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Abstract

A phylogenetic tree (also called an “evolutionary tree”) is a leaf-labelled tree which represents the
evolutionary history for a set of species, and the construction of such trees is a fundamental problem in
biology. Here we address the issue of how many sequence sites are required in order to recover the tree
with high probability when the sites evolve under standard Markov-style i.i.d. mutation models. We
provide analytic upper and lower bounds for the required sequence length, by developing a new (and
polynomial time) algorithm. In particular we show that when the mutation probabilities are bounded the
required sequence length can grow surprisingly slowly (a power of log n) in the number n of sequences,
for almost all trees.

1 Introduction

Rooted leaf-labelled trees are a convenient way to represent historical relationships between extant objects,
particularly in evolutionary biology (where such trees are called phylogenies). Molecular techniques have
recently provided large amounts of sequence data which are being used to reconstruct such trees. These
methods exploit the variation in the sequences due to random mutations that have occurred at the sites, and
statistically-based approaches typically assume that sites mutate independently and identically according to
a Markov model. Under mild assumptions, for sequences generated by such a model, one can recover, with
high probability, the underlying unrooted tree provided the sequences are sufficiently long (in terms of the
number k of sites). How large this value of k needs to be depends on the reconstruction method, the details
of the model, and the number n of species. Determining bounds on k and its growth with n has become more
pressing since biologists have begun to reconstruct trees on increasingly larger numbers of species (often up



to several hundred) from such sequences.

With this motivation, we provide upper and lower bounds for the value of k required to reconstruct an
underlying (unrooted) tree with high probability, and address, in particular, the question of how fast k must
grow with n. We first show that under any model, and any reconstruction method, k must grow at least as
fast as log n, and that for a particular, simple reconstruction method, it must grow at least as fast as n log n,
for any i.i.d. model. We then construct a new tree reconstruction method (the Dyadic Closure Method)
which, for a simple Markov model, provides an upper bound on k which depends only on n, the range of the
mutation probabilities across the edges of the tree, and a quantity called the “depth” of the tree. We show
that the depth grows very slowly (O(log log n)) for almost all phylogenetic trees (under two distributions on
trees). As a consequence, we show that the value of k required for accurate tree reconstruction by the Dyadic
Closure Method needs only to grow as a power of log n for almost all trees when the mutation probabilities
lie in a fixed interval, thereby improving results by Farach and Kannan in [23].

The structure of the paper is as follows. In Section 2 we provide definitions, and in Section 3 we provide
lower bounds for k. In Section 4 we describe a technique for reconstructing a tree from a partial collection
of subtrees, each on four leaves. We use this technique in Section 5, as the basis for our “dyadic closure”
method. Section 6 is the central part of the paper - here we analyse, using various probabilistic arguments,
an upper bound on the value of k required for this method to correctly recover the underlying tree with high
probability, when the sites evolve under a simple, symmetric 2-state model. As this upper bound depends
critically upon the depth (a feature of the shape of the tree) we show that the depth grows very slowly
(O(log log n)) for a random tree selected under either of two distributions. This gives us the result that k
need grow only sublinearly in n for nearly all trees.

Our follow-up paper [21] extends the analysis presented in this paper for more general, r-state stochas-
tic models, and offers an alternative to dyadic closure, the “witness-antiwitness” method. The witness-
antiwitness method is faster than the dyadic closure method in average, but does not yield a deterministic
technique for reconstructing a tree from a partial collection of subtrees, like the dyadic closure method does,
and may require somewhat longer input sequences than the dyadic closure method.

2 Definitions

Notation: IP[A] denotes the probability of event A; IE[X ] denotes the expectation of random variable X .
We denote the natural logarithm by log. The set [n] denotes {1, 2, . . . , n} and for any set S,

(
S
k

)
denotes

the collection of subsets of S of size k. IR denotes the real numbers.

Definitions: (I) Trees. We will represent a phylogenetic tree T by a tree whose leaves (vertices of
degree one) are labelled (by extant species, numbered by 1, 2, . . . , n) and whose remaining internal vertices
(representing ancestral species) are unlabelled. We will adopt the biological convention that phylogenetic
trees are binary, so that all internal nodes have degree three, and we will also assume that T is unrooted, for
reasons described later in this section. There are (2n− 5)!! = (2n− 5)(2n− 7) . . . 3 · 1 different binary trees
on n distinctly labelled leaves.

The edge set of the tree is denoted by E(T ). Any edge adjacent to a leaf is called a leaf edge, any
other edge is called an internal edge. The path between vertices u and v in the tree is called the uv path,
and is denoted P (u, v). For a phylogenetic tree T and S ⊆ [n], there is a unique minimal subtree of T ,
containing all elements of S. We call this tree the subtree of T induced by S, and denote it by T|S. We
obtain the contracted subtree induced by S, denoted by T ∗

|S, if we substitute edges for all maximal paths of
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T|S in which every internal vertex has degree two. Since all trees are assumed to be binary, all contracted
subtrees, including, in particular, the subtrees on four leaves, are also binary. We use the notation ij|kl
for the contracted subtree on four leaves i, j, k, l in which the pair i, j is separated from the pair k, l by an
internal edge, and we also call ij|kl a valid quartet split of T . Clearly any four leaves i, j, k, l in a binary tree
have exactly one valid quartet split out of ij|kl, ik|jl, il|kj.

The topological distance d(u, v) between vertices u and v in a tree T is the number of edges in P (u, v). A
cherry in a binary tree is a pair of leaves at topological distance two. The diameter of the tree T , diam(T ), is
the maximum topological distance in the tree. For an edge e of T , let T1 and T2 be the two rooted subtrees
of T obtained by deleting edge e from T , and for i = 1, 2, let di(e) be the topological distance from the root
of Ti to its nearest leaf in Ti. The depth of T is maxe max{d1(e), d2(e)}, where e ranges over all internal
edges in T . We say that a path P in the tree T is short if its topological length is at most depth(T )+ 1, and
say that a quartet i, j, k, l is a short quartet if it induces a subtree which contains a single edge connected to
four disjoint short paths. The set of all short quartets of the tree T is denoted by Qshort(T ). We will denote
the set of valid quartet splits for the short quartets by Q∗

short(T ).

(II) Sites. Let us be given a set C of character states (such as C = {A,C,G, T} for DNA sequences;
C = {the 20 amino acids} for protein sequences; C = {R, Y } or {0, 1} for purine-pyrimidine sequences).
A sequence of length k is an ordered k-tuple from C—that is, an element of Ck. A collection of n such
sequences—one for each species labelled from [n]—is called a collection of aligned sequences.

Aligned sequences have a convenient alternative description as follows. Place the aligned sequences as
rows of an n × k matrix, and call site i the ith column of this matrix. A pattern is one of the |C|n possible
columns.

(III) Site substitution models. Many models have been proposed to describe, stochastically, the evolution
of sites. Usually these models assume that the sites evolve identically and independently under a distribution
that depends on the model tree. Most models are more specific and also assume that each site evolves on a
rooted tree from a nondegenerate distribution π (of the r possible states) at the root, according to a Markov
assumption (namely, that the state at each vertex is dependent only on its immediate parent). Each edge e
oriented out from the root has an associated r×r stochastic transition matrix M(e). Although these models
are usually defined on a rooted binary tree T where the orientation is provided by a time scale and the root
has degree 2, these models can equally well be described on an unrooted binary tree (without a degree 2
vertex) by (i) supressing the degree 2 vertex in T , (ii) selecting an arbitrary vertex (leaves not excluded),
assigning to it an appropriate distribution of states π′ (possibly different from π) and (iii) assigning an
appropriate transition matrix M ′(e) (possibly different from M(e)) for each edge e. If we regard the tree as
now rooted at the selected vertex, and the “appropriate” choices in (ii) and (iii) are made, then the resulting
models gives exactly the same distribution on patterns as the original model (see [46]) and as the re-rooting
is arbitrary we see why it is impossible to hope for the reconstruction of more than the unrooted underlying
tree that generated the sequences (under some time-induced, edge-bisection rooting). The assumption that
the underlying tree is binary is also in keeping with the assumption in systematic biology, that speciation
events are almost always binary.

(IV) The Neyman model. The simplest stochastic model is a symmetric model for binary characters due
to Neyman [37], and also developed independently by Cavender [12] and Farris [25]. Let {0, 1} denote the
two states. The root is a fixed leaf, the distribution π at the root is uniform. For each edge e of T we have
an associated mutation probability, which lies strictly between 0 and 0.5. Let p : E(T ) → (0, 0.5) denote
the associated map. We have an instance of the general Markov model with M(e)01 = M(e)10 = p(e). We
will call this the Neyman 2-state model, but note that it has also been called the Cavender-Farris model.
Neyman’s original paper allows more than 2 states.
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The Neyman 2-state model is hereditary on the subsets of the leaves—that is, if we select a subset S of [n],
and form the subtree T|S , then eliminate vertices of degree two, we can define mutation probabilities on the
edges of T ∗

|S so that the probability distribution on the patterns on S is the same as the marginal of the
distribution on patterns provided by the original tree T . Furthermore, the mutation probabilities that we
assign to an edge of T ∗

|S is just the probability p that the endpoints of the associated path in the original
tree T are in different states. The probability that the endpoints of a path p are in different states is nicely
related to the mutation probabilities p1, p2, ..., pk of edges of the k-path:

p =
1
2

(
1 −

k∏
i=1

(1 − 2pi)

)
. (1)

Formula (1) is well-known, and is easy to prove by induction.

