ when τ tends to zero.
We have v ∈ �w

τ (∇) if and only if v∗
n ≤ cn−1/τ , n ≥ 1, and the smallest such c is equal

to ‖v‖�w
τ
. In other words, the coordinates of v when rearranged in decreasing order are

required to decay at the rate O(n−1/τ ). Another description of this space is given by

#{λ : |vλ| ≥ ε} ≤ cε−τ (3.6)

and the smallest c which satisfies (3.6) is equivalent to |v|τ�w
τ (∇).

Remark 3.1 An alternative description of �w
τ (∇) is

{v ∈ �2(∇) : #{λ : 2−j ≥ |vλ| ≥ 2−j−1} ≤ c2jτ , j ∈ ZZ for some c < ∞}.

Moreover the smallest such c is equivalent to |v|τ�w
τ (∇).

We recall that �w
τ (∇) contains �τ (∇), and we trivially have n(v∗

n)τ ≤ ∑
n≥1 |vn|τ and

therefore
|v|�w

τ (∇) ≤ ‖v‖�τ (∇), (3.7)

i.e.,

‖v‖�w
τ (∇) ≤ 2

⎛
⎝ ∑

λ∈∇
|vλ|τ

⎞
⎠

1/τ

. (3.8)

The following well known result characterizes As.

Proposition 3.2 Given s > 0, let τ be defined by

1

τ
= s +

1

2
. (3.9)

Then the sequence v belongs to As if and only if v ∈ �w
τ (∇) and

‖v‖As ∼ ‖v‖�w
τ (∇) (3.10)

with constants of equivalency depending only on τ when τ tends to zero (respectively, only
on s when s tends to ∞). In particular, if v ∈ �w

τ (∇), then

σn(v) ≤ C‖v‖�w
τ (∇)n

−s, n = 1, 2, . . . , (3.11)

with the constant C depending only on τ when τ tends to zero.
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For the simple proof of this proposition, we refer the reader to [29] or the survey [26].
Conditions like u ∈ �τ (∇) or u ∈ �w

τ (∇), are equivalent to smoothness conditions on
the function u. We describe a typical situation when H = H t and D = (2−t|λ|δλ,λ′)λ,λ′∈∇.
Then, the condition u ∈ �τ (∇) is equivalent to the requirement that the wavelet coeffi-
cients 〈u, ψ̃λ〉, λ ∈ ∇, satisfy

(2t|λ|〈u, ψ̃λ〉)λ∈∇ ∈ �τ (∇). (3.12)

For a certain range of s (and hence τ) depending on the smoothness and vanishing mo-
ments of the wavelet basis, the condition (3.12) describes membership in a certain Besov
space. Namely for s and τ related by (3.9), we have

u ∈ �τ iff u ∈ Bsd+t
τ (Lτ (Ω)) (3.13)

with Br
p(Lp) the usual Besov space measuring “r orders of smoothness in Lp”. The weaker

condition u ∈ �w
τ (∇) gives a slightly larger space Xτ endowed with the (quasi) norm

‖u‖Xτ := ‖u‖�w
τ (∇). (3.14)

In view of (2.35), the space Xτ consists exactly of those functions u whose best N-term
wavelet approximation in the energy norm produces an error O(N−s).

3.2 Quasi-Sparse Matrices

In this subsection, we shall consider some of the properties of the quasi-sparse matrices A
that appear in the discrete reformulation (2.17) of the elliptic equation (2.5). We recall
that such matrices A are in the class Aσ,β for some σ > d/2, β > d and therefore they
satisfy (2.30)

We begin by discussing the mapping properties of matrices B ∈ Aσ,β. We denote by
‖B‖ the spectral norm of B. We shall use the following version of the Schur Lemma: if
for the matrix B = (bλ,λ′)λ,λ′∈∇ there is a sequence ωλ > 0, λ ∈ ∇, and a positive constant
c such that

∑
λ′∈∇

|bλ,λ′|ωλ′ ≤ cωλ, and
∑
λ∈∇

|bλ,λ′|ωλ ≤ cωλ′, λ, λ′ ∈ ∇, (3.15)

then ‖B‖ ≤ c. An instance of the application of this lemma to the classes Aσ,β is the
following result (which can be found in [32]).

Proposition 3.3 If σ > d/2 and β > d then every B ∈ Aσ,β defines a bounded operator
on �2(∇).

Proof: We apply Schur’s lemma with the weights ωλ = 2−|λ|d/2, λ ∈ ∇. To establish
the first inequality in (3.15), let λ ∈ ∇ and let |λ| = j. Then, using the estimate

15



∑
|λ′|=j′(1 + d(λ, λ′))−β <∼ 2d max{0,j′−j} for the summation in space, we obtain

ω−1
λ

∑
λ′∈∇

ωλ′|bλ,λ′ | <∼ 2d|λ|/2 ∑
j′≥0

2−dj′/22−σ|j−j′| ∑
|λ′|=j′

(1 + d(λ, λ′))−β

<∼
∑
j′≥j

2−d(j′−j)/22−σ(j′−j)2d(j′−j) +
∑

0≤j′<j

2−d(j′−j)/22σ(j′−j)

<∼
∑
l≥0

2−(σ−d/2)l < ∞.

A symmetric argument confirms the second estimate in (3.15) proving that B is bounded.
�

While Proposition 3.3 is of general interest, it does not tell us any additional infor-
mation when applied to the matrix A of (2.17) since our ellipticity assumptions (A1)
already implies that A is bounded on �2(∇).

It is well-known that decay estimates of the type (2.30) form the basis of matrix
compression [8, 21, 35, 36]. The following proposition employs a compression technique
which is somewhat different from the results in these papers.

Proposition 3.4 For each σ > d/2, β > d let

s∗ := min

{
σ

d
− 1

2
,
β

d
− 1

}
(3.16)

assume that B ∈ Aσ,β. Then, given any s < s∗, there exists for every J ∈ IN a matrix
BJ which contains at most 2J nonzero entries in each row and column and provides the
approximation efficiency

‖B −BJ‖ ≤ C2−Js, J ∈ IN. (3.17)

Moreover this result also holds for s = s∗ provided σ − d/2 �= β − d.

Proof: Let B = (bλ,λ′)λ,λ′∈∇ be in Aσ,β. We fix J > 0 and we first apply a truncation in
scale, defining B̃J := (b̃λ,λ′)λ,λ′∈∇ where

b̃λ,λ′ :=

{
bλ,λ′ , ||λ| − |λ′|| ≤ J/d,
0, else.

In order to estimate the spectral norm ‖B − B̃J‖, we can employ the Schur lemma with
the same weights as in the proof of Proposition 3.3. As in that proof, we obtain, for any
λ ∈ ∇ and |λ| = j,

ω−1
λ

∑
λ′

ωλ′ |bλ,λ′ − b̃λ,λ′ | = ω−1
λ

∑
{λ′ : |j−|λ′||>J/d}

ωλ′|bλ,λ′ |

<∼
∑

l>J/d

2−(σ−d/2)l

<∼ 2−(σ−d/2)J/d <∼ 2−Js.

16



It follows that
‖B− B̃J‖ <∼ 2−Js. (3.18)

We also need a truncation in space provided by the new matrix BJ := (b′λ,λ′)λ,λ′∈∇
where

b′λ,λ′ :=

{
b̃λ,λ′ , d(λ, λ′) ≤ 2J/d−||λ|−|λ′||γ(||λ| − |λ′||),
0, else,

and where γ(n) is a polynomially decreasing sequence such that
∑

n γ(n)d < ∞. Specifi-
cally, we take γ(n) := (1 + n)−2/d.

We can then immediately estimate the maximal number NJ of non-zero entries in each
row and column of BJ by

NJ <∼
[J/d]∑
l=0

[2J/d−lγ(l)]d2ld <∼ 2J .

In view of (3.18), it remains only to prove that ‖BJ − B̃J‖ <∼ 2−Js. In order to

estimate the spectral norm ‖BJ − B̃J‖, we again use the Schur lemma with the same
weights. For each j′ and λ ∈ Λ, we have

∑
{λ′ : d(λ,λ′)>R}

(1 + d(λ, λ′))−β <∼ R−β+d2d max{0,|λ′|−|λ|},

Therefore, for any λ ∈ ∇,

ω−1
λ

∑
λ′

ωλ′|b′λ,λ′ − b̃λ,λ′ | <∼
[J/d]∑
l=0

2−(σ−d/2)l[2J/d−lγ(l)]−(β−d)

= 2−sJ [2−J(β−d−ds)/d
J∑

l=0

2[(β−d)−(σ−d/2)]lγ(l)−(β−d)].

In the case where (β − d) < (σ − d/2) (resp.(β − d) > (σ − d/2)), the factor on the
right of 2−sJ is bounded by C2−J(β−d−ds)/d (resp. C2−J(σ−d/2−ds)/d) with C a constant
independent of J and λ. Thus, when β − d �= σ − d/2, we obtain the desired estimate of
‖BJ − B̃J‖ for all s ≤ s∗. On the other hand, when β − d = σ − d/2, this factor is still
bounded by a fixed constant provided s < s∗. �

Remark 3.5 In the case that the matrix B of Proposition 3.4 is the preconditioned matrix
representation of an elliptic operator A which is local (i.e., supp Aψλ ⊂ supp ψλ, λ ∈
∇) then the truncation in space in the proof of this proposition is not needed and the
Proposition holds for ds ≤ σ − d/2.
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3.3 Fast Multiplication

We now come to the main result of this section which is the fast computation of quasi-
sparse matrices applied to vectors. We continue to denote the spectral norm of a matrix
B by ‖B‖.

We have seen that decay estimates like (2.28) imply compressibility in the sense of
Proposition 3.4. To emphasize that only this compressibility (which may actually hold
also for other operators than those discussed in connection with (2.28)) matters for the
subsequent analysis we introduce the following class Bs of compressible matrices.

Definition 3.6 We say a matrix B is in the class Bs if there are two positive sequences
(αj)j≥0 and (βj)j≥0 that are both summable and for every j ≥ 0 there exists a matrix Bj

with at most 2jαj nonzero entries per row and column such that

‖B− Bj‖ ≤ 2−jsβj. (3.19)

We further define

‖B‖Bs := min max

⎧⎨
⎩

∑
j≥0

αj,
∑
j≥0

βj

⎫⎬
⎭ (3.20)

where the minimum is taken over all such sequences (αj)j≥0 and (βj)j≥0.

We record the following consequence of Proposition 3.4.

Corollary 3.7 Let s∗ be defined by (3.16). Then for every 0 ≤ s < s∗ one has

Aσ,β ⊂ Bs. (3.21)

Note that the sequences (αj), (βj) can in this case be chosen to decay exponentially and
that ‖B‖Bs grows when s approaches s∗.

The main result of this section reads as follows.

Proposition 3.8 If the matrix B is in the class Bs, then B maps �τ
w(∇) boundedly into

itself for 1/τ = 1/2 + s, that is, for any v ∈ �w
τ (∇), we have

‖Bv‖�w
τ (∇) ≤ C‖v‖�w

τ (∇). (3.22)

with the constant C depending only on ‖B‖B̃s
and the spectral norm ‖B‖.

Proof: Let v ∈ �w
τ (∇) and for any j ≥ 0, we denote by v[j] ∈ Σ2j be a best 2j-term

approximation to v in ‖ · ‖�2(∇). We recall that v[j] is obtained by retaining the 2j biggest
coefficients of v and setting all other coefficients to zero. Then, from Proposition 3.2, we
have

‖v − v[j]‖�2(∇) ≤ C2−js‖v‖�w
τ (∇) (3.23)

with the constant depending only on τ . Using the matrices of (3.19), we define

wj := Bjv[0] + Bj−1(v[1] − v[0]) + · · · + B0(v[j] − v[j−1]). (3.24)
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This gives

Bv −wj = B(v − v[j]) + (B −B0)(v[j] − v[j−1]) + · · ·+ (B − Bj)v[0].

It follows then from the summability of the βj that

‖Bv − wj‖�2(∇) <∼ ‖B‖‖v − v[j]‖�2(∇)

+ ‖B −B0‖‖v[j] − v[j−1]‖�2(∇) + · · ·+ ‖B − Bj‖‖v[0]‖�2(∇)

<∼ ‖B‖‖v‖�w
τ (∇)2

−sj + 2−sβ0‖v‖�w
τ (∇)2

−s(j−1) + · · · + 2−sjβj‖v[0]‖�2(∇)

<∼ 2−sj‖v‖�w
τ (∇), (3.25)

where for the last term, we have used the simple inequalities ‖v0‖�2(∇) ≤ ‖v0‖�w
τ (∇) ≤

‖v‖�w
τ (∇).

The number Nj of nonzero entries of wj is estimated by

Nj ≤ αj2
j + 2αj−12

j−1 + · · ·+ 2jα0 <∼ 2j.

We apply now Proposition 3.2 and obtain (3.22). �

We state an immediate consequence of Corollary 3.7.

Corollary 3.9 The conclusions of Proposition 3.8 hold for any matrix B ∈ Aσ,β provided
s < min {σ/d − 1/2, β/d− 1} = s∗.

Note that the number of arithmetic operations needed to compute wj in (3.24) is
estimated as Nj above, so that this multiplication algorithm is optimal. This is stated in
the following corollary in which we also reformulate our result in terms of a prescribed
tolerance.

Corollary 3.10 Under the hypotheses of Proposition 3.8, for each v ∈ �w
τ (∇), and for

each ε > 0, there is a wε such that

‖Bv −wε‖�2(∇) ≤ ε,

and
# suppwε <∼ ε−1/s‖v‖1/s

�w
τ (∇),

with s and τ related as in (3.9). Moreover, the approximation wε can be computed with

C‖v‖1/s
�w
τ (∇)ε

−1/s arithmetic operations. In both of these statements, the constants C de-
pends only on ‖B‖Bs and the spectral norm of B.
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4 An Adaptive Galerkin Scheme

We have shown in §2, that the elliptic equation (2.5) is equivalent to the infinite system
of equations (2.17)

Au = f , (4.1)

where A is an isomorphism on �2(∇). This system results from expanding the solution
and right hand side of (2.5) in a primal and dual wavelet basis, respectively, and then
using a diagonal preconditioning. We have also noted in that section that, for a given
set Λ ⊂ ∇, solving (4.1) with trial space �2(Λ) is the same as solving (2.5) with the trial
space SΛ.

We are not only interested in rapidly solving the linear system (2.32) of equations for a
given selection Λ of basis functions for the trial space SΛ but also in adaptively generating
possibly economic sets Λ needed to achieve a desired accuracy. Since adaptive approxima-
tion is a form of nonlinear approximation, it is reasonable to benchmark the performance
of such an adaptive method against nonlinear N-term approximation as discussed in § 3.
We recall that the results of §3.1 show that a vector v can be approximated with order
O(N−s) by N-term approximation (i.e., by a vector with at most N nonzero coordinates)
if and only if v ∈ �w

τ (∇), τ := (s +1/2)−1. We shall strive therefore to meet the following
goal.
Goal: Construct an adaptive algorithm so that the following property holds for a wide
range of s > 0: for each u ∈ �w

τ (∇), τ := (s + 1/2)−1, the algorithm generates sets Λj,
j = 1, 2, . . ., such that the Galerkin approximation uΛj to u provides the approximation
error

‖u − uΛj‖ ≤ C‖u‖�w
τ (∇)(#Λj)

−s. (4.2)

Recall that this goal can also be expressed in terms of achieving a certain tolerance with
an optimal number of degrees of freedom as stated in (1.2) and (1.3).

In this section, we shall describe a first adaptive algorithm, initially developed in [17],
for solving (4.1). Starting with an initial set Λ0, this algorithm adaptively generates a
sequence of (nested) sets Λj, j = 1, 2, . . .. The Galerkin solutions uΛj , j = 1, 2 . . ., to (4.1)
provide our numerical approximation to u and these in turn determine our approximations
uΛj to the solution u of the original elliptic equation (2.5).

At present, we can only show that the algorithm of this section meets our goal for
a small range of s > 0 (see Corollary 4.10). Nevertheless, this algorithm is simple and
interesting in several respects and the analysis of this algorithm brings forward natural
questions concerning Galerkin approximations.

In § 5 we shall present a second adaptive algorithm which will meet our goal for a
natural range s∗ > s > 0. This range of s > 0 is limited only by the decay properties
of the stiffness matrix A which in turn are related to properties of the wavelet basis
(smoothness and vanishing moments) and the order of A.

The analysis we give in this and the following section for these adaptive algorithms
is idealized since it will address only questions of approximation order in terms of the
cardinality of the sets Λj . At this stage we shall ignore certain computational issues. In
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particular, we will assume that we are able to access the values of possibly infinitely many
wavelet coefficients, e.g. of residuals, which is of course unrealistic. However, this will
facilitate a more transparent analysis of the adaptive algorithms and their ingredients.
Later in § 6-7 we will develop corresponding computable counterparts by introducing
suitable truncation and approximation procedures. Moreover, we will provide a complete
analysis of their computational complexity.

4.1 Algorithm I

The idea behind our first adaptive algorithm is to generate step by step an ascending
sequence of (nested) sets Λj so that on the one hand #(Λj \ Λj−1) stays as small as
possible, while on the other hand, the error for the corresponding Galerkin solutions is
reduced by some fixed factor, that is, for some θ ∈ (0, 1) one has

‖u − uΛj+1‖ ≤ θ‖u− uΛj‖. (4.3)

We remind the reader that ‖ · ‖ := a(·, ·)1/2 is the discrete energy norm when applied
to vectors. The Λj will be generated adaptively, that is Λj depends on the given data f
and on the previous solution uΛj−1 .

We will first explain the basic principle that has been already used in [10, 17] to
guarantee a reduction of the form (4.3). The idea is, given Λ, find Λ̃ containing Λ such
that

‖uΛ̃ − uΛ‖ ≥ β‖u− uΛ‖ (4.4)

holds for some β ∈ (0, 1). By the orthogonality of the Galerkin solutions with respect to
the energy inner product, (4.4) implies

‖u− uΛ‖2 = ‖u− uΛ̃‖2 + ‖uΛ − uΛ̃‖2. (4.5)

Hence (4.4) (applied with Λ = Λj and Λ̃ = Λj+1) implies (4.3) with

θ :=
√

1 − β2. (4.6)

Therefore, our strategy is to establish (4.4). This is also a common approach in the
context of finite element discretizations, see e.g. [10]. There the role of uΛ̃ is played by
an approximate solution of higher order or with respect to a finer mesh. In most studies,
however, the property (4.4), often referred to as saturation property, is assumed and not
proven to be valid.

We shall show how such sets Λ̃ can be selected. For this we shall use the residual

rΛ := Au −AuΛ = f − AuΛ. (4.7)

Since uΛ and f are known to us, the coordinates of this residual can in principle be
computed to any desired accuracy. We leave aside the issue of the computational cost for
a given accuracy in this residual until § 6, and work with the simplified assumption that
we have the exact knowledge of its coordinates.

We recall the orthogonal projector PΛ from �2(∇) to �2(Λ) in the norm ‖ · ‖�2(∇). For
v ∈ �2(∇), PΛv is the vector in �2(Λ) which agrees with v on Λ.
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Lemma 4.1 Let Λ ⊂ ∇ and let rΛ := f − AuΛ be the residual associated to Λ. If
0 < α < 1, and Λ̃ ⊂ ∇ is any set that satisfies

‖PΛ̃rΛ‖�2(∇) ≥ α‖rΛ‖�2(∇), (4.8)

then
‖uΛ̃ − uΛ‖ ≥ β‖u− uΛ‖ (4.9)

where β := c
−1/2
2 c

1/2
1 α and c1, c2 are the constants of (2.21). As a consequence,

‖u− uΛ̃‖ ≤ θ‖u− uΛ‖ (4.10)

with θ :=
√

1 − β2.

Proof: From (2.27), we have

‖uΛ̃ − uΛ‖ ≥ c
−1/2
2 ‖A(uΛ̃ − uΛ)‖�2(∇) ≥ c

−1/2
2 ‖A(uΛ̃ − uΛ)‖�2(Λ̃)

= c
−1/2
2 ‖A(u− uΛ)‖�2(Λ̃) = c

−1/2
2 ‖PΛ̃rΛ‖�2(∇)

≥ c
−1/2
2 α‖rΛ‖�2(∇) = c

−1/2
2 α‖A(u− uΛ)‖�2(∇)

≥ c
−1/2
2 c

1/2
1 α‖u− uΛ‖,

where the second to last equality uses the fact that Au = f , and AuΛ̃ agree on Λ̃. This
proves (4.9) while (4.10) follows from (4.5). �

We consider now our first algorithm for choosing the sets Λj in which we take α = 1/2
(similar algorithms and analysis hold for any 0 < α < 1). We introduce the following
steps which will be part of our adaptive algorithms.

GALERKIN: Given a set Λ, GALERKIN determines the Galerkin approximation
uΛ to u by solving the finite system of equations (2.32).

GROW: Given a set Λ and the Galerkin solution uΛ, GROW produces the smallest
set Λ̃ which contains Λ and satisfies

‖PΛ̃rΛ‖�2(∇) ≥
1

2
‖rΛ‖�2(∇). (4.11)

We note that the set Λ̃ is obtained by taking the indices of the largest coefficients of rΛ;
the number of these indices to be chosen is determined by the criterion (4.11).
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Algorithm I:

• Let Λ0 = ∅ and rΛ0 = f .

• For j = 0, 1, 2, . . ., determine Λj+1 from Λj by first applying GALERKIN (in order
to find uΛj) and then applying GROW.

As a consequence of Lemma 4.1, we have the following.

Corollary 4.2 For the sets Λj given by Algorithm I, the corresponding Galerkin approx-
imations uΛj of u satisfy

‖u− uΛj+1‖ ≤ θ‖u − uΛj‖, j = 1, 2, . . . . (4.12)

where

θ :=

√
1 − c1

4c2
. (4.13)

Consequently,
‖u− uΛj‖ ≤ θj‖u‖, j = 1, 2, . . . . (4.14)

Proof: The inequality (4.12) follows from (4.10) while (4.14) follows by repeatedly ap-
plying (4.12). �

4.2 Error Analysis for Algorithm I

While the last Corollary shows that for each u ∈ �2(∇), the sequence {uΛj} converges in
the energy norm to u, we would like to go further and understand how the error decreases
with #Λj. In particular, we would like to see if this algorithm meets our goal for certain
s > 0. We begin with the following lemma.

Lemma 4.3 Let s > 0, let A be in the class Bs, and let u ∈ �w
τ (∇), τ := (s + 1/2)−1.

Given any set Λ ⊂ ∇, let Λ̃ ⊂ ∇ be the smallest set such that Λ ⊂ Λ̃ and

‖PΛ̃rΛ‖�2(∇) ≥
1

2
‖rΛ‖�2(∇). (4.15)

Then one has

#(Λ̃ \ Λ) ≤ c3

(
‖rΛ‖�w

τ (∇)

‖rΛ‖�2(∇)

)1/s

, (4.16)

where c3 is a constant depending only on s when s is large.

Proof: We will make frequent use of the following simple fact.

Remark 4.4 Since Λ is finite, uΛ is in �w
τ (∇). By assumption u ∈ �w

τ (∇) and hence
u− uΛ is also in �w

τ (∇). Applying Proposition 3.8 we see that rΛ is also in �w
τ (∇).
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Now, for any N ≥ 1, let ΛN denote the indices of the N largest coefficients of rΛ in
absolute value. According to Proposition 3.2,

‖rΛ −PΛnrΛ‖�2(∇) ≤ C0‖rΛ‖�w
τ (∇)N

−s, (4.17)

where C0 depends only on s when s is large. We may assume that C0 ≥ 1. We choose N
as the smallest integer such that

2C0‖rΛ‖�w
τ (∇)N

−s ≤ ‖rΛ‖�2(∇),

and define Λ̃ := Λ ∪ ΛN . Then, clearly (4.15) is satisfied. Moreover,

N ≤
(

2C0‖rΛ‖�w
τ (∇)

‖rΛ‖�2(∇)

)1/s

+ 1 ≤ 2

(
2C0‖rΛ‖�w

τ (∇)

‖rΛ‖�2(∇)

)1/s

and so (4.16) is also satisfied. �

Lemma 4.3 gives our first hint of the importance of controlling the �w
τ (∇) norms of

the residuals rΛj . The following Theorem and Corollary will draw this out more and will
provide our first error estimate for Algorithm I.

Theorem 4.5 Let s > 0, let A be in the class Bs, and let u ∈ �w
τ (∇), τ := (s + 1/2)−1.

Define

θ :=

√
1 − c1

4c2

with c1, c2 the constants of §2.4. Then, the Galerkin approximations uΛk
, k = 0, 1, . . .,

generated by Algorithm I satisfy

‖u − uΛk
‖ = Cs

k(#Λk)
−s, (4.18)

where
C1 ≤ c3c

−1/2s
1 θ1/s‖f‖1/s

�w
τ (∇) (4.19)

and the constants Ck, k > 1, satisfy

Ck+1 ≤ θ1/s(Ck + c3c
−1/2s
1 ‖rΛk

‖1/s
�w
τ (∇)) (4.20)

with c3 the constant of Lemma 4.3.

Proof: We use the abbreviations ek := ‖u − uΛk
‖, Nk := #Λk, ρk := ‖rΛk

‖�w
τ (∇), k =

0, 1, . . .. The constants Ck, k = 1, 2, . . ., are defined by (4.18). For any k ≥ 0, we know

ek+1 ≤ θek

and from Lemma 4.3 and (2.27), we obtain

Nk+1 ≤ Nk + c3ρ
1/s
k ‖A(u− uΛk

)‖−1/s
�2(∇) ≤ Nk + c3c

−1/2s
1 ρ

1/s
k e

−1/s
k .
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This means that for k ≥ 1,

Ck+1 := Nk+1e
1/s
k+1 ≤ (Nk + c3c

−1/2s
1 ρ

1/s
k e

−1/s
k )θ1/se

1/s
k ≤ θ1/s(Ck + c3c

−1/2s
1 ρ

1/s
k ).