(V) Distances. Any symmetric matrix, which is zero-diagonal and positive off-diagonal, will be called a
distance matrix. An n×n distance matrix Dij is called additive, if there exists an n-leaf tree (not necessarily
binary) with positive edge weights on the internal edges and non-negative edge weights on the leaf edges,
so that Dij equals the sum of edge weights in the tree along the P (i, j) path connecting i and j. In [10],
Buneman showed that the following Four-Point Condition characterizes additive matrices (see also [42] and
[53]):

Theorem 1 (Four Point Condition)
A matrix D is additive if and only if for all i, j, k, l (not necessarily distinct), the maximum of Dij+Dkl, Dik+
Djl, Dil+Djk is not unique. The edge weighted tree (with positive weights on internal edges and non-negative
weights on leaf edges) representing the additive distance matrix is unique among the trees without vertices of
degree two. �

Given a pair of parameters (T, p) for the Neyman 2-state model, and sequences of length k generated by
the model, let H(i, j) denote the Hamming distance of sequences i and j and

hij = H(i, j)/k (2)

denote the dissimilarity score of sequences i and j. The empirical corrected distance between i and j is
denoted by

dij = −1
2

log(1 − 2hij). (3)

The probability of a change in the state of any fixed character between the sequences i and j is denoted by
Eij = IE(hij), and we let

Dij = −1
2

log(1 − 2Eij) (4)

denote the corrected model distance between i and j. We assign to any edge e a positive weight

w(e) = −1
2

log(1 − 2p(e)). (5)

By Equation (1), Dij is the sum of the weights (see previous equation) along the path P (i, j) between i and
j. Therefore, dij converges in probability to Dij as k → ∞. Corrected distances were introduced to handle
the problem that Hamming distances underestimate the “true evolutionary distances”. In certain continuous
time Markov models the edge weight means the expected number of back-and-forth state changes along the
edge, and defines an additive distance matrix.
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(VI) Tree reconstruction. A phylogenetic tree reconstruction method is a function Φ that associates either
a tree or the statement fail to every collection of aligned sequences, the latter indicating that the method
is unable to make such a selection for the data given. Some methods are based upon sequences, while others
are based upon distances.

According to the practice in systematic biology (see, for example, [29, 30, 49]), a method is considered
to be accurate if it recovers the unrooted binary tree T , even if it does not provide any estimate of the
mutation probabilities. A necessary condition for accuracy, under the models discussed above, is that two
distinct trees, T, T ′, do not produce the same distribution of patterns no matter how the trees are rooted,
and no matter what their underlying Markov parameters are. This “identifiability” condition is violated
under an extension of the i.i.d. Markov model when there is an unknown distribution of rates across sites as
described by Steel et al [46]. However, it is shown in Steel [44] (see also Chang [13]) that the identifiability
condition holds for the i.i.d model under the weak conditions that the components of π are not zero and
the determinant det(M(e)) �= 0, 1,−1, and in fact we can recover the underlying tree from the expected
frequencies of patterns on just pairs of species.

Theorem 1 and the discussion that follows it suggest that appropriate methods applied to corrected
distances will recover the correct tree topology from sufficiently long sequences. Consequently, one approach
to reconstructing trees from distances is to seek an additive distance matrix of minimum distance (with
respect to some metric on distance matrices) from the input distance matrix. Many metrics have been
considered, but all resultant optimization problems have been shown or are assumed to be NP-hard (see
[1, 15, 24] for results on such problems).

We will use a particular simple distance method, which we call the (Extended) Four Point Method (FPM),
to reconstruct trees on four leaves from a matrix of interleaf distances.

Four-Point Method (FPM) Given a 4 × 4 distance matrix d, return the set of splits ij|kl which
satisfy dij + dkl ≤ min{dik + djl, dil + djk}.

Note that the Four-Point Method can return one, two, or three splits for a given quartet. One split is
returned if the minimum is unique, two are returned if the two smallest values are identical but smaller than
the largest, and three are returned if all three values are equal.

In [26], Felsenstein showed that two popular methods—maximum parsimony and maximum compatibility
— can be statistically inconsistent, namely, for some parameters of the model, the probability of recovering
the correct tree topology tends to 0 as the sequence length grows. This region of the parameter space has
been subsequently nicknamed the “Felsenstein zone”. This result, and other more recent embellishments
(see Hendy [28], Zharkikh and Li [54], Takezaki and Nei [50], Steel et al. [46]) are asymptotic results — that
is they are concerned with outcomes as the sequence length, k, tends to infinity.

We consider the question of how many sites k must be generated independently and identically, according
to a substitution model M , in order to reconstruct the underlying binary tree on n species with pre-specified
probability at least ε by a particular method Φ. Clearly, the answer will depend on Φ, ε, and n, and also on
the fine details of M — in particular the unknown values of its parameters. It is clear that for all models
that have been proposed, if no restrictions are placed on the parameters associated with edges of the tree
then the sequence length might need to be astronomically large, even for four sequences, since the “edge
length” of the internal edge(s) of the tree can be made arbitrarily short (as was pointed out by Philippe
and Douzery [38]). A similar problem arises for four sequences when one or more of the four non-internal
edges is “long”—that is, when site saturation has occurred on the line of descent represented by the edge(s).
Unfortunately, it is difficult to analyse how well methods perform for sequences of a given length, k. There
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has been some empirical work done on this subject, in which simulations of sequences are made on different
trees and different methods compared according to the sequence length needed (see [31] for an example of
a particularly interesting study of sequence length needed to infer trees of size four!), but little analytical
work (see, however, [38]).

In this paper we consider only the Neyman 2-state model as our choice for M . However, our results
extend to the general i.i.d. Markov model, and the interested reader is referred to the companion paper,
[21], for details.

3 Lower bounds

Since the number of binary trees on n leaves is (2n− 5)!!, encoding deterministically all such trees by binary
sequences at the leaves requires that the sequence length, k, satisfy (2n − 5)!! ≤ 2nk, i.e. k = Ω(log n). We
now show that this information-theoretic argument can be extended for arbitrary models of site evolution
and arbitrary deterministic or even randomized algorithms for tree reconstruction. For each tree, T , and for
each algorithm A, whether deterministic or randomized, we will assume that T is equipped with a mechanism
for generating sequences, which allows the algorithm A to reconstruct the topology of the underlying tree T
from the sequences with probability bounded from below.

Theorem 2 Let A be an arbitrary algorithm, deterministic or randomized, which is used to reconstruct bi-
nary trees from 0-1 sequences of length k associated with the leaves, under an arbitrary model of substitutions.
If A reconstructs the topology of any binary tree T from the sequences at the leaves with probability greater
than ε (respectively greater than 1/2), then (2n − 5)!!ε < 2nk (respectively, (2n − 5)!! ≤ 2nk, under the as-
sumption of (stochastic) independence of the substitution model and the reconstruction), and so k = Ω(log n).

We prove this theorem in a more abstract setting:

Theorem 3 We have finite sets X and S and random functions f : S → X and g : X → S.
(i) If IP[fg(x) = x] > ε for all x ∈ X then |S| > ε|X |.
(ii) If f, g are independent and IP[fg(x) = x] > 1/2 for all x ∈ X then |S| ≥ |X |.

Proof. Proof of (i): By hypothesis ε|X | <
∑

x IP[fg(x) = x] =
∑

x

∑
s IP[g(x) = s & f(s) = x] ≤∑

s(
∑

x IP[f(s) = x]) =
∑

s 1 = |S|.

Proof of (ii): First note that IP[fg(x) = y] =
∑

s IP[f(s) = y]IP[g(x) = s] by independence. Observe that for
each x, there exists an s = sx for which IP[f(sx) = x] > 1/2, since otherwise we have IP[fg(x) = x] ≤ 1/2.
Now, the map sending x to sx is one-to-one from X into S (and so |X | ≤ |S| as required) since otherwise, if
two elements get mapped to s, then 1 =

∑
x IP[f(s) = x] > 1/2 + 1/2. �

The following example shows that our theorem is tight for ε < 1/2: Let X =
{x11, x12, x21, x22, ..., xn1, xn2} and S = {1, 2, ..., n}, and let g(xij) = i (with probability 1); and let f(i) = xi1

with probability 1/2; xi2 with probability 1/2. Then, IP[fg(x) = x] = 1/2, so IP[fg(x) = x] > ε, for any
epsilon less than 1/2. But notice that (1/2)|X | = |S|.