This proves (4.20). The same argument gives (4.19) because ρ0 = ‖f‖�w
τ (∇) and N0 = 0.

�

Theorem 4.5 reveals that the growth of the constants Ck can be controlled by the size
of the residual norms ‖rΛk

‖�w
τ (∇). The following Corollary shows that if these norms are

bounded then so are the constants Ck.

Corollary 4.6 If the hypotheses of Theorem 4.5 are valid and in addition

‖rΛk
‖�w

τ (∇) ≤ M0, k = 0, 1, . . . , (4.21)

then
Ck ≤ C(‖u‖1/s

�w
τ (∇) + M

1/s
0 ), k = 1, 2 . . . , (4.22)

with C a constant such that Cs depends only on s when s → ∞. Consequently,

‖u − uΛk
‖ ≤ Cs(M

1/s
0 + ‖u‖1/s

�w
τ (∇))

s(#Λk)
−1/s. (4.23)

Proof: We use the same notation as in the proof of Theorem 4.5. We define M :=
c3c

−1/2s
1 M

1/s
0 and find

Ck ≤ θ1/sCk−1 + θ1/sM ≤ θ2/sCk−2 + θ2/sM + θ1/sM

≤ C1θ
(k−1)/s + M

k−1∑
j=1

θj/s.

Now, θ < 1, and from (4.19) and Proposition 3.8

Cs
1

<∼ ‖f‖�w
τ (∇) <∼ ‖u‖�w

τ (∇).

This proves (4.22). The estimate (4.23) then follows from (4.18). �

Remark 4.7 Corollary 4.6 shows that if ‖rΛk
‖�w

τ (∇) is bounded independently of k, then
we are successful in the goal that we have fixed in the beginning of this section. One can
also check that optimality is achieved in the sense of a target accuracy ε > 0: Let j(ε)
be the smallest j such that ‖u − uΛj‖ ≤ ε. Then, since ‖u − uΛj(ε)−1

‖ > ε, we obtain

the estimate #Λj(ε)−1 <∼ ε−1/s from (4.23). From (4.16), we also derive that #(Λj(ε) \
Λj(ε)−1) <∼ ε−1/s. It follows that we have the desired estimate #Λj(ε) <∼ ε−1/s.
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4.3 Bounding ‖rΛk‖�w
τ (∇)

Corollary 4.6 shows that if for each u ∈ �w
τ (∇), τ := (s+1/2)−1, the boundedness condition

(4.21) holds with M0 ≤ C‖u‖�w
τ (∇), then the algorithm meets our goal for s = 1

τ
− 1

2
. We

can give sufficient conditions for the validity of (4.21) in terms of the (finite) sections

AΛ := (aλ,ν)λ,ν∈Λ (4.24)

of the matrix A. Note that in terms of these sections the Galerkin equations (2.32) take
the form

AΛuΛ = PΛf , (4.25)

where according to our convention we always employ the same notation for the finitely
supported vector uΛ and the infinite sequence obtained by setting all components outside
Λ to zero. Likewise, depending on the context, it will be convenient to treat PΛv for
v ∈ �2(∇) either as an infinite sequence with zero entries outside Λ or as a finitely
supported vector defined on Λ.

Recall also from (2.26) that the ellipticity of A implies the boundedness of AΛ and its
inverse in the spectral norm, uniformly in Λ. Also, from Proposition 3.8, it follows that
A is a bounded operator on �w

τ (∇). Therefore, the matrices AΛ are uniformly bounded
(independently of Λ) on �w

τ (Λ) (where �w
τ (Λ) is defined in analogy to �2(Λ)).

Remark 4.8 Under the assumptions of Lemma 4.3, if the inverse matrices A−1
Λ are

uniformly bounded on �w
τ (Λ), i.e.,

sup
‖v‖�w

τ (Λ)≤1
‖A−1

Λ v‖�w
τ (Λ) ≤ M1, Λ ⊂ ∇, (4.26)

with M1 ≥ 1, then
‖rΛ‖�w

τ (∇) ≤ CM1‖u‖�w
τ (∇), Λ ⊂ ∇. (4.27)

with the constant C independent of Λ.

Proof: By assumption u ∈ �w
τ (∇). From Proposition 3.8, we find that f is also in �w

τ (∇)
and for all Λ,

‖PΛf‖�w
τ (Λ) ≤ ‖f‖�w

τ (∇) ≤ C1‖u‖�w
τ (∇),

where C1 is the norm of A on �w
τ (∇). By our assumptions on A−1

Λ , we derive that

‖uΛ‖�w
τ (∇) = ‖uΛ‖�w

τ (Λ) ≤ M1‖PΛf‖�w
τ (∇) ≤ C1M1‖u‖�w

τ (∇).

This gives

‖rΛ‖�w
τ (∇) ≤ C1‖u− uΛ‖�w

τ (∇)

≤ C2

(
‖u‖�w

τ (∇) + ‖uΛ‖�w
τ (∇)

)
≤ C2(1 + C1M1)‖u‖�w

τ (∇),

(4.28)

which implies (4.27). �

There is a soft functional analysis argument which shows that the boundedness con-
dition (4.26) is satisfied for a certain range of τ close to 2.
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Theorem 4.9 Let A ∈ Bs0 for some s0 > 0. Then there is a 0 < τ̃ < 2 and a constant
C > 0 such that for all Λ ⊂ ∇ and all τ̃ ≤ τ ≤ 2,

‖A−1
Λ ‖�w

τ (∇)→�w
τ (∇) ≤ C. (4.29)

Proof: First recall from (2.26) that the condition numbers κΛ of the matrices AΛ statisfy

κΛ ≤ κ for any Λ ⊂ ∇. Let BΛ := µΛAΛ where µ−1
Λ =

‖AΛ‖+‖A−1
Λ ‖−1

2
. Then, BΛ = I−RΛ

where ‖RΛ‖ < κ−1
κ+1

.
Now let τ0 := (s0 + 1/2)−1. Then, both I and A are bounded on �w

τ0
(∇). Hence, we

have ‖RΛ‖�w
τ0

(Λ)→�w
τ0

(Λ) ≤ C0 for some positive constant C0 independent of Λ. Using the

Riesz-Thorin interpolation theorem for �2(Λ) and �w
τ (Λ), we can find some τ̃ < 2 such

that ‖RΛ‖�τ ≤ r0 < 1, uniformly in Λ and τ̃ ≤ τ ≤ 2. By the standard Neumann series
argument, we obtain (4.29). �

Corollary 4.10 If A ∈ Bs0 for some s0 > 0, then there is an s̃ > 0 such that Algorithm
I meets our goal for all 0 < s ≤ s̃. That is, for each u ∈ �w

τ (∇), with 1
τ
− 1

2
=: s ≤ s̃,

Algorithm I generates a sequence of sets Λj, j = 1, 2, . . ., such that

‖u− uΛj‖ ≤ C‖u‖�w
τ (∇)(#Λj)

−s, j = 1, 2, . . . (4.30)

with C a constant.

Proof: From Theorem 4.9, there is a τ̃ < 2 such that (4.29) holds uniformly for all
τ̃ ≤ τ ≤ 2 and Λ ⊂ ∇. Remark 4.8 then shows the validity of (4.27). We now apply
Corollary 4.6 and obtain (4.30) from (4.23). �

We close this section by making some observations about the growth of ‖rΛ‖�w
τ (∇)

and ‖uΛ‖�w
τ (∇) for an arbitrary range of s which is only limited by the properties of the

wavelet bases. We shall use these observations in the following section when we modify
Algorithm I.

Lemma 4.11 Suppose that u ∈ �w
τ (∇) and τ = (s + 1/2)−1 with s > 0. Then, for any

Λ ⊂ ∇ one has
‖uΛ‖�w

τ (∇) ≤ c4

(
‖u‖�w

τ (∇) + (#Λ)s‖u− uΛ‖�2(∇)

)
(4.31)

with the constant c4 depending only on τ when τ tends to 0.

Proof: First note that if v ∈ �2(Λ), then v has at most #Λ nonzero coordinates. Using
(3.8) and Hölder’s inequality gives for such v the inverse estimate

|v|�w
τ (∇) ≤ ‖v‖�τ (Λ) ≤

⎛
⎝∑

λ∈Λ

|vλ|2
⎞
⎠

1/2

(#Λ)
1
τ
− 1

2 ≤ (#Λ)s‖v‖�2(Λ). (4.32)
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Now let uN denote the best N-term approximation to u which we recall is obtained by
retaining the N largest coefficients. Invoking the direct estimate from Remark 3.2, we
use (4.32) to conclude that

|uΛ|�w
τ (∇) ≤ C

(
|uΛ − u#Λ|�w

τ (∇) + |u#Λ|�w
τ (∇)

)
≤ C

(
(2#Λ)s‖uΛ − u#Λ‖�2(∇) + |u|�w

τ (∇)

)
≤ C

(
(2#Λ)s‖uΛ − u‖�2(∇) + ‖u‖�w

τ (∇)

)
, (4.33)

where we have used (3.11) of Proposition 3.2. We add ‖uΛ‖�2(∇) to both sides of (4.33)
and observe that

‖uΛ‖�2(∇) ≤ C‖u‖�2(∇) ≤ C‖u‖�w
τ (∇)

to finish the proof. �

We next apply this lemma to bound residuals.

Lemma 4.12 Let s > 0, let A ∈ Bs and let the solution u to (4.1) be in �w
τ (∇). For any

index set Λk generated by Algorithm I, we have

‖rΛk+1
‖�w

τ (∇) ≤ c5

(
‖u‖�w

τ (∇) + ‖rΛk
‖�w

τ (∇)

)
, k = 1, 2, . . . (4.34)

with the constant c5 independent of k and u.

Proof: The algorithm determines the set Λk+1 from Λk in the same way for each k =
1, 2, . . .. Therefore, we can assume that k = 1. By (4.31) we have

‖uΛ2‖�w
τ (∇) ≤ c4

(
‖u‖�w

τ (∇) + (#Λ2)
s‖u− uΛ2‖�2(∇)

)
.

We use (2.21) and Theorem 4.5 to bound the second term:

(#Λ2)
s‖u− uΛ2‖�2(∇) ≤ c

−1/2
1 (#Λ2)

s‖u − uΛ2‖ = c
−1/2
1 Cs

2
<∼ ‖f‖�w

τ (∇) + ‖rΛ1‖�w
τ (∇).

Because of Proposition 3.8 we can replace ‖f‖�w
τ (∇) by C‖u‖�w

τ (∇). �

5 A Second Adaptive Algorithm

In this section, we shall present a second adaptive algorithm which will meet our goal
for the full range of s > 0 that is permitted by the wavelet basis. We begin with some
heuristics which motivate the structure of the second algorithm.

The deficiency of Algorithm I of the last section is that it is only proven to meet
our goal for a small range of s > 0. This in turn is caused by our inability to prevent
the possible growth of ‖rΛk

‖�w
τ (∇) as k increases. Since by assumption u ∈ �w

τ (∇), growth
in ‖rΛk

‖�w
τ (∇) can only occur if ‖uΛk

‖�w
τ (∇) gets large with k. On the other hand, we
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know that ‖uΛk
‖�2(∇) are bounded uniformly. Typically, for a vector v, its �w

τ (∇) norm
is much larger than its �2(∇) norm when v has many small entries which do not effect
its �2(∇) norm but combine to have a serious effect on the �w

τ (∇) norm. We can try to
prevent this from happening by thresholding the coefficients in v and keeping only the
large coefficients. In our application to uΛk

, this is very hopeful since the large coefficients
contain the main source of the approximation to u.

Motivated by the above heuristics, we would like to use thresholding in our second
algorithm. We introduce the thresholding operator Tη which for η > 0 and a sequence
v := (vλ)λ∈∇ is defined by

(Tηv)λ :=

{
vλ if |vλ| ≥ η;
0 if |vλ| < η.

We shall use the following trivial estimates for thresholding (see §7 of [26]): for any
v ∈ �w

τ (∇), we have

‖v − Tηv‖2
�2(∇) =

∑
|vλ|<η

|vλ|2 ≤ c2
6‖v‖τ

�w
τ (∇)η

2−τ , (5.1)

and
#{λ : |vλ| ≥ η} ≤ c6‖v‖τ

�w
τ (∇)η

−τ (5.2)

with c6 ≥ 1 a constant depending only on τ as τ → 0.