Curiously, once ε exceeds 1/2 we must have |X | ≤ |S|, under the assumption of independence. Examples
[52] show that the assumption of independence is necessary. Independence is a reasonable assumption if we

6



try to apply this result for evolutionary tree reconstruction and holds automatically if the tree reconstruction
method is deterministic.

This lower bound applies to an arbitrary algorithm, but particular algorithms may admit much larger
lower bounds. Consider, for example, the Maximum Compatibility method (MC), which we now define.
Given a set of binary sequences, each site defines a partition of the sequences into two sets, those containing
a 0 in that position, and those containing a 1 in that position. The site is said to be compatible on a
tree T if the tree T contains an edge whose removal would define the same partition. The objective of
the maximum compatibility method is a tree T which has the largest number of sites compatible with it.
Maximum compatibility is an NP-hard optimization problem [16], although the MC method can clearly be
implemented as a non-polynomial time algorithm. We now show that the sequence length needed by MC to
obtain the correct topology with constant probability must grow as least as fast as n log n.

Theorem 4 Assume that 2-state sites on n species evolve on a binary tree T according to any stochastic
model in which the sites evolve identically and independently. Let k(n) denote the smallest number of sites
for which the Maximum Compatibility Method is guaranteed to reconstruct the topology of T with probability
greater than 1/2. Then, for n large enough,

k(n) > (n − 3) log(n − 3) − (n − 3). (6)

Proof. We will say that a site is trivial if it defines a partition of the sequences into one class or into
two classes so that one of the classes is a singleton. Now, fix x and assume that we are given k∗ =
�(n − 3) log(n − 3) + x(n − 3)	 non-trivial sites independently selected from the same distribution. We will
show that the probability of obtaining the correct tree under MC is at most e−e−x

for n large enough. This
proves the theorem by setting x = −1, since k(n) ≥ k∗|x=−1 is needed.

Let σ(T ) denote the set of internal splits of T . Since T is binary, |σ(T )| = n − 3 [10]. For σ ∈ σ(T ), let
the random variable Xσ be the number of non-trivial sites which induce split σ. Define X =

∑
σ∈σ(T ) Xσ.

A necessary (though not sufficient) condition for maximum compatibility to select T is that all the internal
splits of T are present amongst the k∗ non-trivial sites. Thus, we have the inequality:

IP[MC(S) = T ] ≤ IP[∩σ∈σ(T ){Xσ > 0}]

=
k∗∑
i=1

IP[∩σ∈σ(T ){Xσ > 0} | X = i] × IP[X = i]

≤ max
1≤i≤k∗

IP[∩σ∈σ(T ){Xσ > 0} | X = i]

= IP[∩σ∈σ(T ){Xσ > 0} | X = k∗] . (7)

Let p(σ) denote the probability of generating split σ at a particular site. Due to the model, p(σ) does not
depend on the site. It is not difficult to show that (7) is maximized when the p(σ)’s are all equal (σ ∈ σ(T ))
and sum to 1.

Indeed, by compactness arguments, there exists a probability distribution maximizing (7). We show
that it cannot be non-uniform, and therefore the uniform distribution maximizes (7). Assume that the
maximizing distribution p is non-uniform, say, p(σ) �= p(ρ). We introduce a new distribution p′ with
p′(σ) = p′(ρ) = 1

2 (p(σ) + p(ρ)), and p′(α) = p(α) for α �= σ, ρ. The probability of having exactly i sites
supporting σ or ρ is the same for p and p′. Conditioning on the number of sites supporting σ or ρ, it is
easy to see that any distribution of sites supporting all non-trivial splits has strictly higher probability in p′

than in p.
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Knowing that the p(σ)’s are all equal (σ ∈ σ(T )) and sum to 1, determining (7) is just the classical
occupancy problem where k∗ balls are randomly assigned to n− 3 boxes with uniform distribution, and one
asks for the probability that each box has at least one ball in it. Equation (6) now follows from a result on
the asymptotics of this problem (Erdős and Rényi [18]): for x ∈ IR, k∗ balls (k∗ as defined above), and n− 3
boxes, the limit of probability of filling each boxes is e−e−x

. �

We do not know how much longer sequences MC needs for tree reconstruction from sites under the Neyman
2-state model.

In Section 5, we will present a new method (the Dyadic Closure Method (DCM)) for reconstructing trees.
DCM has the property that for almost all trees, with a wide range allowed for the mutation probabilities,
the sequence length that suffices for correct topology reconstruction grows no more than polynomially in the
lower bound of log n (see Theorem 2) required for any method. In fact the same holds for all trees with a
narrow range allowed for the mutation probabilities. First, however, we set up a combinatorial technique for
reconstructing trees from selected subtrees of size four.

4 Dyadic Inference of Trees

Certain classical tree reconstruction methods [6, 14, 47, 48, 55] are based upon reconstructing trees on
quartets of leaves, then combining these trees into one tree on the entire set of leaves. Here we describe a
method which reconstructs only certain quartet splits (the “representative quartet splits”), and then infers
the remaining quartet splits using “inference rules”. Once we have splits for all the possible quartets of
leaves, we can then reconstruct the tree (if one exists) that is uniquely consistent with all the quartet splits.

In this section, we will prove a stronger result than was provided in [19], that the representative quartet
splits suffice to define the tree. We will also present a tree reconstruction algorithm, DCTC (for Dyadic
Closure Tree Construction) based upon dyadic closure. The input to DCTC is a set Q of quartet splits
and we show that DCTC is guaranteed to reconstruct the tree properly if the set Q contains only valid
quartet splits and contains all the representative quartet splits of T . We also show that if Q contains all
representative quartet splits but also contains invalid quartet splits, then DCTC will discover incompatibility.
In the remaining case, where Q does not contain all the representative quartet splits of any T , DCTC will
return Inconsistent (and then the input was inconsistent indeed), or a tree (which is then the only tree
consistent with the input), or Insufficient.

4.1 Inference rules

Recall that, for a binary tree T on n leaves, and a quartet of leaves, q = {a, b, c, d} ∈
(

[n]
4

)
, tq = ab|cd is a

valid quartet split of T if T ∗
|q = ab|cd (i.e. there is at least one edge in T whose removal separates the pair

a, b from the pair c, d). It is easy to see that

if ab|cd is a valid quartet split of T , then so are ba|cd and cd|ab, (8)

and we identify these three splits; and if ab|cd holds, then ac|bd and ad|bc are not valid quartet splits of T ,
and we say that any of them contradicts ab|cd. Let Q(T ) =

{
tq : q ∈

(
[n]
4

)}
denote the set of valid quartet

splits of T . It is a classical result that Q(T ) determines T (Colonius and Schulze [14], Bandelt and Dress
[6]); indeed for each i ∈ [n], {tq : i ∈ q} determines T , and T can be computed in polynomial time.
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It would be nice to determine for a set of quartet splits whether there is a tree for which they are valid
quartet splits. Unfortunately, this problem is NP-complete (Steel [43]). It also would be useful to know
which subsets of Q(T ) determine T , and for which such subsets a polynomial time procedure would exist
to reconstruct T . A natural step in this direction is to define inference: we can infer from a set of quartet
splits A a quartet split t, if whenever A ⊆ Q(T ) for a binary tree T , then t ∈ Q(T ) as well.

Instead, Dekker [17] introduced a restricted concept, dyadic and higher order inference. Following Dekker,
we say that a set of quartet splits A dyadically implies a quartet split t, if t can be derived from A by repeated
applications of rules (8), (9) and (10):

if ab|cd and ac|de are valid quartet splits of T ,
then so are ab|ce, ab|de, and bc|de, (9)

and,
if ab|cd and ab|ce are valid quartet splits of T , then so is ab|de. (10)

It is easy to check that these rules infer valid quartet splits from valid quartet splits, and the set of quartet
splits dyadically inferred from an input set of quartet splits can be computed in polynomial time. Setting
a complete list of inference rules seems hopeless (Bryant and Steel [9]): for any r, there are r-ary inference
rules, which infer a valid quartet split from some r valid quartet splits, such that their action cannot be
expressed through lower order inference rules.

4.2 Tree inference using dyadic rules

In this section we define the dyadic closure of a set of quartet splits, and describe conditions on the set of
quartet splits under which the dyadic closure defines all valid quartet splits of a binary tree. This section
extends and strengthens results from earlier work [19, 45].

Definition 1: Given a finite set of quartet splits Q, we define the dyadic closure cl(Q) of Q as the set of
quartet splits that can be inferred from Q by the repeated use of the rules (8, 9, 10). We say that Q is
inconsistent, if Q is not contained in the set of valid quartet splits of any tree, otherwise Q is consistent. For
each of the n−3 internal edges of the n-leaf binary tree T we assign a representative quartet {s1, s2, s3, s4} as
follows. The deletion of the internal edge and its endpoints defines four rooted subtrees t1, t2, t3, t4. Within
each subtree ti, select from among the leaves which are closest topologically to the root the one, si, which
is the smallest natural number (recall that the leaves of our trees are natural numbers). This procedure
associates to each edge a set of four leaves, i, j, k, l. (By construction, it is clear that the quartet i, j, k, l
induces a short quartet in T - see Section 2 for the definition of “short quartet.”) We call the quartet split of
a representative quartet a representative quartet split of T , and we denote the set of representative quartet
splits of T by RT .

The aim of the section is to show that the dyadic closure suffices to compute the tree T from any set of
valid quartet splits of T which contain RT . We begin with:

Lemma 1 Suppose S is a set of n − 3 quartet splits which is consistent with a unique binary tree T on n
leaves. Furthermore, suppose that S can be ordered q1, ..., qn−3 in such a way that qi contains at least one
label which does not appear in {q1, ..., qi−1} for i = 2, ..., n− 3. Then, the dyadic closure of S is Q(T ).

Proof. First, observe that it is sufficient to show the lemma for the case when qi contains exactly one label
which does not appear in {q1, ..., qi−1} for i = 2, ..., n−3, since n−4 quartets have to add n−4 new vertices.
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Fig. 1 : Binary tree with five leaves.

Now suppose qn−3 = ax|bc. Regardless of where a, b, c come from (among the four subtrees in the represen-
tation), we can always move x onto at least two of the other four edges in T , and so obtain a different tree
consistent with S (recall that qn−3 is the only quartet containing x, and thereby the only obstruction to us
moving x!). Since the theorem assumes that the quartets are consistent with a unique tree, this contradicts
our assumptions. �

Finally, it is easy to show the following:

Claim 3: Suppose xy is a cherry of T . Select leaves a, b from each of the two subtrees adjacent to the cherry.
Let T ′ be the binary tree obtained by deleting leaf x. Then cl(Q(T ′) ∪ {xy|ab}) = Q(T ).

Now, we can apply induction on n to establish the lemma. It is clearly (vacuously) true for n = 4, so
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suppose n > 4. Let x be the new leaf introduced by qn−3, and let the binary tree T ′ be T with x deleted.

In view of Claim 1, Sn−4 is a set of n−4 quartets that define Tn−4 = T ′, a tree on n−1 leaves and which
satisfy the hypothesis that qi introduces exactly one new leaf. Thus, applying the induction hypothesis, the
dyadic closure of Sn−4 is Q(T ′). Since S = Sn−3 contains Sn−4, the dyadic closure of S also contains Q(T ′),
which is the set of all quartet splits of T that do not include x.

Now, by Claim 2, x is in a cherry; let its sibling in the cherry be y, so qn−3 = ab|xy, say, where a and b
must lie in each of the two subtrees adjacent to the cherry. (It is easy to see that if a, b both lay in just one
of these subtrees, then S would not define T .)

Now, as we just said, the dyadic closure of S contains Q(T ′) and it also contains ab|xy (where a, b
are as specified in the preceding paragraph) and so by the idempotent nature of dyadic closure (i.e.
cl(B) = cl(cl(B))) it follows from Claim 3 that the dyadic closure of S equals Q(T ). ���

Lemma 2 The set of representative quartet splits RT of a binary tree T satisfies the conditions of Lemma 1.
Hence, the dyadic closure of RT is Q(T ).

Proof. In order to make an induction proof possible, we make a more general statement. Given a binary
tree T with a positive edge weighting w, we define the representative quartet of an edge e to be the quartet
tree defined by taking the lowest indiced closest leaf in each of the four subtrees, where we define “closest”
in terms of the weight of the path (rather than the topological distance) to the root of the subtree. We also
define the representative quartet splits of the weighted tree, RT,w as in the Definition with the only change
that the si ∈ ti is selected by the sum-of-weights criterion instead of the topological distance criterion.
Observe that if all weights are equal to one, then we get back the original definitions from the Definition.
When turning to binary subtrees of a given weighted tree, we assign the sum of weights of the original edges
to any newly created edge which is composed of them, and denote the new weighting by w∗. Now we easily
can prove by induction the following generalization of the statement of Lemma 2:

Claim 4: Take the set of representative quartet splits RT,w of a weighted n-leaf binary tree T . Then for every
other n-leaf binary tree F , we have that RT,w ⊆ Q(F ) implies T = F as unweighted trees. Furthermore,
RT,w can be ordered q1, ..., qn−3 in such a way that qi contains exactly one label that does not appear in
{q1, ..., qi−1} for i = 2, ..., n − 3.

Proof of Claim 4: First we show that the only tree consistent with the set of representative splits RT,w of
a binary tree T is T itself. Look for the smallest (in n) counterexample T , such that RT,w ⊆ Q(F ) for a
tree F �= T . Clearly n has to be at least 5. Therefore T has at least two different cherries, say xy and
uv, such that d(u, x) ≥ 4. Let us denote by w(l) the weight of the leaf edge corresponding to the leaf l. If
w(x) < w(y) or (w(x) = w(y) and x < y), then due to the construction of RT,w, vertex y occurs in exactly
one element of RT,w, say p, which is the representative of the edge that separates xy from the rest of the
tree. A similar argument would show that one of u, v, say v, occurs in exactly one element of RT,w, say q.
It also follows that p �= q. It is not difficult to check that

RT∗
|[n]\{y},w∗ = RT \ {p} and RT∗

|[n]\{v},w∗ = RT \ {q} (11)

according to the definition of weight after contracting edges, where T ∗
|K is the binary tree obtained by con-

tracting paths into edges in the subtree of T spanned by the vertex set K. Hence, by the minimality of
the counterexample, T ∗

|[n]\{y} = F ∗
|[n]\{y} and T ∗

|[n]\{v} = F ∗
|[n]\{v}. We know that any edge of F defines

a bipartition of [n], and traces of these bipartitions on [n] \ {y} and [n] \ {v} are exactly the bipartitions
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produced by the edges of F ∗
|[n]\{y} on [n] \ {y} and the bipartitions produced by the edges of F ∗

|[n]\{v} on
[n] \ {v}. Therefore also in F both xy and uv make cherries, and hence T = F , a contradiction.

For the other part of the claim, it immediately follows by induction from formula (11) that RT,w can
be ordered so that every quartet in the order contains at least one (and therefore exactly one) new leaf.
(Eliminate quartet splits recursively using (11), and put RT,w in the reverse order.) �

Note that the generalization for weighted trees was necessary, since without weights formula (11) would fail.
���

We note here that representative quartets cannot be defined by selecting any nearest leaf in the four
subtrees associated with an internal edge. For example, consider the tree T on six leaves labelled 1 through
6, with a central vertex and cherries (1, 2), (3, 4), and (5, 6), hanging from the central vertex. If we selected
the quartet splits by arbitrarily picking “closest” leaves in each of the four subtrees around each internal
edge, we could possibly select splits 12|36, 34|15 and 56|24; however, these splits do not uniquely identify
the tree T , since the tree with cherries 15, 24 and 36 is also consistent with these quartets. Therefore, in
order to be able to keep Lemma 2 and Theorem 6, we will require that the representative quartet splits be
selected as we have defined them.

4.3 Algorithm DCTC

We now present the Dyadic Closure Tree Construction method (DCTC) for computing the dyadic closure of
a set Q of quartet splits, and which returns the tree T when cl(Q) = Q(T ).

Before we present the algorithm, we note the following interesting lemma:

Lemma 3 If cl(Q) contains exactly one split for each possible quartet then cl(Q) = Q(T ) for a unique binary
tree T .

Proof. By Proposition (2) of [6], a set Q∗ of noncontradictory quartet splits equals Q(T ) for some tree T
precisely if it satisfies the substitution property: If ab|cd ∈ Q∗, then for all e �∈ {a, b, c, d}, ab|ce ∈ Q∗, or
ae|cd ∈ Q∗. Furthermore, in that case, T is unique.

Applying this characterization to Q∗ = cl(Q), suppose ab|cd ∈ cl(Q) but ab|ce �∈ cl(Q). Thus, either
ae|bc ∈ cl(Q) or ac|be ∈ cl(Q). In the either case, the dyadic inference rule applied to the pair {ab|cd, ae|bc}
or to {ab|cd, ac|be} implies ae|cd ∈ cl(Q), and so cl(Q) satisfies the substitution property. Thus cl(Q) = Q(T )
for a unique tree T . Finally, since cl(Q) contains a split for each possible quartet, it follows that T must be
binary. �

We now continue with the description of the DCTC algorithm.

Algorithm DCTC:

Step 1: We compute the dyadic closure, cl(Q), of Q.

Step 2: • Case 1: cl(Q) contains a pair of contradictory splits for some quartet: return Inconsistent.

• Case 2: cl(Q) has no contradictory splits, but fails to have a split for every quartet: Return
Insufficient
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• Case 3: cl(Q) has exactly one split for each quartet: apply standard algorithms [6, 51] to cl(Q)
to reconstruct the tree T such that Q(T ) = cl(Q). Return T .

(Case 3 depends upon Lemma 3 above.)

To completely describe the DCTC method we need to specify how we compute the dyadic closure of a
set Q of quartet splits.