Lemma 5.1 Suppose that v ∈ �w
τ (∇), 0 < τ < 2, and that w ∈ �2(∇) satisfies

‖v − w‖�2(∇) ≤ ε (5.3)

for some ε > 0. Then, for any η > 0, we have

‖v − Tηw‖�2(∇) ≤ 2ε + 2c6‖v‖τ/2
�w
τ (∇)η

1−τ/2, (5.4)

and

#{λ ∈ ∇ : (Tηw)λ �= 0} ≤ 4ε2

η2
+ 4c6‖v‖τ

�w
τ (∇)η

−τ . (5.5)

Proof: Let z := Tηw and consider the sets Λ1 := {λ : |wλ| ≥ η}, Λ2 := {λ : |wλ| <
η, and |vλ| ≥ 2η}, Λ3 := {λ : |wλ| < η and |vλ| < 2η}. Then,

‖v − z‖2
�2(∇) =

∑
λ∈Λ1∪Λ2

|vλ − zλ|2 +
∑

λ∈Λ3

|vλ − zλ|2

≤ 4
∑
λ∈∇

|vλ − wλ|2 +
∑

|vλ|<2η

|vλ|2

≤ 4ε2 + 4c2
6‖v‖τ

�w
τ (∇)η

2−τ ,

where we used (5.1) and the fact that |vλ| ≤ 2|vλ − wλ| for λ ∈ Λ2. This proves (5.4).
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For the proof of (5.5), we consider the two sets Λ4 := {λ : |wλ| ≥ η and |vλ| > η/2}
and Λ5 := {λ : |wλ| ≥ η and |vλ| ≤ η/2}. Then, from (5.2),

#Λ4 ≤ #{λ : |vλ| > η/2} ≤ 2τc6‖v‖τ
�w
τ (∇)η

−τ ≤ 4c6‖v‖τ
�w
τ (∇)η

−τ

and
(η/2)2(#Λ5) ≤

∑
λ∈Λ5

|vλ − wλ|2 ≤ ε2

which proves (5.5). �

We shall use our previous notation which for an integer N > 0 and a vector w ∈ �2(∇)
defines wN as the vector whose N largest coordinates agree with those of w and whose
other coordinates are zero.

Corollary 5.2 Suppose that v ∈ �w
τ (∇), 0 < τ < 2, and that w ∈ �2(∇) satisfies

‖v − w‖�2(∇) ≤ ε (5.6)

for some ε > 0. Let N := N(ε) be chosen as the smallest integer such that

‖w −wN‖�2(∇) ≤ 4ε (5.7)

Then,
‖v −wN‖�2(∇) ≤ 5ε (5.8)

and
‖v − wN‖�2(∇) ≤ c7‖v‖�w

τ (∇)N
−s, (5.9)

with s := 1
τ
− 1

2
and c7 a constant depending only on s as s → ∞.

Proof: We clearly have (5.8). To prove (5.9), we shall give a bound for N .
In the case where ‖w‖�2(∇) ≤ 4ε, we trivially have (5.7) with N = 0 and wN = 0.

In the case where ‖w‖�2(∇) > 4ε, let η be the absolute value of the smallest nonzero
coefficient in wN . For any η′ > η, we have

‖w − Tη′w‖�2(∇) > 4ε. (5.10)

On account of (5.4), we have

‖w − Tη′w‖�2 − ‖v −w‖�2(∇) ≤ ‖v − Tη′w‖�2(∇) ≤ 2ε + 2c6‖v‖τ/2
�w
τ (∇)(η

′)1−τ/2,

so that (5.6) and (5.10) ensure that

ε < 2c6‖v‖τ/2
�w
τ (∇)(η

′)1−τ/2 (5.11)

holds for all η′ > η. Therefore,

ε ≤ 2c6‖v‖τ/2
�w
τ (∇)η

1−τ/2 = 2c6‖v‖τ/2
�w
τ (∇)η

sτ . (5.12)
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On the other hand, from (5.5) we find

N ≤ #{λ ∈ ∇ : (Tηw)λ �= 0} ≤ 4ε2

η2
+ 4c6‖v‖τ

�w
τ (∇)η

−τ . (5.13)

We use (5.12) to estimate each of the two terms on the right of (5.13). For example, for
the second term, we have

4c6‖v‖τ
�w
τ (∇)η

−τ ≤ 2(2c6)
1+1/s‖v‖τ(1+ 1

2s
)

�w
τ (∇) ε−1/s = 2(2c6)

1+1/s‖v‖1/s
�w
τ (∇)ε

−1/s. (5.14)

A similar estimate shows that the first term on the right of (5.13) does not exceed

4(2c6)
1+1/s‖v‖1/s

�w
τ (∇)ε

−1/s. In other words,

N ≤ 6(2c6)
1+1/s‖v‖τ(1+ 1

2s
)

�w
τ (∇) ε−1/s = (c7/5)1/s‖v‖1/s

�w
τ (∇)ε

−1/s, (5.15)

where the last equality serves to define c7. When this estimate for N is used in (5.8), we
arrive at (5.9). �

Algorithm II will modify Algorithm I by the introduction of the following step:

COARSE: Given a set Λ and a Galerkin solution uΛ associated to this set, take ε :=
c−1
1 ‖rΛ‖�2(∇) and apply Corollary 5.2 with v := u and w := uΛ to produce the vector wN .

Then, COARSE produces the set Λ̃ of indices for the nonzero coordinates of wN and
then applies GALERKIN to this new set to obtain uΛ̃.

Remark 5.3 If Λ is any set, it follows from Corollary 5.2 that the input of Λ into
COARSE yields a set Λ̃ with a Galerkin solution uΛ̃ which satisfies

‖u− uΛ̃‖ ≤ c8‖u‖�w
τ (∇)(#Λ̃)−s, (5.16)

where c8 = c
1/2
2 c7 with c2 from (2.21) and c7 from (5.9).

Proof: We have
‖u− uΛ̃‖ ≤ ‖u− wN‖ ≤ c

1/2
2 ‖u−wN‖�2(∇), (5.17)

because the Galerkin projection gives the best approximation uΛ to u from �2(Λ) in the
energy norm. We bound the right side of (5.17) by (5.9). �

Remark 5.4 It also follows from Corollary 5.2 together with Lemma 4.11 that the input
of Λ into COARSE yields a set Λ̃ with a Galerkin solution uΛ̃ such that

‖uΛ̃‖�w
τ (∇) ≤ c9‖u‖�w

τ (∇) (5.18)

with the constant c9 depending only on τ as τ → 0. Of course, this also implies that
‖rΛ̃‖�w

τ (∇) <∼ ‖u‖�w
τ (∇). Thus, the thresholding step allows the control of the �w

τ (∇) norm
of the residual.
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We can now describe Algorithm II.

Algorithm II:

• Let Λ0 = ∅ and rΛ0 = f .

• For j = 0, 1, 2, . . ., determine Λj+1 from Λj as follows. Let Λj,0 := Λj. For k =
1, 2, . . . determine Λj,k from Λj,k−1 by applying GALERKIN and then GROW
to Λj,k−1. Apply COARSE to Λj,k to determine Λ̃j,k and uΛ̃j,k

. If ‖rΛ̃j,k
‖�2(∇) ≤

1
2
‖rΛj‖�2(∇) then define Λj+1 := Λ̃j,k, kj := k, and stop the iteration on k. Otherwise

advance k and continue.

Theorem 5.5 If A ∈ Bs, for some s > 0, then Algorithm II satisfies our goal for this
s. Namely, if u ∈ �w

τ (∇), then the algorithm produces sets Λj, j = 1, 2, . . ., such that

‖u− uΛj‖ ≤ c8(#Λj)
−s‖u‖�w

τ (∇) (5.19)

with c8 the constant of Remark 5.3. In addition, for j = 1, 2, . . ., we have

‖u− uΛj‖�2(∇) ≤ c−1
1 c2‖u‖�2(∇)2

−j (5.20)

with c1 and c2 the constants of (2.21).

Proof: Since the set Λj is the output of COARSE, the estimate (5.19) follows from
Remark 5.3. By the definition Λj+1 := Λ̃j,kj in Algorithm II, we have

‖rΛj+1‖�2(∇) = ‖rΛ̃j,kj
‖�2(∇) ≤

1

2
‖rΛj‖�2(∇). (5.21)

Iterating this inequality, we obtain

‖rΛj‖�2(∇) ≤ 2−j‖rΛ0‖�2(∇) = 2−j‖f‖�2(∇) ≤ c22
−j‖u‖�2(∇).

Since, ‖u− uΛj‖�2(∇) ≤ c−1
1 ‖rΛj‖�2(∇), we arrive at (5.20). �

The following remark will be important in the following section on numerical compu-
tation. It shows that the intermediate steps between Λj and Λj+1 do not generate sets
Λj,k which might be very large in comparison to Λj and Λj+1.

Remark 5.6 Under the assumptions of Theorem 5.5 we have

kj ≤ K, j = 1, 2, . . . , (5.22)

with K the smallest integer such that 5c−2
1 c2

2θ
K ≤ 1/2 where c1, c2 are the constants of

(2.21) and θ is given by (4.13).
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Proof: This follows from the following string of inequalities, where we denote by wk the
intermediate output of COARSE obtained by thresholding uΛj,k

before computing the
new Galerkin solution:

‖rΛ̃j,k
‖�2(∇) ≤ c2‖u − uΛ̃j,k

‖�2(∇)

≤ c2c
−1/2
1 ‖u− uΛ̃j,k

‖
≤ c2c

−1/2
1 ‖u− wk‖

≤ c2c
−1/2
1 c

1/2
2 ‖u− wk‖�2(∇)

≤ 5c2c
−1/2
1 c1/2

2 c−1
1 ‖rΛj,k

‖�2(∇)

≤ 5c2
2c

−3/2
1 ‖u− uΛj,k

‖
≤ 5c2

2c
−3/2
1 θk‖u− uΛj‖

≤ 5c−2
1 c2

2θ
k‖rΛj‖�2(∇).

The fifth inequality follows from (5.8) and the fact that ε = c−1
1 ‖rΛj,k

‖�2(∇) in the applica-
tion of COARSE to Λj,k. All other inequalities use norm equivalences of the type (2.21).
From this estimate we see that the criterion ‖rΛj,k

‖�2(∇) ≤ 1
2
‖rΛj‖�2(∇) is met whenever

k > K. �

Note that this remark, combined with Lemma 4.12, has the following consequence.

Remark 5.7 The residuals in the intermediate steps rΛj,k
are also uniformly bounded in

�w
τ (∇) and that the cardinalities #Λk,j can always be controlled by #Λj. The intermediate

steps remain within our goal of optimal accuracy with respect to the number of parameters.

Theorem 5.5 shows that Algorithm II is optimal for the full range of s permitted by
the wavelet bases. By the same considerations as in Remark 4.7, this algorithm is also
optimal in the sense of achieving a prescribed tolerance ε.

6 Numerical Realization: Basic Ingredients

The previous sections have introduced and analyzed the performance of two adaptive
methods for resolving elliptic equations. The analysis however was more from a theoretical
perspective and did not incorporate computational issues. Our purpose is now to address
these computational issues. More precisely, we want to develop a numerically realizable
version of Algorithm II and to analyze its complexity. In the present section, we shall
introduce the basic subroutines that constitute the resulting Algorithm III which will
be described and analyzed in the final section.

Let us first explain the basic principle of Algorithm III. This algorithm will itera-
tively generate a sequence of index sets Λj and approximate solutions ūΛj supported in
Λj (ūΛj differs in general from the Galerkin solution uΛj), with the property that

‖u − ūΛj‖�2(∇) ≤ εj := 2−jε0, (6.1)
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where ε0 is an estimate from above of ‖u‖�2(∇) (which will allow us to take as an admissible
starting point uΛ0 = 0 and Λ0 empty). This progression toward finer accuracy will
be performed by the main subtroutine PROG which will be assembled in §7 from the
ingredients that we shall introduce in the present section.

If we are given a tolerance ε that gives the target accuracy with which we wish to
resolve the solution to (2.17), we shall thus need J applications of PROG where J is the
smallest integer such that εJ ≤ ε.

We then ask what the total computational cost will be to attain this accuracy. There
will be two sources of computational expense: arithmetic operations and sorting. Arith-
metic operations include additions, multiplications, and square roots. We shall ignore
error due to roundoff. We shall estimate the number of arithmetic computations N(ε)
and the number of sorts Ñ(ε) needed to achieve this accuracy. We shall see that N(ε) can
be related to ε in the same way that the error analysis of the preceding section related
error to the size of the sets Λj. The sorting will introduce an additional logarithmic factor.

Our subroutines will be described so as to apply to any vectors and thereby Algorithm
III will allow us to solve (2.17) for any right hand side f . However, we shall analyze its
performance only when u is in �w

τ (∇), τ := (s + 1/2)−1, for some s > 0 in the same range
of optimality as for Algorithm II. Note that this range is limited only by s∗ in (3.16),
i.e. the compressibility order of the operator in the wavelet bases.