Efficient computation of dyadic closure The description we now give of an efficient method for computing
the dyadic closure will only actually completely compute the dyadic closure of Q if cl(Q) = Q(T ) for some
tree T . Otherwise, cl(Q) will either contain a contradictory pair of splits for some quartet, or cl(Q) will not
contain a split for every quartet. In the first of these two cases, the method will return Inconsistent, and
in the second of these two cases, the method will return Insufficient. However, the method can be easily
modified to compute cl(Q) for all sets Q.

We will maintain a four-dimensional array Splits and constrain Splitsi,j,k,l to either be empty, or to
contain exactly one split that has been inferred so far for the quartet i, j, k, l. In the event that two conflicting
splits are inferred for the same quartet, the algorithm will immediately return Inconsistent, and halt. We
will also maintain a queue Qnew of new splits that must be processed. We initialize Splits to contain the
splits in the input Q, and we initialize Qnew to be Q, ordered arbitrarily.

The dyadic inference rules in equations (8), (9), and (10) show that we infer new splits by combining two
splits at a time, where the underlying quartets for the two splits share three leaves. Consequently, each split
ij|kl can only be combined with splits on quartets {a, i, j, k}, {a, i, j, l}, {a, i, k, l}, and {a, j, k, l}, where
a �∈ {i, j, k, l}. Consequently, there are only 4(n−4) other splits with which any split can be combined using
these dyadic rules to generate new splits.

Pop a split ij|kl off the queue Qnew, and examine each of the appropriate 4(n−4) entries in Splits. For
each non-empty entry in Splits that is examined in this process, compute the O(1) splits that arise from the
combination of the two splits. Suppose the combination generates a split ab|cd. If Splitsa,b,c,d contains a
different split from ab|cd, then Return Inconsistent. If Splitsa,b,c,d is empty, then set Splitsa,b,c,d = ab|cd,
and add ab|cd to the queue Qnew. Otherwise Splitsa,b,c,d already contains the split ab|cd, and we do not
modify the data structures.

Continue until the queue Qnew is empty, or Inconsistency has been observed. If the Qnew empties before
Inconsistency is observed, then check if every entry of Splits is non-empty. If so, then cl(Q) = Q(T ) for
some tree; Return Splits. If some entry in Splits is empty, then return Insufficient.

Theorem 5 The efficient computation of the dyadic closure uses O(n5) time, and at the termination of the
algorithm the Splits matrix is either identically equal to cl(Q), or the algorithm has returned Inconsistent.
Furthermore, if the algorithm returns Inconsistent, then cl(Q) contains a pair of contradictory splits.

Proof. It is clear that if the algorithm only computes splits using dyadic closure, so that at any point in
the application of the algorithm, Splits ⊆ cl(Q). Consequently, if the algorithm returns Inconsistent, then
cl(Q) does contain a pair of contradictory splits. If the algorithm does not return Inconsistent, then it is
clear from the design that every split which could be inferred using these dyadic rules would be in the Splits
matrix when the algorithm terminates.

The running time analysis is easy. Every combination of quartet splits takes O(1) time to process.
Processing a quartet split involves examining 4(n−4) entries in the Splits matrix, and hence costs O(n). If
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a split ij|kl is generated by the combination of two splits, then it is only added to the queue if Splitsi,j,k,l

is empty when ij|kl is generated. Consequently, at most O(n4) splits ever enter the queue. �

We now prove our main theorem of this section:

Theorem 6 Let Q be a set of quartet splits.

1. If DCTC(Q) = T , DCTC(Q′) = T ′, and Q ⊆ Q′, then T = T ′.

2. If DCTC(Q) = Inconsistent and Q ⊆ Q′, then DCTC(Q′) = Inconsistent.

3. If DCTC(Q) = Insufficient and Q′ ⊆ Q, then DCTC(Q′) = Insufficient.

4. If RT ⊆ Q ⊆ Q(T ), then DCTC(Q) = T .

Proof. Assertion (1) follows from the fact that if DCTC(Q) = T , then the dyadic closure phase of the
DCTC algorithm computes exactly one split for every quartet, so that cl(Q) = Q(T ) by Lemma 3. Therefore,
if Q ⊆ Q′, then cl(Q) ⊆ cl(Q′), so that Q(T ) ⊆ cl(Q′) = Q(T ′). Since T and T ′ are binary trees, it follows
that Q(T ) = Q(T ′) and T = T ′.

Assertion (2) follows from the fact that if DCTC(Q) = Inconsistent, then cl(Q) contains two contradictory
splits for the same quartet. If Q ⊆ Q′, then cl(Q′) also contains the same two contradictory splits, and so
DCTC(Q′) = Inconsistent.

Assertion (3) follows from the fact that if DCTC(Q) = Insufficient, then cl(Q) does not contain contra-
dictory pairs of splits, and also lacks a split for at least one quartet. If Q′ ⊆ Q, then cl(Q′) also does not
contain contradictory pairs of splits and also lacks a split for some quartet. Consequently, DCTC(Q′) =
Insufficient.

Assertion (4) follows from Lemma 2 and Assertion (1). �

Note that DCTC(Q) = Insufficient does not actually imply that Q ⊂ Q(T ) for any tree; that is, it may
be that Q �⊆ Q(T ) for any tree, but cl(Q) may not contain any contradictory splits!

5 Dyadic Closure Method (DCM)

We now describe a new method for tree reconstruction, which we call the Dyadic Closure Method, or DCM.

Suppose T is a fixed binary tree. From the previous section, we know that if we can find a set Q of
quartet splits such that RT ⊆ Q ⊆ Q(T ), then DCTC(Q) will reconstruct T .

One approach to find such a set Q would be to let Q be the set of splits (computed using the Four Point
Method) on all possible quartets. However, it is possible that the sequence length needed to ensure that
every quartet is accurately analyzed might be too large to obtain accurate reconstructions of large trees, or
of trees containing short edges.

The approach we take in the Dyadic Closure Method is to use sets of quartet splits based upon few
quartets, rather than upon all possible quartets (by contrast, other quartet based methods, such as Quartet
Puzzling [47, 48], the Buneman tree construction [7], etc. infer quartet splits for all the possible quartets in
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the tree). Basing the tree reconstruction upon properly selected sets of quartets makes it possible to expect,
even from short sequences, that all the quartet splits inferred for the selected subset of quartets will be valid.

Since what we need is a set Q such that RT ⊆ Q ⊆ Q(T ), we need to ensure that we pick a large
enough set of quartets so that it contains all of RT , and yet not too large that it contains any invalid quartet
splits. Surprisingly, obtaining such a set Q is quite easy (once the sequences are long enough), and we will
describe a greedy approach which accomplishes this task. We will also show that the greedy approach can
be implemented very efficiently, so that not too many calls to the DCTC algorithm need to be made in
order to reconstruct the tree, and analyze the sequence length needed for the greedy approach to succeed
with 1 − o(1) probability.

We now describe how this is accomplished.

Definition 2: [Qw, and the width of a quartet:]
The width of a quartet i, j, k, l is defined to be the maximum of of hij , hik, hil, hjk, hjl, hkl, where hij denotes
the dissimilarity score between sequences i and j (see Section 2). For each quartet whose width is at most
w, compute all feasible splits on that quartet using the Four-Point Method. Qw is defined to be the set of
all such reconstructed splits.

(We note that we could also compute the split for a given quartet of sequences in any number of ways,
including maximum likelihood estimation, parsimony, etc., but we will not explore these options in this
paper.)

For large enough values of w, Qw will with high probability contain invalid quartet splits (unless the
sequences are very long), while for very small values of w, Qw will with high probability only contain valid
quartet splits (unless the sequences are very short). Since our objective is a set of quartet splits Q such that
RT ⊆ Q ⊂ Q(T ), what we need is a set Qw such that Qw contains only valid quartet splits, and yet w is
large enough so that all representative quartets are contained in Qw as well.

We define sets
A = {w ∈ {hij : 1 ≤ i, j ≤ n} : RT ⊆ Qw} (12)

and
B = {w ∈ {hij : 1 ≤ i, j ≤ n} : Qw ⊆ Q(T )}. (13)

In other words, A is the set of widths w (drawn from the set of dissimilarity scores) which equal or exceed
the largest width of any representative quartet, and B is the set of widths (drawn from the same set) such
that all quartet splits of that dissimilarity score are correctly analyzed by the Four Point Method.

It is clear that B is an initial segment in the list of widths, and that A is a final segment (these segments
can be empty). It is easy to see that if w ∈ A ∩ B, then DCTC(Qw) = T . Thus, if the sequences are long
enough, we can apply DCTC to each of the O(n2) sets Qw of splits, and hence reconstruct the tree properly.
However, the sequences may not be long enough to ensure that such a w exists; i.e. A ∩ B = ∅ is possible!
Consequently, we will require that A ∩ B �= ∅, and state this requirement as an hypothesis (later, we will
show in Theorem 9 that this hypothesis holds with high probability for sufficiently long sequences):

A∩ B �= ∅. (14)

When this hypothesis holds, we clearly have a polynomial time algorithm, but we can also show that the
DCTC algorithm enables a binary search approach over the realized widths values, so that instead of O(n2)
calls to the DCTC algorithm, we will have only O(log n) such calls.