Our analysis will show that if u has the �w
τ smoothness, then the computational cost

and memory size needed to achieve accuracy εj is controlled by ‖u‖1/s
�w
τ (∇)2

j/s so that the
last step J − 1 �→ J dominates the overall computational cost. This should be compared
to the optimality analysis of the full multigrid algorithm, for which the complexity is also
dominated by the last step of the nested iteration. However, in the multigrid algorithm,
each step of the nested iteration is associated to a uniform discretization at a scale j, which
corresponds to imposing that Λj is the set of all indices |λ| ≤ j, rather than an adaptive
set. In this case, the new layer Λj+1/Λj updating the computation thus corresponds to a
scale level, while in our adaptive algorithm it is rather associated to a certain size level of
the wavelet coefficients of u. Accordingly the classical Sobolev smoothness which enters
the analysis of multigrid algorithms is replaced by the weaker Besov smoothness expressed
by the �w

τ property.
Algorithm III will involve numerical versions of procedures like GROW, COARSE

or GALERKIN. In these subroutines exact calculations will have to be replaced by ap-
proximate counterparts whose accuracy is controlled by corresponding parameters. Thus
the input will consist of the objects like index sets or vectors to be processed as well as
control and threshold parameters. To keep track of these parameters and their interde-
pendencies we will consistently use the following format for such subroutines
NAME [IP1, . . . , IP�] → (OP1, . . . , OPr), meaning that given the input IP1, . . . , IP�

the procedure NAME generates output quantities OP1, . . . , OPr.
Some of the subroutines will make use of estimates of several constants like c1, c2 from

previous sections, in which case we shall specify them and explain how such estimates can
be obtained. All other constants entering the analysis of the algorithm but not its concrete
implementation will be denoted by C without further distinction. Their specific value only
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affects the constant in our asymptotic estimates. In particular, they are independent of
the data f the solution u or its various approximations. If necessary their dependence on
the parameters τ or s will be explained.

6.1 The Assembly of f

We shall take the viewpoint that we have complete knowledge about the data f in the
sense that we already know or can compute its wavelet coefficient to any desired accuracy
by an appropriate quadrature. This in turn enables us to approximate f to any accuracy
by a finite wavelet expansion. We formulate this as
Assumption N1: We assume that for any given tolerance η > 0, we are provided with
the set Λ := Λ(f, η) of minimal size such that f̄ = PΛf satisfies

‖f − f̄‖�2(∇) ≤ η. (6.2)

For the purpose of our asymptotic analysis, we could actually replace “minimal” by
“nearly minimal”, in the sense that the following property holds: if f is in �w

τ (∇) for some
τ < 2, then we have the estimate

#(Λ) ≤ Cη−1/s‖f‖1/s
�w
τ (∇), (6.3)

with s = 1/2 − 1/τ and C a constant that depends only on s as s tends to +∞. This
modified assumption is much more realistic, since in practice one can only have approxi-
mate knowledge of the index set corresponding to the largest coefficients in f , using some
a-priori information on the smooth and singular parts of the function f . However, in
order to simplify the notation and analysis in what follows we shall assume that the set
Λ is minimal.

In the implementation of Algorithm III, the above tolerance η will typically be
related to the target accuracy ε of the solution by a fixed multiplicative constant. We
perform the following two preprocessing steps on f̄ :

(i) sort the entries in f̄ to determine the vector λ∗ = (λ1, λ2, . . . , λN̄) of indices which
gives the decreasing rearrangement f̄∗ = (|fλ1|, |fλ2|, . . . , |fλN̄

|). The cost of this
operation is in O(N̄ log N̄) operations.

(ii) compute F 2 := ‖f̄‖2
�2(∇) + η2 =

∑N̄
i=1 |fλi|2 + η2. The cost of this is 2N̄ − 1 arithmetic

operations.

The second step gives us the estimate ‖f‖�2(∇) ≤ F . We store F and the vector λ∗.

6.2 A Numerical Version of COARSE

Algorithm III will also make use of less accurate approximations of f in its intermediate
steps. This is one instance of the frequent need to provide a good coarser approximation
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to a finitely supported vector. Such approximations will be generated by the routine
NCOARSE that we shall now describe.

NCOARSE [w, η] → (Λ, w̄):

(i) Define N := #(suppw) and sort the nonzero entries of w into decreasing order.
Thereby one obtains the vector λ∗ := λ∗(w) = (λ1, λ2, · · · , λN) of indices which
gives the decreasing rearrangement w∗ = (|wλ1|, |wλ2|, · · · , |wλN

|) of the nonzero
entries of w; then compute ‖w‖2

�2(∇) =
∑N

i=1 |wλi |2.

(ii) For k = 1, 2, · · ·, form the sum
∑k

j=1 |wλj |2 in order to find the smallest value k such
that this sum exceeds ‖w‖2

�2(∇)−η2. For this k, define K := k and set Λ := {λj ; j =
1, · · · , K}; define w̄ by w̄λ := wλ for λ ∈ Λ and w̄λ := 0 for λ �∈ Λ.

We first describe the computational cost of NCOARSE.

Properties 6.1 For any w, and η, we need at most 2N arithmetic operations and
N log N sorts, N := #(suppw), to compute the output w̄ of NCOARSE which, by
construction, satisfies

‖w − w̄‖�2(∇) ≤ η. (6.4)

We shall also apply NCOARSE to the initial approximation f̄ of the data in order to
produce other near optimal N-term approximations of f with fewer parameters. Thanks
to the preprocessing steps, in this case we can save on the computational cost of this
procedure. An immediate consequence of (5.15) and Properties 6.1 is the following.

Properties 6.2 Assume that f̄ is an optimal N̄-term approximation of the data f with
accuracy η, as described by (6.2). Then, for η̃ ≥ η, NCOARSE [f̄ , η̃ − η] produces an
approximation g to f with support Λ, such that ‖g−f‖�2(∇) ≤ η̃. In addition, if f ∈ �w

τ (∇),
we have

#(Λ) ≤ Cη̃−1/s‖f‖1/s
�w
τ (∇), (6.5)

with C depending only on s.
Moreover, determining g requires at most 2#(Λ) arithmetic operations and no sorts

since sorting of f̄ was done in the preprocessing stage.

To simplify notation we will denote throughout the remainder of the paper by
NCOARSE [f , η̃] the output of NCOARSE [f̄ , η̃ − η], since it has the same optimal
approximation properties as thresholding the exact data.

We now turn to the primary purpose of the coarsening procedure. Recall that the
role of COARSE in Algorithm II above is the following. If v is a given vector from
�w
τ (∇) and w is a good (finitely supported) approximation to v in the �2(∇)-norm but

has large �w
τ (∇) norm then COARSE uses thresholding to produce a new approximation

with slightly worse �2(∇)-approximation properties but guaranteed good �w
τ (∇) norms.

The following algorithm gives the numerical form of COARSE that we shall use. The
following additional properties of NCOARSE follow from the results in § 5.
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Properties 6.3 Given a vector v, a tolerance 0 < η ≤ ‖v‖�2(∇), and a finitely supported
approximation w to v that satisfies

‖v −w‖�2(∇) ≤ η/5, (6.6)

the algorithm NCOARSE [w, 4η/5] produces a new approximation w̄ to v, supported on
Λ, which satisfies

‖v − w̄‖�2(∇) ≤ η. (6.7)

Moreover, the following properties hold:

(i) If v ∈ �w
τ (∇), τ = (s + 1/2)−1, for some s > 0, then the outputs w̄ and Λ of

NCOARSE satisfy

‖v − w̄‖�2(∇) ≤ C‖v‖�w
τ (∇)#(Λ)−s. (6.8)

(ii) If v ∈ �w
τ (∇), τ = (s + 1/2)−1, for some s > 0, then the output w̄ of NCOARSE

satisfies
‖w̄‖�w

τ (∇) ≤ C‖v‖�w
τ (∇), (6.9)

where C depends only on s as s → ∞.

(iii) The cardinality of the support Λ of w̄ is bounded by

#(Λ) ≤ C‖v‖1/s
�w
τ (∇)η

−1/s. (6.10)

Proof: The estimate (6.7) is an immediate consequence of the steps in NCOARSE. (i)
follows from Corollary 5.2 (see (5.9)). (ii) is proved in a similar fashion to Lemma 4.11.
Let K := #(Λ) and let vK be the best approximation to v from ΣK . Then, as in (4.33),
we derive

|w̄|�w
τ (∇) ≤ C

(
|w̄ − vK |�w

τ (∇) + |vK |�w
τ (∇)

)
≤ C

(
(2K)s‖w̄ − vK‖�2(∇) + |v|�w

τ (∇)

)
(6.11)

≤ C
(
Ks‖v − w̄‖�2(∇) + ‖v‖�w

τ (∇)

)
,

where we used (4.32). We insert (6.8) into (6.11) and add ‖w‖�2(∇) to both sides and
arrive at (6.9). The estimate (iii) is an immediate consequence of (5.15). �

6.3 The Assembly of A

We shall need to compute a certain finite number of entries of A. The entries that need
to be computed will be prescribed as the adaptive algorithm proceeds and are not known
in advance. They are associated to the application of one of the compressed matrices Ak

to a finite vector v, as will be discussed below. Therefore, the entries are computed as
their need arises. When we compute an entry of A we store it for future possible use. We
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shall make the following

Assumption N2: Any entry aλ,µ of A can be computed (up to roundoff error) at unit
cost.

In some cases, this assumption is completely justified. For example, if the operator
A is a constant coefficient differential operator and the domain is a union of cubes, then
suitable biorthogonal wavelet bases are known where the primal multiresolution spaces
are generated by B−splines. In this case, the functions which appear in the integrals
defining the entries of A are piecewise polynomials. Therefore, they can be computed ex-
actly. When A is a differential operator with varying coeffcicients or when A is a singular
integral operator the entries of A have to be approximated with an accuracy depending
on the desired final accuracy ε of the solution. It is then by far less obvious how to realize
Assumption N2 and a detailed discussion of this issue (which very much depends on
the individual concrete properties of A) is beyond the scope of this paper. We therefore
content ourselves with the following indications that (N2) is not quite unreasonable. A
central issue in [23, 35, 36] is to design suitably adapted quadrature schemes for com-
puting the significant entries of wavelet representation of the underlying singular integral
operator in the following sense. The trial spaces under consideration are spanned by all
wavelets up to a highest level J , say. Then, it is shown how to compute a compressed
matrix having only the order of NJ = 2Jd nonzero entries (up to possible log factors in
some studies) at a computational expense which also stays proportional to NJ (again
possibly times a log factor). Since the compression in these papers is slightly different
from the one used here and since only fully refined spaces have been investigated these
results do not apply here directly. Nevertheless, they indicate that the development of
schemes that keep the computational work per entry low is not completely unrealistic.

In the development of the numerical algorithm, we shall need constants c1 and c2 such
that (2.21) holds. In practice, it is not difficult to obtain sharp estimates of the optimal
constants since as J grows, they are well approximated by the smallest and largest eigen-
values of the preconditioned matrix A∇J

corresponding to the set ∇J = {λ ∈ ∇ ; |λ| < J}
associated to the uniform discretization through the trial space S∇J

. For simplicity we
will take κ := c2/c1 as an estimate for the condition number of A, see (2.24).

We next discuss the quasi-sparsity assumptions that we shall make on the matrix A.

Assumption N2: We assume that the matrix A is quasi-sparse in the sense that it
is known to be in the class Bs of §3.3 for s < s∗ for some s∗ > 0. We recall that A ∈ Bs

implies that for each k = 1, 2, . . ., there is a matrix Ak, with at most 2kαk entries in each
row and column, that satisfies

‖A− Ak‖ ≤ C2−ksαk, (6.12)

with (αk)
∞
k=0 a summable sequence of positive numbers. We will assume that the positions

of the entries in Ak are known to us.
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We have discussed previously how this assumption follows from the original elliptic
equations and the wavelet basis. In particular, they are implied by decay properties of
the type (2.30). The compression rules leading to the matrices Ak and, in particular, the
positions of the significant entries are in this case explicitly given in the proof of Propo-
sition 3.4 and depend only on k.

In the development of the numerical algorithm, we shall make use of the estimates
(6.12) in the form

‖A −Ak‖ ≤ ak, (6.13)

where the constants ak are upper bounds for the compression error ‖A − Ak‖. The ak

might simply correspond to a rough estimate of C in (6.12) or result from a more precise
estimate of ‖A− Ak‖ that can in practice be obtained by means of the Schur lemma.

The entries we compute in Ak are determined by the vectors to which Ak is applied.
We only apply Ak to vectors v with finite support.To compute Akv requires only that we
know the nonzero entries of Ak in the columns corresponding to the nonzero entries of v.
Hence, at most αk2

k(#supp v) entries will need to be computed. We shall keep track of
the number of these computations in the analysis that follows.

6.4 Matrix/Vector Multiplication

It is clear from Algorithm II that the main numerical tasks are the computation of
Galerkin solutions and the evaluation of residuals. Both rest on the repeated application of
the quasi-sparse matrix A to a vector v with finite support. Since the matrices and vectors
are in general only quasi-sparse this operation can be carried out only approximately in
order to retain efficiency. For this, we shall use the algorithm of §3.3 applied to B = A.
We recall our convention concerning the application of an infinite matrix to a finite vector
: we consider the vector to be extended to the infinite vector on ∆ obtained by setting
all new entries to be zero. The extended vector will also be denoted by v.

Given a vector v of finite support and N = #supp v, we sort the entries of v and
form the vectors v[0], v[j] − v[j−1], j = 1, · · ·, �log N�. For j > log N , we define v[j] := v.
Recall from § 3 that v[j] agrees with v in its 2j largest entries and is zero otherwise. This
process requires at most N log N sorts.