Recall that DCTC(Qw) is either a tree T , Inconsistent, or Insufficient.
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• Insufficient: This indicates that w is too small, because not all representative quartet splits are present,
and we should increase w.

• Tree output: If this happens, the quartets are consistent with a unique tree, and that tree is returned.

• Inconsistent: This indicates that the quartet splits are incompatible, so that no tree exists which is
consistent with each of the constraints. In this case, we have computed the split of at least one quartet
incorrectly. This indicates that w is too large, and we should decrease w.

If not all representative quartets are inferred correctly, then every set Qw will be either insufficient or
inconsistent with T , perhaps consistent with a different tree. In this case the sequences are too short for the
DCM to reconstruct a tree accurately.

We summarize our discussion as follows:

Dyadic Closure Method:

Step 1: Compute the distance matrices d and h (recall that d is the matrix of corrected empirical distances,
and h is the matrix of normalized Hamming distances, i.e. the dissimilarity score).

Step 2: Do a binary search as follows: for w ∈ {hij}, determine Qw. If DCTC(Qw) = T , for some tree
T , then Return T . If DCTC returns Inconsistent, then w is too large; decrease w. If DCTC returns
Insufficient, then w is too small; increase w.

Step 3: If for all w, DCTC applied to Qw returns Insufficient or Inconsistent, then Return Fail.

We now show that this method accurately reconstructs the tree T if A ∩ B �= ∅ (i.e. if Hypothesis 14
holds).

Theorem 7 Let T be a fixed binary tree. The Dyadic Closure Method returns T if Hypothesis (14) holds,
and runs in O(n5 log n) time on any input.

Proof. If w ∈ A ∩ B, then DCTC applied to Qw returns the correct tree T by Theorem 6. Hypothesis
(14) implies that A∩B �= ∅, hence the Dyadic Closure Method will return a tree if it examines any width in
that intersection, hence we need only prove that DCM either examines a width in that intersection, or else
reconstructs the correct tree for some other width. This follows directly from Theorem 6.

The running time analysis is easy. Since we do a binary search, the DCTC algorithm is called at most
O(log n) times. The dyadic closure phase of the DCTC algorithm costs O(n5) time, by Lemma 5, and
reconstructing the tree T from cl(Q) uses at most O(n5) time using standard techniques. �

Note that we have only guaranteed performance for DCM when A ∩ B �= ∅; indeed, when A ∩ B = ∅,
we have no guarantee that DCM will return the correct tree. In the following section, we will discuss the
ramifications of this requirement for accuracy, and show that the sequence length needed to guarantee that
A ∩ B �= ∅ with high probability is actually not very large.
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6 Performance of DCM for tree reconstruction under the Neyman
2-state model

In this section we analyse the performance of a distance-based application of DCM to reconstruct trees under
the Neyman 2-state model under two standard distributions.

6.1 Analysis of the Dyadic Closure Method

Our analysis of the Dyadic Closure Method has two parts. In the first part, we establish the probability that
the estimation (using the Four Point Method) of the split induced by a given quartet will be correct. In the
second part, we establish the probability that the greedy method we use will contain all short quartets but
no incorrectly analysed quartet.

Our analysis of performance of the DCM method depends heavily on the following two lemmas:

Lemma 4 [Azuma–Hoeffding inequality, see [3]]
Suppose X = (X1, X2, . . . , Xk) are independent random variables taking values in any set S, and L : Sk → IR
is any function that satisfies the condition: |L(u)−L(v)| ≤ t whenever u and v differ at just one coordinate.
Then,

IP [L(X) − IE[L(X)] ≥ λ] ≤ exp
(
− λ2

2t2k

)
,

IP [L(X) − IE[L(X] ≤ −λ] ≤ exp
(
− λ2

2t2k

)
. �

We define the (standard) L∞ metric on distance matrices, L∞(d, d′) = maxij |dij − d′ij |. The following
discussion relies upon definitions and notations from Section 2.

Lemma 5 Let T be an edge weighted binary tree with four leaves i, j, k, l, let D be the additive distance
matrix on these four leaves defined by T , and let x be the weight on the single internal edge in T . Let d be
an arbitrary distance matrix on the four leaves. Then the Four-Point Method infers the split induced by T
from d if L∞(d,D) < x/2.

Proof. Suppose that L∞(d,D) < x/2, and assume that T has the valid split ij|kl. Note that the Four
Point Method will return a single quartet split ij|kl if and only if dij + dkl < min{dik + djl, dil + djk}. Note
that since ij|kl is a valid quartet split in T , Dij +Dkl +2x = Dik +Djl = Dil +Djk. Since L∞(d,D) < x/2,
it follows that

dij + dkl < Dij + Dkl + x,

dik + djl > Dik + Djl − x,

and
dil + djk > Dil + Djk − x,

with the consequence that dij + dkl is the (unique) smallest of the three pairwise sums. �

Recall that DCM applied to the Neyman 2-state model computes quartet splits using the Four Point
Method (FPM).
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Theorem 8 Assume that z is a lower bound for the transition probability of any edge of a tree T in the
Neyman 2-state model, y ≥ maxEij is an upper bound on the compound changing probability over all ij
paths in a quartet q of T . The probability that FPM fails to return the correct quartet split on q from k sites
is at most

18 exp
(
−(1 −

√
1 − 2z)2(1 − 2y)2k/8)

)
. (15)

Proof. First observe from Formula (1) that z is also a lower bound for the compound changing probability
for the path connecting any two vertices of T .
We know that FPM returns the appropriate subtree given the additive distances Dij ; furthermore, if |dij −
Dij | ≤ − 1

4 log(1 − 2z) for all i, j, then FPM will also return the appropriate subtree on all ijkl, by Lemma
5. Consequently,

IP[FPM errs] ≤ IP
[
∃i, j : |Dij − dij | > −1

4
log(1 − 2z)

]
. (16)

Hence by (16), we have

IP[FPM errs] ≤
∑
ij

IP
[
|Dij − dij | > −1

4
log(1 − 2z)

]
. (17)

For convenience we drop the subscripts when we analyse the events in (17) and just write D and d, we write
p for the corresponding transition probability Eij and p̂ for the relative frequency hij . By simple algebra,

|D − d| =
1
2

log
1 − 2p

1 − 2p̂
if p < p̂ (18)

|D − d| =
1
2

log
1 − 2p̂

1 − 2p
if p ≥ p̂. (19)

Now we consider the probability that the four point method fails; i.e. the event estimated in (17). If p ≥ p̂,
then formula (19) applies, so that IP[FPM errs] is algebraically equivalent to

p − p̂ ≥ 1
2

[
(1 − 2z)−1/2 − 1

]
(1 − 2p). (20)

This can then be analysed using Lemma 4. The other case is where p < p̂. In this case, formula (18) applies,
and IP[FPM errs] is algebraically equivalent to

p̂ − p

1 − 2p̂
≥ 1

2

[
(1 − 2z)−1/2 − 1

]
. (21)

Select an arbitrary positive number ε. Then p̂ − p ≥ (1 − 2p)ε with probability

exp(−ε2(1 − 2p)2k/2) (22)

by Lemma 4. If p̂ − p < (1 − 2p)ε, then

1
1 − 2p̂

<
1

(1 − 2p) − 2ε(1− 2p)
=

1
(1 − 2p)

1
(1 − 2ε)

.

Hence

IP
[

p̂ − p

1 − 2p̂
≥ 1

2

[
(1 − 2z)−1/2 − 1

] ]

≤ IP
[

p̂ − p

(1 − 2p)(1 − 2ε)
≥ 1

2

[
(1 − 2z)−1/2 − 1

] ]
+ exp(−ε2(1 − 2p)2k/2)

≤ exp(−ε2(1 − 2p)2k/2) (23)

+ exp
(
−(1 − 2p)2(1 − 2ε)2

[
(1 − 2z)−1/2 − 1

]2

k/8
)
. (24)
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Note that ε = (1/2)[1 − (1 − 2z)1/2] is the optimal choice. Formulae (22, 23, and 24) contribute each the
same exponential expression to the error, and (16) or (17) multiplies it by 6, due to the six pairs in the
summation. �

This allows us to state our main result. First, recall the definition of depth from Section 2.

Theorem 9 Suppose k sites evolve under the Neyman 2-state model on a binary tree T , so that for all edges
e, p(e) ∈ [f, g], where we allow f, g to be functions of n. Then the Dyadic Closure Method reconstructs T
with probability 1 − o(1), if

k >
c · log n

(1 −
√

1 − 2f)2(1 − 2g)4depth(T )+6
(25)

where c is a fixed constant.

Proof. It suffices to show that Hypothesis (14) holds. For k evolving sites (i.e. sequences of length k), and
τ > 0, let us define the following two sets, Sτ = {{i, j} : hij < 0.5 − τ} and Zτ = {q ∈

(
[n]
4

)
: for all i, j ∈

q, {i, j} ∈ S2τ}, and the following four events,

A = Qshort(T ) ⊆ Zτ , (26)

Bq = FPM correctly returns the split of the quartet q ∈
(

[n]
4

)
, (27)

B =
⋂

q∈Zτ

Bq, (28)

C = S2τ contains all pairs {i, j} with Eij < 0.5− 3τ and no pair {i, j} with Eij ≥ 0.5 − τ. (29)

Thus, IP[A ∩ B �= ∅] ≥ IP[A ∩ B]. Define

λ = (1 − 2g)2depth(T )+3. (30)

We claim that:
IP[C] ≥ 1 − (n2 − n)e−τ2k/2 (31)

and
IP[A|C] = 1, if τ ≤ λ/6 . (32)

To establish (31), first note that hij satisfies the hypothesis of the Azuma-Hoeffding Inequality (Lemma 4
with Xi the sequence of states for site i and t = 1/k). Suppose Eij ≥ 0.5 − τ . Then,

IP[{i, j} ∈ S2τ ] = IP[hij < 0.5− 2τ ]

≤ IP
[
hij − Eij ≤ 0.5− 2τ − Eij

]
≤ IP

[
hij − IE[hij ] ≤ −τ

]
≤ e−τ2k/2.

Since there are at most
(

n
2

)
pairs {i, j}, the probability that at least one pair {i, j} with Eij ≥ 0.5 − τ lies

in S2τ is at most
(

n
2

)
e−τ2k/2. By a similar argument, the probability that S2τ fails to contain a pair {i, j}

with Eij < 0.5 − 3τ is also at most
(

n
2

)
e−τ2k/2. These two bounds establish (31).

We now establish (32). For q ∈ R(T ) and i, j ∈ q, if a path e1e2...et joins leaves i and j, then t ≤
2depth(T ) + 3 by the definition of R(T ). Using these facts, (1), and the bound p(e) ≤ g, we obtain
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Eij = 0.5 [1− (1 − 2p1) · · · (1 − 2pt)] ≤ 0.5(1 − λ). Consequently, Eij < 0.5 − 3τ (by assumption that
τ ≤ λ/6 ) and so {i, j} ∈ S2τ once we condition on the occurrence of event C. This holds for all i, j ∈ q, so
by definition of Zτ we have q ∈ Zτ . This establishes (32).

Define a set

X =
{

q ∈
(

[n]
4

)
: max{Eij : i, j ∈ q} < 0.5− τ

}

(note that X is not a random variable, while Zτ , Sτ are). Now, for q ∈ X , the induced subtree in T has
mutation probability at least f(n) on its central edge, and mutation probability of no more than max{Eij :
i, j ∈ q} < 0.5 − τ on any pendant edge. Then, by Theorem 8 we have:

IP[Bq] ≥ 1 − 18 exp
(
−(1 −

√
1 − 2f)2τ2k/8

)
. (33)

whenever q ∈ X . Also, the occurrence of event C implies that

Zτ ⊆ X (34)

since if q ∈ Zτ , and i, j ∈ q, then i, j ∈ S2τ , and then (by event C), Eij < 0.5− τ , hence q ∈ X . Thus, since
B =

⋂
q∈Zτ

Bq, we have:

IP[B ∩ C] = IP[(
⋂

q∈Zτ

Bq) ∩ C] ≥ IP[(
⋂

q∈X

Bq) ∩ C]

where the second inequality follows from (34), as this shows that when C occurs,
⋂

q∈Zτ
Bq ⊇

⋂
q∈X Bq.

Invoking the Bonferonni inequality, we deduce that

IP[B ∩ C] ≥ 1 −
∑
q∈X

IP[Bq] − IP[C]. (35)

Thus, from above,
IP[A ∩ B] ≥ IP[A ∩ B ∩ C] = P [B ∩ C]

(since IP[A|C] = 1), and so, by (33) and (35),

IP[A ∩ B] ≥ 1 − 18
(n

4

)
exp

(
−(1 −

√
1 − 2f)2τ2k/8

)
− (n2 − n)e−τ2k/2.

Formula (25) follows by an easy calculation. �

6.2 Distributions on trees

In the previous section we provided an upper bound on the sequence length that suffices for the Dyadic
Closure Method to achieve an accurate estimation with high probability, and this upper bound depends
critically upon the depth of the tree. In this section, we determine the depth of a random tree under two
simple models of random binary trees.

These models are the uniform model, in which each tree has the same probability, and the Yule-Harding
model, studied in [2, 8, 27] (the definition of this model is given in the proof). This distribution is based
upon a simple model of speciation, and results in “bushier” trees than the uniform model. The following
results are needed to analyse the performance of our method on random binary trees.
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Theorem 10 (i) For a random semilabelled binary tree T with n leaves under the uniform model, depth(T ) ≤
(2 + o(1)) log2 log2(2n) with probability 1 − o(1).
(ii) For a random semilabelled binary tree T with n leaves under the Yule-Harding distribution, after sup-
pressing the root, depth(T ) = (1 + o(1)) log2 log2 n with probability 1 − o(1).

Proof. This proof relies upon the definition of an edi-subtree, which we now define. An edge-deletion induced
subtree (edi-subtree) is a rooted subtree of a tree T induced by deleting an edge but not its endpoints.

We now establish (i). Recall that the number of all semilabelled binary trees is (2n − 5)!!. Now there is
a unique (unlabelled) binary tree F on 2t + 1 leaves with the following description: one endpoint of an edge
is identified with the degree two root of a complete binary tree with 2t leaves. The number of semilabelled
binary trees whose underlying topology is F is (2t + 1)!

/
22t−1. This is fairly easy to check, and this also

follows from Burnside’s Lemma as applied to the action of the symmetric group on trees, as was first observed
by [32] in this context. A rooted semilabelled binary forest is a forest on n labelled leaves, m trees, such that
every tree is either a single leaf or a binary tree which is rooted at a vertex of degree 2. It was proved by
Carter et al. [11] that the number of rooted semilabelled binary forests is N(n,m) =

(
2n−m−1

m−1

)
(2n−2m−1)!!.

Now we apply the probabilistic method. We want to set a number t large enough, such that the total number
of edi-subtrees of depth at least t in the set of all semilabelled binary trees on n vertices is o((2n − 5)!!).
The theorem then follows for this number t. We will show that some t = (2 + o(1)) log2 log2(2n) suffices.
We count ordered pairs in two ways, as usual: Let Et denote the number of edi-subtrees of depth at least t
(edi-subtrees induced by internal edges and leaf edges combined) counted over of all semilabelled trees. Then
Et is equal to the number of ways to construct a rooted semilabelled binary forest on n leaves of 2t +1 trees,
then use the 2t +1 trees as leaf set to create all F -shaped semilabelled trees (as described above), with finally

attaching the leaves of F to the roots of the elements of the forest. Then Et =
(

(2t +1)!
/
22t−1

)
N(n, 2t +1).

Hence everything boils down to finding a t for which(
(2t + 1)!

/
22t−1

)(
2n− 2t − 2

2t

)
(2n − 2t+1 − 3)!! = o((2n − 5)!!).

Clearly t = (1 + δ) log2 log2(2n) suffices.

We now consider (ii). First we describe the proof for the usual rooted Yule-Harding trees. These trees
are defined by the following constructive procedure. Make a random permutation π1, π2, . . . , πn of the n
leaves, and join π1 and π2 by edges to a root R of degree 2. Add each of the remaining leaves sequentially, by
randomly (with the uniform probability) selecting an edge incident to a leaf in the tree already constructed,
subdividing the edge, and make πi adjacent to the newly introduced node. For the depth of a Yule-Harding
tree, consider the following recursive labelling of the edges of the tree. Call the edge πiR (for i = 1, 2) “i
new”. When πi is added (i ≥ 3) by insertion into an edge with label “j new”, we give label “i new” to the
leaf edge added, give label “j new” to the leaf part of the subdivided edge, and turn the label “j new” into “j
old” on the other part of the subdivided edge. Clearly, after l insertions, all numbers 1, 2, ..., l occur exactly
once with label new, in each occasion labelling leaf edges. The following which may help in understanding
the labelling: edges with “old” label are exactly the internal edges and j is the smallest label in the subtree
separated by an edge labelled “j old” from the root R, any time during the labelling procedure.

We now derive an upper bound for the probability that an edi-subtree of depth d develops. If it happens,
then a leaf edge inserted at some point has to grow a deep edi-subtree on one side. Let us denote by T R

i the
rooted random tree that we already obtained with i leaves. Consider the probability that the most recently
inserted edge “i new” ever defines an edi-subtree with depth d. Such an event can happen in two ways: this
edi-subtree may emerge on the leaf side of the edge or on the tree side of the edge (these sides are defined
when the edge is created). Let us denote these probabilities by IP[i,OUT|T R

i ] and IP[i, IN|T R
i ], since these
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probabilities may depend on the shape of tree already obtained (and, in fact, the second probability does so
depend on the shape of T R

i ). We estimate these quantities with tree-independent quantities.