We shall numerically approximate Av by using the vector

wk := Akv[0] + Ak−1(v[1] − v[0]) + · · · + A0(v[k] − v[k−1]) (6.14)

for a certain value of k determined by the desired numerical accuracy. As noted ealier, this
vector can be computed by using ≤ C12

k operations and requires the computation of at
most this same number of entries in A, recall Corollary 3.10. Note that if 2k > #(supp v),
then some of the terms in (6.14) will be zero and therefore need not be computed.

39



By increasing k, we increase the accuracy of the approximation wk to Av. In partic-
ular, as derived in §3.3, see (3.25), we have the error estimate

‖Av−wk‖�2(∇) ≤ c2‖v− v[k]‖�2(∇) + ak‖v[0]‖�2(∇) +
k−1∑
j=0

aj‖v[k−j] − v[k−j−1]‖�2(∇), (6.15)

where aj is the compression bound from (6.13). Note that ‖v − v[j]‖2
�2(∇) = ‖v‖2

�2(∇) −
‖v[j]‖2

�2(∇) and ‖v[j]‖2
�2(∇) =

∑j
l=1 ‖v[l] − v[l−1]‖2

�2(∇) Hence, the right hand side of (6.15)
can be computed for any k with at most C(#(supp v)) operations.

With these remarks in hand, we introduce the following numerical procedure for ap-
proximating Av.

APPLY A [η,v] → (w, Λ):

(i) Sort the nonzero entries of the vector v and form the vectors v[0], v[j] − v[j−1], j =
1, · · · , �log N� with N := #suppv. Define v[j] := v for j > log N .

(ii) Compute ‖v‖2
�2(∇), ‖v[0]‖2

�2(∇), ‖v[j] − v[j−1]‖2
�2(∇), j = 1, · · · , �log N� + 1.

(iii) Set k = 0.

(a) Compute the right hand side Rk of (6.15) for the given value of k.

(b) If Rk ≤ η stop and output k; otherwise replace k by k + 1 and return to (a).

(iv) For the output k of (iii) and for j = 0, 1, · · · , k, compute the nonzero entries in
the matrices Ak−j which have a column index in common with one of the nonzero
entries of v[j] − v[j−1].

(v) For the output k of (iii), compute wk as in (6.14) and take w(v, η) := wk and
Λ = suppw.

Properties 6.4 Given a tolerance η > 0 and a vector v with finite support, the algorithm
APPLY A produces a vector w(v, η) which satisfies

‖Av −w‖�2(∇) ≤ η. (6.16)

Moreover, if v ∈ �w
τ (∇), with τ = (s + 1/2)−1/2 and 0 < s < s∗, then the following

properties hold:

(i) The size of the output Λ is bounded by

#(Λ) ≤ C‖v‖1/s
�w
τ (∇)η

−1/s, (6.17)

and the number of entries of A that need to be computed is ≤ C‖v‖1/s
�w
τ (∇)η

−1/s.

(ii) The number of arithmetic operations needed to compute w(v, η) does not exceed

Cη−1/s‖v‖1/s
�w
τ (∇) + 2N with N := #suppv.
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(iii) The number of sorts needed to assemble the v[j], j = 0, 1, · · · , �log N�, of w(v, η)
does not exceed CN log N .

(iv) The output vector w satisfies

‖w‖�w
τ (∇) ≤ C‖v‖�w

τ (∇). (6.18)

Proof: The estimate (6.16) follows from the preceding remarks centering upon (6.15).
Properties (i)-(iii) follow from the results of § 3.3 (see Corollary 3.10). Property (iv) is
proved in the same way that we have proved Proposition 3.8. Namely, for j = 0, 1, · · · , k,
we prove that ‖wk − wj‖�2(∇) ≤ C2−js‖v‖�w

τ (∇) as in (3.25). This then proves (6.18)
because of Proposition 3.2. �

6.5 The Numerical Computation of Residuals

Recall that Algorithm II heavily utilizes knowledge of residuals. We suppose that Λ is
any given finite subset of ∇, and we denote as usual by uΛ the Galerkin solution asso-
ciated to the set Λ. Since, we cannot compute uΛ nor its residual AuΛ − f exactly, we
shall introduce numerical algorithms which begins with an approximation v to uΛ and
approximately computes the residual Av − f . For this computation, we introduce the
following procedure, which involves two tolerance parameters η1, η2 reflecting the desired
accuracy of the computation of Av and of f , rspectively.

NRESIDUAL[v, Λ, f , η1, η2] → (r, Λ̃):

(i) APPLYA [v, η1] → (w, Λ1).

(ii) NCOARSE [f , η2] → (g, Λ2).

(iii) Set r := w − g and Λ̃ := supp r ⊆ Λ1 ∪ Λ2.

Note that, due to the various approximations, the output r is not necessarily supported
in ∇ \ Λ, in contrast to the exact residual rΛ = f − AuΛ.

Properties 6.5 The output r of NRESIDUAL satisfies

‖r − rΛ‖�2(∇) ≤ η1 + η2 + c2‖v − uΛ‖�2(∇). (6.19)

Furthermore, if u ∈ �w
τ (∇), with τ = (s+1/2)−1/2 and 0 < s < s∗ (which in particular

implies f ∈ �w
τ (∇), see Proposition 3.8), then the following holds:

(i) The support size of the output is bounded by

#(Λ̃) ≤ #(Λ1) + #(Λ2) ≤ C(η
−1/s
1 ‖v‖1/s

�w
τ (∇) + η

−1/s
2 ‖u‖1/s

�w
τ (∇)). (6.20)
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(ii) The number of arithmetic operations used in NRESIDUAL does not exceed

C
(
η−1/s

1 ‖v‖1/s
�w
τ (∇) + η−1/s

2 ‖u‖1/s
�w
τ (∇)

)
+ 2N with N := #(Λ)

(iii) The number of sorts needed in the computation of r does not exceed CN log N .

(iv) The output r satisfies

‖r‖�w
τ (∇) ≤ C(‖u‖�w

τ (∇), +‖v‖�w
τ (∇)). (6.21)

Proof: The estimate (6.19) follows from

‖r − rΛ‖�2(∇) ≤ ‖f − g‖�2(∇) + ‖Av −w‖�2(∇) + ‖A(v − uΛ)‖�2(∇),

and (2.22). All other properties are direct consequences of the Properties 6.2 and 6.4 of
NCOARSE and APPLY A. �

6.6 A Sparse Galerkin Solver

This subsection will be concerned with the computation of a numerical approximation
ūΛ of uΛ for any given set Λ ⊂ ∇. We shall discuss this issue in the context of gradient
methods. A similar discussion applies to conjugate gradient methods. Given a set Λ, we
thus wish to solve

PΛAuΛ = PΛf . (6.22)

Suppose that we are provided with a current known approximation v to uΛ with v sup-
ported on Λ, and that we want to produce an approximation ūΛ, supported on Λ, such
that ‖uΛ − ūΛ‖�2 ≤ η for some prescribed tolerance η.

The gradient method (or damped Richardson iteration) takes as the next approxima-
tion

v′ := v − αΛ(AΛv −PΛf) (6.23)

where αΛ is to be chosen. Then, v′ is also supported on Λ and using (6.22), we have

‖uΛ − v′‖�2(∇) ≤ θΛ‖uΛ − v‖�2(∇). (6.24)

where
θΛ := ‖PΛ(I − αΛA)‖ (6.25)

with I the identity matrix.
To turn this into a numerical algorithm, we need to provide: (i) a value for αΛ, (ii) an

approximation for AΛv −PΛf . We shall take

αΛ := α :=
1

c2
, (6.26)
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where c2 is our bound for ‖A‖ given in (2.22). With this choice, it follows that

θΛ ≤ 1 − 1

2κ
, (6.27)

with κ = c2/c1 the estimated condition number.
We next discuss the computation of AΛv−PΛf which we call the “internal residual”.

In contrast to the full residual Av − f of the full equation, the internal residualcan be
computed exactly at finite cost. However, this cost remains too large for the purpose
of obtaining a computationally optimal algorithm, so that in practice, we shall need
to replace the internal residual by a numerical approximation r. We next examine the
properties we shall want for the numerical approximation r in order that that the modified
iterations still converge. Suppose for a moment that our initial approximation v satisfies

‖uΛ − v‖�2(∇) ≤ δ (6.28)

for some δ > 0. We shall show in a moment how to compute an r such that

‖r − (AΛv − PΛf)‖�2(∇) ≤
c1δ

3
. (6.29)

Given such an r, we define
v̄′ := v − αr. (6.30)

Since by (6.23), (6.26) and (6.29), ‖v′ − v̄′‖�2(∇) = α‖r − (AΛv − PΛf)‖�2(∇) ≤ δ
3κ

we
conclude that

‖uΛ − v̄′‖�2(∇) ≤ ‖uΛ − v′‖�2(∇) + ‖v′ − v̄′‖�2(∇) ≤ (1 − 1

2κ
)δ +

1

3κ
δ = θ̄δ (6.31)

with

θ̄ := 1 − 1

6κ
. (6.32)

The vector v̄′ is our numerical computation of one step of the gradient algorithm with
a given initial approximation v and error estimate δ. Notice that (6.31) gives an error
estimate which allows us to iterate this algorithm. For example, at the next iteration, we
would replace v by v̄′, and δ by θ̄δ.

We next discuss how we shall compute an approximation r to the internal residual
which will satisfy (6.29). For this, we shall use a variant of the routine NRESIDUAL
from §6.5, in which we shall confine all vectors to be supported in Λ. We shall denote
this new subroutine by INRESIDUAL. It is obtained by replacing f by PΛf in the
NCOARSE step and A by AΛ in the APPLY A step.

INRESIDUAL [v, Λ, f , η1, η2] → r

(i) APPLY AΛ [v, η1] → w;

(ii) NCOARSE [PΛf , η2] → g.
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(iii) Set r := g −w.

Here APPLY AΛ means that A is replaced by AΛ in the fast matrix vector mul-
tiplication. From Properties 6.2 and 6.4 we know that the output r of [v, Λ, f , η1, η2]
satisfies

‖r − (AΛv − PΛf)‖�2(∇) ≤ η1 + η2 (6.33)

Thus the choice

η1 = η2 =
c1δ

6
(6.34)

suffices to ensure the validity of (6.29).
Obviously the number of iterations needed to guarantee a target accuracy η of the

approximate Galerkin solution depends on the error bound δ of the initial approximation
v of uΛ. In fact, the number K of iterations necessary to reach this accuracy is bounded
by

K ≤ K(δ, η) :=
[∣∣∣∣log

η

δ

∣∣∣∣ / ∣∣∣log θ̄
∣∣∣] + 1. (6.35)

While the above analysis gives an upper bound for the number of iterations we shall
need to achieve our target accuracy, it will also be important for our analysis to note
that this target accuracy may be reached before this number of iterations if the currently
computed approximaton r to the internal residual is small enough. The following remark
(which follows from (6.33)) makes this statement more precise.

Remark 6.6 If we choose η1 = η2 := c1η/6, where η is the target accuracy, and if r is
the corresponding output of INRESIDUAL [v, Λ, f , η1, η2], we then have

‖uΛ − v‖�2(∇) ≤ c−1
1 ‖r‖�2(∇) + η/3, (6.36)

so that
‖uΛ − v‖�2(∇) ≤ η if ‖r‖�2(∇) ≤ 2c1η/3. (6.37)

Note that conversely, since we also have by (6.33)

‖r‖�2(∇) ≤ c1η/3 + ‖AΛv − PΛf‖�2(∇),

we are ensured that

‖r‖�2(∇) ≤ 2c1η/3 if ‖uΛ − v‖�2(∇) ≤ c1c
−1
2 η/3 = η/3κ, (6.38)

i.e., the criterion will be met when the exact internal residual is small enough.

Proof: To prove (6.36), we write

AΛ(uΛ − v) = (AΛuΛ − PΛf) − (AΛv − PΛf) = AΛv − PΛf − r + r.

Since (2.22) and (2.25) imply ‖v − uΛ‖�2(∇) ≤ c−1
1 ‖AΛ(v − uΛ)‖�2(∇), (6.36) follows.

Clearly, (6.36) implies (6.37). The rest of the claim follows from (2.22). �
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After these considereations, we are now in a position to give our numerical algorithm
for computing Galerkin approximations. Given a set Λ, an initial approximation v to uΛ,
an estimate ‖v − uΛ‖�2(∇) ≤ δ and a target accuracy η, with 0 < η < δ, the approximate
Galerkin solver is defined by the following:

GALERKIN [Λ,v, δ, η] → ūΛ:

(i) Apply INRESIDUAL [v, Λ, f , c1η
6

, c1η
6

] → r. If min
{
θ̄δ, c−1

1 ‖r‖�2(∇) + η/3
}
≤ η, de-

fine the output ūΛ to be v and STOP, else go to (ii).

(ii) Set
v̄′ := v − αr.

Since η < δ, we know that ‖u − v̄′‖�2(∇) ≤ θ̄‖u − v‖�2(∇). Replace v by v̄′, δ by θ̄δ
and go to (i).

The relevant properties of GALERKIN can be summarized as follows.