For the moment, take for granted the following inequalities:

IP[i,OUT|T R
i ] ≤ IP[i, IN|T R

i ], (36)

IP[i, IN|T R
i ] ≤ ε(d, n) (37)

for some function ε(d, n) defined below. Clearly

IP[∃ depth d edi-subtree ] ≤
n∑

i=1

∑
T R

i

IP[i,OUT|T R
i ]IP[T R

i ] + IP[i, IN|T R
i ]IP[T R

i ], (38)

and using (36) and (37), (38) simplifies to

IP[∃ depth d edi-subtree ] ≤ 2nε(d, n). (39)

We now find an appropriate ε(d, n).

For convenience we assume that 2s = n − 2, since it simplifies the calculations. Set k = 2d−1 − 1, it is
clear that at least k properly placed insertions are needed to make the current edge “i new ” have depth d on
its tree side. Indeed, πi was inserted into a leaf edge labelled “j new”, and one side of this leaf edge is still
a leaf, which has to develop into depth d − 1, and this development requires at least k new leaf insertions.

Focus now entirely on the k insertions that change “j new” into an edi-subtree of depth d − 1. Rank
these insertions by 1, 2, ..., k in order, and denote by 0 the original “j new” leaf edge. Then any insertion
ranked i ≥ 1 may go into one of those ranked 0, 1, ..., i − 1. Call the function which tells for i = 1, 2, ..., k,
which depth i is inserted into, a core. Clearly, the number of cores is at most kk.

We now estimate the probability that a fixed core emerges. For any fixed i1 < i2 < ... < ik, the probability
that inserting πij will make the insertion enumerated under depth j, for all j = 1, 2, ..., k, is at most

1
i1 − 1

· 1
i2 − 1

· · · 1
ik − 1

by independence. Summarizing our observations,

IP[i, IN|T R
i ] ≤ kkσk

n−i (1/i, 1/(i + 1), ..., 1/(n− 1))

≤ kkσk
n−2 (1/2, 1/3, ..., 1/(n− 1)) , (40)

where σk
m is the symmetric polynomial of m variables of degree k. We set ε(n, d) = σk

n−2(1/2, 1/3, ..., 1/(n−
1)). To estimate (40), observe that any term in σk

n−2(1/2, 1/3, ..., 1/(n−1)) can be described as having exactly
ai reciprocals of integers substituted from the interval (2−(i+1), 2−i]. The point is that those reciprocals differ
little in each of those intervals, and hence a close estimate is possible. A generic term of σk

n−2 as described
above is estimated from above by

2−(1·a1+2·a2+...+(s−1)as−1). (41)

Hence ε(n, d) is at most

∑
a1+a2+...+as−1=k

ai≤2i

(
2
a1

)(
4
a2

)(
8
a3

)
· · ·

(
2s−1

as−1

)
2−(1·a1+2·a2+...+(s−1)as−1), (42)
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by (41). Since (
2i

ai

)
2−iai ≤ 1

ai!
,

(42) is less than or equal ∑
a1+a2+...+as−1=k

ai≤2i

1
a1!a2! · · ·as−1!

. (43)

Observe that the number of terms in (43) is at most the number of compositions of k into s − 1 terms,(
k+s−2

s−2

)
. The product of factorials is minimized (irrespective of ai ≤ 2i) if all ai’s are taken equal. Hence,

setting k = s1+δ for any fixed δ > 0, (43) is at most(
(k + s − 2)s−2

(s − 2)!

)/(( k

s − 1
)
!k

)
,

and hence

ε(n, d) ≤ kk

(
(k + s − 2)s−2

(s − 2)!

)/(( k

s − 1
)
!k

)
≤ n−clog n log log n,

and (39) goes to zero. For the depth d, our calculation yields (1 + δ + o(1)) log2 log2 n with probability
1 − o(1).

We leave the establishment of (36) to the reader. Now, to obtain a similar result for unrooted Yule-
Harding trees, just repeat the argument above, but use the unrooted Ti instead of the rooted T R

i . The
probability of any Ti is the sum of probabilities of 2i − 3 rooted T R

i ’s, since the root could have been on
every edge of Ti. Hence Formula (37) has to be changed for IP[i, IN|Ti] ≤ (2n − 3)ε(d, n). With this change
the same proof goes through, and the threshold does not change. �

6.3 The performance of DCM and two other distance methods for inferring
trees in the Neyman 2-state model

In this section we describe the convergence rate for the DCM method, and compare it briefly to the rates
for two other distance-based methods, the Agarwala et al. 3-approximation algorithm [1] for the L∞-nearest
tree, and Neighbor-joining [40]. We make the natural assumption that all methods use the same corrected
empirical distances from Neyman 2-state model trees.

The neighbor-joining method is perhaps the most popular distance-based method used in phylogenetic
reconstruction, and in many simulation studies (see [33, 34, 41] for an entry into this literature) it seems
to outperform other popular distance based methods. The Agarwala et al. algorithm [1] is a distance-
based method which provides a 3-approximation to the L∞ nearest tree problem, so that it is one of the
few methods which provide a provable performance guarantee with respect to any relevant optimization
criterion. Thus, these two methods are two of the most promising distance-based methods against which to
compare our method. Both these methods use polynomial time.

In [23], Farach and Kannan analyzed the performance of the 3-approximation algorithm with respect to
tree reconstruction in the Neyman 2-state model, and proved that the Agarwala et al. algorithm converged
quickly for the variational distance (a related but different concern). Recently, Kannan [35] extended the
analysis and obtained the following counterpart to (25): If T is a Neyman 2-state model tree with mutation
rates in the range [f, g], and if sequences of length k′ are generated on this tree, where

k′ >
c′ · log n

f2(1 − 2g)2diam(T )
(44)
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for an appropriate constant c′, and where diam(T ) denotes the “diameter” of T , then with probability
1 − o(1) the result of applying Agarwala et al. to corrected distances will be a tree with the same topology
as the model tree. In [5], Atteson proved an identical statement for neighbor-joining, though with a different
constant (the proved constant for neighbor-joining is smaller than the proved constant for the Agarwala et
al. algorithm).

Comparing this formula to (25), we note that the comparison of depth and diameter is the issue, since
(1−

√
1 − 2f)2 = Θ(f2) for small f . It is easy to see that diam(T ) ≥ 2depth(T ) for binary trees T , but the

diameter of a tree can in fact be quite large (up to n − 1), while the depth is never more than log n. Thus,
for every fixed range of mutation probabilities, the sequence length that suffices to guarantee accuracy for
the neighbor-joining or Agarwala et al. algorithms can be quite large (i.e. it can grow exponentially in the
number of leaves), while the sequence length that suffices for the Dyadic Closure Method will never grow
more than polynomially. See also [20, 21, 39] for further studies on the sequence length requirements of these
methods.

The following table summarizes the worst-case analysis of the the sequence length that suffices for the
Dyadic Closure Method to obtain an accurate estimation of the tree, for a fixed and a variable range of
mutation probabilities. We express these sequence lengths as functions of the number n of leaves, and use
results from (25) and Section 6.2 on the depth of random binary trees. “Best case” (respectively, “worst
case”) trees refers to best case (respectively worst case) shape with respect to the sequence length needed
to recover the tree as a function of the number n of leaves. Best case trees for DCM are those whose depth
is small with respect to the number of leaves; these are the caterpillar trees – i.e. trees which are formed
by attaching n leaves to a long path. Worst case trees for DCM are those trees whose depth is large with
respect to the number of leaves; these are the complete binary trees. All trees are assumed to be binary.

range of mutation probabilities on edges:

[f, g]
f, g are constants

[
1

log n
,
log log n

log n

]
worst case trees polynomial polylog
best case trees logarithmic polylog
random (uniform) trees polylog polylog
random (Yule-Harding) trees polylog polylog

Table 1. Sequence length needed by DCM to return trees under the Neyman 2-state model

One has to keep in mind that comparison of performance guarantees for algorithms do not substitute for
comparison of performances. Unfortunately, no analysis is available yet on the performance of the Agarwala
et al. and neighbor-joining algorithms on random trees, therefore we had to use their worst-case estimates
also for the case of random trees.

7 Summary

We have provided upper and lower bounds on the sequence length k required for accurate tree reconstruction,
and shown that in certain cases these two bounds are surprisingly close in their order of growth with n. It is
quite possible that even better upper bounds could be obtained by a tighter analysis of our DCM approach,
or perhaps by analyzing other methods.
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Our results may provide a nice analytical explanation for some of the surprising results of recent sim-
ulation studies (see for example, [30]) which found that trees on hundreds of species could be accurately
reconstructed from sequences of only a few thousand sites long. For molecular biology the results of this
paper may be viewed, optimistically, as suggesting that large trees can be reconstructed accurately from
realistic length sequences. Nevertheless, some caution is required, since the evolution of real sequences will
only be approximately described by these models, and the presence of very short and/or very long edges will
call for longer sequence lengths.
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