Properties 6.7 Given as input a set Λ, an initial approximation v to the exact Galerkin
solution uΛ which is supported on Λ, an initial error estimate δ for ‖uΛ − v‖�2(∇) and a
target accuracy η, the routine GALERKIN produces an approximation ūΛ to uΛ which
is supported on Λ and satisfies

‖uΛ − ūΛ‖�2(∇) ≤ η. (6.39)

Moreover, if K is the number of modified gradient iterations which have been used in
GALERKIN to produce ūΛ, one also has

‖uΛ − ūΛ‖�2(∇) ≤ θ̄Kδ (6.40)

with θ̄ defined by (6.32). Consequently, the number of iterations K is always bounded by

K ≤ K(δ, η) =
∣∣∣∣log

η

δ

∣∣∣∣ / ∣∣∣log θ̄
∣∣∣ . (6.41)

Moreover, if u ∈ �w
τ (∇), with τ = (s + 1/2)−1 and 0 < s < s∗, then the following are

true:

(i) The output ūΛ of GALERKIN [Λ,v, δ, η] satisfies

‖ūΛ‖�w
τ (∇) ≤ C(K)

(
‖v‖�w

τ (∇) + ‖u‖�w
τ (∇)

)
, (6.42)

where the constant C(K) depends only on the number of iterations K.

(ii) The number of arithmetic operations used in GALERKIN [Λ,v, δ, η] is less
than

C̃(K)
(
‖v‖1/s

�w
τ (∇) + ‖u‖1/s

�w
τ (∇)

)
η−1/s + CK(#Λ),

where the constant C̃(K) depends only on the number of iterations K. The number
of sorts does not exceed K(#Λ) log(#Λ).
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Proof: The first part of the assertion has been already established in the course of the
preceding discussion. In particular, the bound on the maximal number K of iterations
clearly follows from (6.35).

As for property (i), we simply remark that (iv) in Properties (6.5) of NRESIDUAL
also applies in the case of the modified procedure INRESIDUAL, so that after one
modified gradient iteration we have

‖v̄′‖�w
τ (∇) ≤ C max

{
‖v‖�w

τ (∇), ‖u‖�w
τ (∇)

}
.

The assertion (i) follows therefore by iterating this argument: denoting by vk the current
approximation after k iterations, we obtain that ‖vk‖�w

τ (∇) ≤ C(k)(‖v‖�w
τ (∇) + ‖u‖�w

τ (∇)).
To estimate the number of arithmetic operations in this algorithm, we can use the

bound on the number of operations for NRESIDUAL ((ii) in Properties (6.5)), which
also applies to INRESIDUAL. According to this property, at the k-th iteration, the
application of INRESIDUAL to vk requires at most C

(
‖vk‖1/s

�w
τ (∇) + ‖u‖1/s

�w
τ (∇)

)
η−1/s +

2(#Λ) arithmetic operations. We add each of these estimates for operation count over
k = 0, 1, . . . , K and use the estimate on ‖vk‖�w

τ (∇) to obtain the estimate in (ii).
Finally, at each iteration, the number of sorts is clearly bounded by #Λ log(#Λ),

which implies the bound in K#Λ log(#Λ) for the global procedure. �

The possible growth of the constants C(K) in (6.42) shows the importance of control-
ling the number of iteration K. The estimate (6.41) expresses that this is feasible if the
initial accuracy bound δ is within a fixed factor of the desired target accuracy η in each
application of GALERKIN. In the setting of Algorithm III below this will indeed be
the case.

7 Numerical Realization: The Adaptive Algorithm

We now have collected all the ingredients that are needed to construct an optimal adaptive
algorithm, both in terms of memory size and computational cost. The purpose of this
section is to describe this algorithm and to prove its optimality.

7.1 General principles of the Algorithm

Recall from §6.1 that we start with an estimate ‖f‖�2(∇) ≤ F . Introducing the sequence
of tolerances

εj := 2−jFc−1
1 . (7.1)

we see that Λ0 := ∅ and ūΛ0 = 0 are an admissible initialization in the sense that
‖u− ūΛ0‖�2(∇) ≤ ε0.

Algorithm III conceptually parallels the idealized version Algorithm II. Its core
ingredient is a routine called NPROG that associates to a triplet (ūΛ, Λ, δ) such that ūΛ

is supported in Λ and ‖ūΛ −u‖�2(∇) ≤ δ, a new pair (ūΛ̃, Λ̃) such that ūΛ̃ is supported in

Λ̃ and ‖ūΛ̃ − u‖�2(∇) ≤ δ/2.
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Iterating this procedure thus builds a sequence (ūΛj , Λj)j≥0 with ūΛj supported in Λj

such that
‖u− ūΛj‖�2(∇) ≤ εj . (7.2)

If ε is the target accuracy, the algorithm thus stops after J steps where J is the smallest
integer such that εJ ≤ ε.

As in Algorithm II the routine NPROG itself will consist of possibly several appli-
cations of a procedure NGROW described below, which parallels GROW in Algorithm
II, followed by NCOARSE for exactly the same reasons that came up in §5.

In contrast to Algorithm II, the selection of the next larger index set done by
NGROW will have to be based on an approximate residual obtained by NRESID-
UAL rather than on the exact one. We shall also use the approximate Galerkin solver
defined by NGALERKIN to derive the intermediate approximations of the solution af-
ter each growing steps. Thus, the error reduction in this growing procedure requires a
more refined analysis, involving the various tolerances in these procedures. We shall first
address this analysis which will result in several constraints on the tolerance parameters.

7.2 The growing procedure

At the start of the growing procedure that will define NPROG, we are given set Λ, an
approximate solution ūΛ supported on Λ and a known estimate ‖u− ūΛ‖�2(∇) ≤ δ.

We set Λ0 := Λ and ūΛ0 := ūΛ. The growing procedure will build iteratively some
larger sets Λk, k = 0, 1, · · ·, and approximate solutions ūΛk , and will be stopped at some
K such that we are ensured that

‖u − ūΛK‖�2(∇) ≤ δ/10, (7.3)

so that applying NCOARSE [ūΛK , 2δ/5] will output the new set Λ̃ and approximate
solution ūΛ̃ such that ‖u − ūΛ̃‖�2(∇) ≤ δ/2. The choice δ/10 in (7.3) is justified by the
Properties 6.3 of the thresholding procedure: it ensures the optimality of the approximate
solution and the control of its �w

τ (∇) norm (see (i) and (ii) in Properties 6.3).
As in Algorithm II, the growing procedure will ensure a geometric reduction of the

error in the energy norm ‖u − uΛk‖ where uΛk is the exact Galerkin solution. Although
it will not ensure such a reduction for ‖u − ūΛK‖�2(∇), we shall still reach (7.3) after a
controlled number of steps.

The procedure NGROW generating the sets Λk can be described as follows: given a
set Λ and an approximation ūΛ supported on Λ, we compute an approximate residual r
and select the new set Λ̃ ⊃ Λ as small as possible such that

‖PΛ̃/Λr‖�2(∇) ≥ γ‖r‖�2(∇), (7.4)

for some fixed γ in (0, 1]. This can be done by taking Λ̃ := Λ ∪ Λc where

(Λc,PΛcr) = NCOARSE [r,
√

1 − γ2‖r‖�2(∇)].
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This procedure can thus be summarized as follows.

NGROW [Λ, ūΛ, ξ1, ξ2, f , γ] → (Λ̃, r)
Given an initial approximation ūΛ to the Galerkin solution uΛ supported on Λ the proce-
dure NGROW consists of the following steps:

(i) Apply NRESIDUAL [ūΛ, Λ, f , ξ1, ξ2] → (Λr, r).

(ii) Apply NCOARSE [r,
√

1 − γ2‖r‖�2(∇)] → (Λc,PΛcr) and define Λ̃ := Λ ∪ Λc.

It is interesting to note that we allow the situation where γ = 1, in which case we
simply have Λ̃ = Λ ∪ Λr. This was not possible with GROW in Algorithm II since Λ̃
could then be the full infinite set ∇.

Properties 7.1 The residual computed by NGROW satisfies the estimate

‖r − rΛ‖�2(∇) ≤ ξ1 + ξ2 + c2‖ūΛ − uΛ‖�2(∇). (7.5)

If u ∈ �w
τ (∇), with τ = (s + 1/2)−1 and 0 < s < s∗, then the following are true:

(i) The cardinality of the output Λ̃ of NGROW can be bounded by

#(Λ̃) ≤ #(Λ) + Cξ−1/s
(
‖ūΛ‖1/s

�w
τ (∇) + ‖u‖1/s

�w
τ (∇)

)
, (7.6)

where ξ := min{ξ1, ξ2}.

(ii) The number of arithmetic operations used in NGROW is less than

M(ξ) := C
(
ξ−1/s(‖ūΛ‖1/s

�w
τ (∇) + ‖u‖1/s

�w
τ (∇)) + #(Λ)

)
. (7.7)

(iii) The number of sorts does not excede CM(ξ) log M(ξ).

Proof: The first part of the assertion follows from (6.19). The claims (i), (ii) and (iii)
follow from (i), (ii) and (iii) in the Properties 6.5 of NRESIDUAL. �

In our growing procedure, the tolerance parameters ξ1 and ξ2 will be related to the
initial accuracy δ by ξ1 = q1δ and ξ2 = q2δ where q1 and q2 are fixed parameters that
we shall specify below through our analysis. Similarly, we shall always set the tolerance
parameter in the applications of NGALERKIN in such a way that the approximate
solutions ūΛk will always satisfy

‖uΛk − ūΛk‖�2(∇) ≤ q3δ/c2, (7.8)

where q3 is another parameter to be specified later and uΛk is the exact Galerkin solution.
Note that (7.8) is not ensured for k = 0, so that the very first step of our growing

procedure should be to replace ūΛ0 by the output of NGALERKIN [Λ0, ūΛ0 , δ, q3δ/c2].
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The growing procedure will then proceed as follows: for k > 0, we shall define Λk as
the first output of NGROW [Λk−1, ūΛk−1, q1δ, q2δ, f , γ]. We then define ūΛk as the output
of NGALERKIN [Λk, ūΛk−1, q0δ, q3δ/c2], with the constant q0 still to be specified. It
follows that (7.8) will automatically be satisfied by (6.39).

Regarding the parameter q0, we need to choose its value so that at each iteration we
have

‖u− ūΛk‖�2(∇) ≤ q0δ (7.9)

because we are using ūΛk
as the input for the next application of NGALERKIN. Now,

for each k > 0, we have

‖u− ūΛk‖�2(∇) ≤ ‖u− uΛk‖�2(∇) + ‖uΛk − ūΛk‖�2(∇)

≤ c
−1/2
1 ‖u− uΛk‖ + q3δ/c2

≤ c
−1/2
1 ‖u− uΛ0‖ + q3δ/c2

≤ κ1/2‖u− uΛ0‖�2(∇) + q3δ/c2

≤ (κ1/2 + q3/c2)δ,

where we have used the monotonicity of the error ‖u − uΛk‖ as the sets Λk are growing.
Hence, we see that we can take q0 := κ1/2 + q3/c2. With this choice of q0 and with any
fixed choice of q3, (6.41) the Properties 6.7 shows that the number of iterations within
each application of NGALERKIN is uniformly bounded independently of k and δ.

Note also that in terms of the parameters q1, q2, q3, from (7.5) and (7.8) we deduce

‖rk − rΛk‖�2(∇) ≤ (q1 + q2 + q3)δ, (7.10)

where rk is the second output of NGROW [Λk, ūΛk , q1δ, q2δ, f , γ].
In order to analyze the error reduction in our growing procedure, we shall need to

relate the property (7.4) that defines NGROW with the property (4.8) which is known
to ensure a fixed reduction of the error ‖u − uΛ‖. Using our error estimate (7.10) we
obtain

‖PΛk+1rΛk
‖�2(∇) ≥ ‖PΛk+1rk‖�2(∇) − ‖PΛk+1(rk − rΛk)‖�2(∇)

≥ γ‖rk‖�2(∇) − ‖rk − rΛk‖�2(∇)

≥ γ‖rΛk‖�2(∇) − (1 + γ)‖rk − rΛk‖�2(∇)

≥ γ‖rΛk‖�2(∇) − (1 + γ)(q1 + q2 + q3)δ. (7.11)

Of course, we wish to ensure that our above choice of the expanded set Λk+1 which was
based on the approximate residual rk does capture also a sufficient bulk of the true residual
rΛk . This can be indeed inferred from the above estimate provided that the perturbation
on the right hand side is small compared with the first summand. If this is not the case
the choice of the parameters qi should ensure that the residual itself and hence the error
is already small enough. The following observation describes this in more detail.
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Remark 7.2 Given any q4 > 0, suppose that the parameters q1, q2, q3 are chosen small
enough that (

q3

c2
+

2(1 + γ)(q1 + q2 + q3)

γc1

)
≤ q4. (7.12)

Then, for Λk+1 constructed from ūΛk as explained above, one either has

‖u− ūΛk‖�2(∇) ≤ q4δ, (7.13)

or
‖u− uΛk+1‖ ≤ θ‖u− uΛk‖, (7.14)

where

θ :=

√
1 − c1

4c2
γ2. (7.15)

Proof: let q := (1+γ)(q1 + q2 + q3). We distinguish two cases. If γ‖rΛk‖�2(∇) ≤ 2qδ, then
by (2.22) we have γc1‖u − uΛk‖�2(∇) ≤ 2qδ. Combining this with the estimate (7.8), we
obtain

‖u − ūΛk‖�2(∇) ≤
(

q3

c2

+
2q

γc1

)
δ,

which, in view of (7.12) proves (7.13). Alternatively, when γ‖rΛk‖�2(∇) > 2qδ, we infer
from (7.11) that

‖PΛk+1rΛk‖�2(∇) ≥
γ

2
‖rΛk‖�2(∇), (7.16)

which is the desired prerequisite for error reduction in the energy norm. In fact, we can
invoke Lemma 4.1 to conclude that (7.14) holds for θ defined in (7.15). �

It remains to adjust the various parameters q1, q2, q3. To this end, one should keep
in mind that the growing procedure aims to achieve the accuracy in (7.3) after a finite
number of steps K.

In view of Remark 7.2, a first natural choice seems to be q4 = 1/10 since the occurrence
of case one in Remark 7.2 would then imply (7.3). However, with such a choice, it could
still happen that at the i-th stage of the growing procedure, case one comes up but is not
discovered by any error control. In this case, we will need to make sure that subsequent
steps still satisfy (7.3). For k > i, we have

‖u− ūΛk‖�2(∇) ≤ ‖u − uΛk‖�2(∇) + ‖uΛk − ūΛk‖�2(∇)

≤ 1
√

c1

‖u− uΛk‖ + q3δ/c2 ≤
1

√
c1

‖u− ūΛi‖ + q3δ/c2

≤
(
q4

√
κ +

q3

c2

)
δ,

where we have again made standard use of (2.21), the best approximation property of
Galerkin solutions and (7.8). Thus our first requirement is(

q4

√
κ +

q3

c2

)
≤ 1/10. (7.17)
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We next have to make sure that if case one never occurs a uniformly bounded finite
number of steps suffices to reach (7.3). In fact, we infer from (7.14) that

‖u − ūΛk‖�2(∇) ≤ ‖u − uΛk‖�2(∇) + ‖uΛk − ūΛk‖�2(∇)

≤ 1√
c1
‖u− uΛk‖ + q3δ/c2 ≤

θk

√
c1
‖u− ūΛ0‖ + q3δ/c2

≤
(
θk
√

κ +
q3

c2

)
δ. (7.18)

Thus our second requirement in order to achieve (7.3) is that for sufficiently large K,(
θK

√
κ +

q3

c2

)
≤ 1/10, (7.19)

but this is always implied by our first requirement (7.17) for K sufficiently large but fixed.
Finally, we wish to install intermediate error controls to avoid unnecessarily many

steps in the above growing procedure. To this end, we write

u − ūΛk
= u − uΛk

+ uΛk
− ūΛk

.

and deduce from (7.8) that at any intermediate stage

‖u− ūΛk‖�2(∇) ≤ c−1
1

(
‖rk‖�2(∇) + ‖rk − rΛk

‖�2(∇)

)
+

q3δ

c2

Therefore, using (7.10), we find

‖u− ūΛk‖�2(∇) ≤ c−1
1

(
‖rk‖�2(∇) + (q1 + q2 + q3)δ

)
+

q3δ

c2
(7.20)

Thus, imposing the requirement

(q1 + q2 + q3 + κ−1q3) ≤
c1

20
, (7.21)

we can stop the iteration if the following test of the current approximate residual is
answered affirmatively

‖rk‖�2(∇) ≤
c1δ

20
. (7.22)

Choice of parameters: In summary, possible choices for these parameters are limited

by (7.12), (7.17) and (7.21). A simple possibility is to take

q4 :=
1

20κ
(7.23)

Then choose q1 = q2 = q3 such that (7.12), (7.17) and (7.21) hold. We then define
q0 := κ1/2 + q3/c2.

Thus one finally sees from (7.18) that the maximal number of steps needed to achieve
(7.3) is bounded by

K := K(κ, θ) :=

[
log 20κ

| log θ|

]
+ 1. (7.24)
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7.3 Description of the algorithm

We are now in a position to describe the main step NPROG in our algorithm. We fix a
value of γ with 0 < γ ≤ 1 and we choose parameters q0, q1, q2, q3, q4 as in the Choice of
parameters of the previous subsection. We fix these values. The analysis of the previous
subsection shows that a uniformly bounded finite number of applications of NGROW
suffices to reduce the initial error by the desired amount. The NPROG can thus be
summarized as follows.

NPROG [Λ,v, δ, f ] → (Λ̂, v̂, r̂)
Given a set Λ, an approximation v to the exact solution u of (4.1) whose support is
contained in Λ and such that ‖v − u‖�2(∇) ≤ δ, the procedure NPROG consists of the
following steps:

(i) Apply GALERKIN [Λ,v, δ, q3δ/c2] → ūΛ. Set Λ0 := Λ, ūΛ0 := ūΛ, k := 0.

(ii) Apply NGROW [Λk, ūΛk , q1δ, q2δ, f , γ] → (Λk+1, rk).

(iii) If ‖rk‖�2(∇) ≤ c1δ/20 or k = K defined in (7.24) go to (iv), otherwise apply
GALERKIN [Λk+1, ūΛk , q0δ, q3δ/c2] → ūΛk+1. Replace k by k + 1, Λk by Λk+1,
ūΛk by ūΛk+1 and go to (ii).

(iv) Apply NCOARSE [ūΛk, 2δ/5] → (Λ̂, v̂), set r̂ := rk and STOP.

The relevant properties of NPROG can be summarized as follows.

Properties 7.3 The output v̂ of NPROG satisfies

‖u − v̂‖�2(∇) ≤ δ/2. (7.25)

Moreover, if u ∈ �w
τ (∇), with τ = (s + 1/2)−1 and 0 < s < s∗, then the following are

true:

(i) One has the bound
‖v̂‖�w

τ (∇) ≤ C‖u‖�w
τ (∇), (7.26)

and the cardinality of Λ̂ is bounded by

#(Λ̂) ≤ Cδ−1/s‖u‖1/s
�w
τ (∇). (7.27)

(ii) The cardinality of all intermediate sets Λk produced by NGROW can be bounded
by

#(Λ) + Cδ−1/s
(
‖v‖1/s

�w
τ (∇) + ‖u‖1/s

�w
τ (∇)

)
. (7.28)

(iii) The number of arithmetic operations used in NPROG [Λ,v, δ, f ] is less than

G := C
(
δ−1/s(‖v‖1/s

�w
τ (∇) + ‖u‖1/s

�w
τ (∇)) + #(Λ)

)
. (7.29)

The number of sorts does not excede CG log G.
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Proof: By our choice of parameters qi, i = 1, 2, 3, 4, Remark 7.2 and the subsequent
discussion show that after at most K steps, K given by (7.24), the reduction (7.3) is
achieved. The estimate (7.25) is then an immediate consequence of (6.6) and (6.7) in
Properties 6.3. Moreover, when u ∈ �w

τ (∇), with τ = (s + 1/2)−1, then (i) is a a direct
consequence of (ii) and (iii) in Properties 6.3. By a repeated application of (6.42) in
Properties 6.7 we conclude that

‖ūΛk‖�w
τ (∇) ≤ C

(
‖v‖�w

τ (∇) + ‖u‖�w
τ (∇)

)
. (7.30)

We have used here that only a uniformly bounded number of applications of NGROW
and GALERKIN is used in NPROG. Combining (7.30) with (7.6) in Properties 7.1
yields the estimate (7.28) in (ii).

Note that the same is true for the possibly somewhat larger sets Λ ∪ Λr generated in
NGROW, since we accept the case γ = 1. The remaining assertion (iii) is also obtained
by combining (7.30) with (7.7) in Properties 7.1. �

We are now prepared to describe

Algorithm III

(i) Initialization: Let ε > 0 be the target accuracy. Set Λ := ∅, v = 0 and δ := F , where
F is defined at the beginning of this section. Select the parameters q0, q1, q2, q3, q4

according to the above Choice of Parameters and fix these parameters.

(ii) If δ ≤ ε, accept u(ε) := v, Λ(ε) := Λ as the final solution and STOP. Otherwise,
apply NPROG [Λ,v, δ, f ] → (Λ̂, v̂, r̂).

(iii) If ‖r̂‖�2(∇) + (q1 + q2 + (1 + κ−1)q3)δ ≤ c1ε accept ū(ε) := ūΛk , Λ(ε) = Λk as the
solution, where ūΛk, Λ(ε) = Λk are the last outputs of NGROW in NPROG before
thresholding. Otherwise, replace δ by δ/2, v by v̂ and Λ by Λ̂ and go to (ii).

Remark 7.4 We see that the finest accuracy needed on the data f is 2q2ε in the last
application of NPROG so that we can start with an estimate f̄ with η = 2q2ε in (6.2).

Remark 7.5 The proper choice of (q0, q1, q2, q3, q4) is meant to ensure the convergence
of Algorithm III, as well as the control of the operation count in each application of
NPROG. This, in turn, allows us to prove the optimality of this algorithm, as shown
below. Roughly speaking, convergence is ensured if these parameters are sufficiently small,
but choosing them too small typically increases the constants that enter the optimality
analysis (e.g. the number of iterations needed in GALERKIN or APPLY A), so that
a proper tuning should really be effective in practice. In particular, it might be that our
requirements in the Choice of Parameters are too pessimistic and that the algorithm
still works with larger tolerances.
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7.4 The main Result

The convergence properties of Algorithm III can be summarized as follows.

Theorem 7.6 Assume that A ∈ Bs, with 0 < s < s∗, and that A is an isomorphism on
�2(∇) and suppose that the assumptions (N1)–(N3) are satisfied. Let u be the solution of
(2.17), that is, Au = f . Then for any ε > 0 and any f ∈ �2(∇), Algorithm III produces
an approximation ū = ū(ε) with N = N(ε) := #supp u(ε) < ∞ satisfying

‖u− ū(ε)‖�2(∇) ≤ ε. (7.31)

Moreover, Algorithm III is optimal in the following sense. If u ∈ �w
τ (∇), τ = (s+1/2)−1

for some 0 < s < s∗, then N(ε) ≤ Cε−1/s‖u‖�w
τ (∇) and the computation of ū(ε) requires at

most CN(ε) arithmetic operations and at most CN(ε) log N(ε) sorts, where the constants
C are independent of f and ε.

Proof: Let εj := 2−jF , j = 0, 1, . . .. Let k be the smallest integer such that εk ≤ ε. The
algorithm shuts down when at an iteration j either (i) ‖rj‖�2(∇)+(q1+q2+(1+κ−1q3) ≤ c1ε
or (ii) δ ≤ ε. In the first case, (7.31) is satisfied because of (7.20). When case (i) is not met
for any j = 0, . . . , k, then (7.25) in Properties 7.3 shows that Algorithm III produces
a sequence (Λj, ūΛj) such that ‖u − ūΛj‖�2(∇) ≤ εj , where εj = 2−jF . Hence the desired
target accuracy ε is reached when j = k. In either case, the algorithm will need at most
k steps to reach (7.31).

As for the complexity analysis, if u ∈ �w
τ (∇), τ = (s + 1/2)−1 for some 0 < s < s∗,

we conclude from (7.26) that ‖uΛj‖�w
τ (∇) ≤ C‖u‖�w

τ (∇) for all j and from (7.27) that

#(Λj) ≤ CGj with Gj := ε
−1/s
j ‖u‖1/s

�w
τ (∇).

Thus, on account of (ii) and (iii) in Properties 7.3, the number of arithmetic operations
and the number of sorts at the jth stage of the algorithm can be bounded respectively
by C Gj and C log Gj . The assertion now follows by summing these estimates over
j = 0, . . . , k. �

We conclude with briefly summarizing the consequences of the above theorem with
regard to the original operator equation (2.5).

Corollary 7.7 Assume that A : H t → H−t is an isomorphism and let u denote the exact
solution of Au = f for some f ∈ H−t. Suppose that A and the wavelet bases Ψ, Ψ̃ satisfy
assumptions (A1)–(A3) so that, in particular, the preconditioned wavelet representation
A of A belongs to Aσ,β. Let s∗ := min {σ

d
− 1

2
, β

d
− 1}. Then for any f ∈ H−t and every

ε > 0, Algorithm III produces a sequence ū(ε) = {uλ}λ∈Λ(ε) such that

‖u −
∑

λ∈Λ(ε)

2t|λ|uλψλ‖Ht ≤ ε.

Moreover, if for some 0 < s < s∗ and τ := (s + 1/2)−1 the solution u belongs to the
Besov space Bt+sd

τ (Lτ ) then the number N(ε) := #Λ(ε) is bounded by C0ε
−1/s‖u‖Bt+sd

τ (Lτ ).

At most C N(ε) arithmetic operations and C N(ε) log N(ε) sorts are needed for the com-
putation of uΛ(ε).
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