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Department of Mathematics, University of South Carolina

Columbia, SC 29208, USA
laszlo@math.sc.edu

August 29, 1998

Abstract

We study the integral uniform (multicommodity) flow problem in
a graph G and construct a fractional solution whose properties are in-
variant under the action of a group of automorphisms Γ < Aut(G).
The fractional solution is shown to be close to an integral solution
(depending on properties of Γ), and in particular becomes an integral
solution for a class of graphs containing Cayley graphs. As an applica-
tion we estimate asymptotically (up to additive error terms) the edge
congestion of an optimal integral uniform flow (edge forwarding index)
in the cube connected cycles and the butterfly.
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1 Introduction

The uniform concurrent multicommodity flow (uniform flow) problem [14,
17] is the problem of supplying one unit of (fractional) flow between all
ordered pairs of vertices in a graph; the objective is to minimize the largest
flow through any edge which is called the congestion. The integral version
of this problem has been studied under the name edge forwarding index
[2, 8, 9, 16], and calls for the assignment of one path per each ordered
pair of vertices to minimize the congestion. The (fractional) uniform flow
problem is known to be solvable in polynomial time [17], and starting from
the work of Shahrokhi and Matula [17], there have been a series of papers on
how to approximately solve this problem faster [1], [11], [6], and [10]. The
integral version is known to be NP-hard [3, 16].

There is a need for estimating the value of the congestion, since many
important graph theoretical parameters are related to the congestion. For
instance the congestion of a uniform flow provides for lower bounds for
the bisection width [13, 21], and expansion (isoperimetric) rates [20, 21],
whereas, the congestion of an integral uniform flow, or the forwarding index,
provides for lower bounds for the the crossing number [13, 21, 22, 24, 25].
Moreover, the close connection between the integral multicommodity flow
problems and packet routing was discovered by Leighton, Maggs, and Rao
[12], who showed the existence of a near optimal offline schedule for routing
the packets on a set of paths involving a near optimal solution to the integral
multicommodity flow problem.

In this paper (Section 3), we present an algorithm for constructing uniform
flows which exhibit invariance under the action of a group of automorphisms
of the graph (Theorem 1). The uniform flows constructed here are shown
to be ”near integral”, in the sense that the number of paths hosting flow
are bounded as a function of the order of the stabilizer of a two-tuple of
vertices in the group. In particular, for a class of graphs containing Cayley
graphs, the constructed flow is integral. Previously, we have been able to
construct invariant uniform flows [20, 21]. Our previous methods, however,
would construct uniform flows which use too many paths, and hence were
very far from being an integral uniform flow. In [8, 19] the integral uniform
flows were constructed only for Cayley graphs. These constructions could
be shown to be edge-optimal when the underlying Cayley graphs were also
edge-transitive. Our general construction in the present paper (Theorem 1)
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implies all these previous ad-hoc results. Moreover, for the class of orbit
proportional graphs which contains all edge-transitive graphs, defined in
Section 3, the algorithm is shown to construct an optimal (fractional) flow
(Theorem 2). Our method also provides formulas for the congestion of the
optimal uniform flow.

There is a continuing interest in computing the edge-forwarding index of
specific families of graphs, especially of those which occur as architectures in
parallel computing. Recently Gauyacq [5] computed closed bounds for the
edge-forwarding index of star graphs and some related families, which are
close enough to yield asymptotic formula when the parameter (dimension)
of the graph family approaches infinity.

Sections 4 and 5 are devoted to the forwarding indices of cube connected
cycles and butterflies. These quantities were not computed before in the
literature. Section 4 is a technical section and is dedicated to the structure of
butterflies (with wrap around) and cube connected cycles, which are among
the popular architectures in parallel computing. It is shown there that the
cube connected cycles is orbit proportional, whereas the butterfly is not.

Section 5 is a very important part of the paper, where we obtain asymp-
totic formulas for the edge-forwarding indices of cube connected cycles and
butterflies. Our general construction is shown to provide for an optimal
integral flow for the cube connected cycles. The fact that the cube con-
nected cycles is orbit proportional is crucial in verifying the optimality of
the construction, and the optimality result can not be proved using other
techniques in the forwarding index literature [8]. We apply then a proba-
bilistic analysis to this optimal integral flow in order to obtain asymptotic
formula for the optimal congestion in n-dimensional cube connected cycles.
The value of the congestion turns out to be 5

4n22n(1− o(1)) asymptotically.

For the butterfly which is not orbit proportional, neither the general
construction presented here, nor the previous ad-hoc constructions [8, 19]
can be shown to provide for an optimal solution for the edge-forwarding
index. (These constructed integral flows can be shown to have a congestion
which is within a multiplicative factor of 2 from the optimal congestion.)
Nonetheless, using the properties of the invariant flows and some observa-
tions from the duality of the linear programming, we construct an integral
flow whose congestion is asymptotically equal to that of the optimal flow,
5
4n22n−1(1 + o(1)).
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Section 6 sketches an application of our formula for the edge forwarding
index of the butterfly by providing a lower bound of ( 16

125 − o(1))4n, on its
crossing number. As far as we know our multiplicative constant is the best
currently known.

This paper is based on the technical report [18] from 1991, a preliminary
conference version of the paper with incomplete proofs was published in [23].

2 Definitions

Let G =< V,E > be a connected simple finite graph. Let L(p) denote
the number of edges in the path p and let L(i, j) denote the length of the
shortest ij path. (We preserve the word distance for something else.) We
set L =

∑
(i,j)∈V ×V L(i, j). Let p be a path with end vertices a and b in the

graph G =< V,E >. Then p will give rise to an oriented path from a to b;
and to another from b to a. For any ordered pair of vertices (i, j) ∈ V × V ,
we denote by Pij the set of all oriented paths from i to j; any p ∈ Pij is
termed an ij path. Let P = ∪(i,j)∈V ×V Pij be the set of all oriented paths.
Throughout this paper the term path means oriented path, unless stated
otherwise. For e ∈ E, let Pe denote the collection of all paths containing e.
Finally, let R+ denote the set of non-negative real numbers.

A uniform concurrent multicommodity flow (shortly uniform flow) f is a
function f : P → R+, such that

∑
p∈Pij

f(p) = 1 for any (i, j) ∈ V ×V, i �= j.

We call f(p) the flow on path p; if f(p) > 0, then p is called an active path.
We set f(e) =

∑
p∈Pe

f(p) for any edge e = xy, and call f(e) the flow on the
edge e. For a uniform flow f we denote maxe∈Ef(e) by µf and call µf the
congestion of f . A uniform flow f is called integral, if f(p) = 1 for any active
path p. Let µG denote the smallest congestion achieved by a uniform flow
in G. A uniform flow f in G =< V,E > is edge optimal, if µf = µG. An
edge optimal uniform flow can be computed using a node-arc form linear
program [4] in polynomial time. Computing the integral versions of the
multicommodity flows and uniform flows have been known to be NP-hard
[3].

A distance function [15] on G =< V,E > is a function d : E → R+ such
that d(e) > 0 for at least one edge e. For any path p ∈ P , we define
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d(p) =
∑

e∈p d(e), moreover for any (i, j) ∈ V × V , we define d(i, j) =
d(j, i) = min{d(p) : p ∈ Pij} for all (i, j) ∈ V × V. We further assume that
d(i, i) = 0, for any i ∈ V . We term d(p) the distance of path p. We define
the distance congestion µd for the distance function d by

µd =
∑

(i,j)∈V ×V d(i, j)∑
e∈E d(e)

.

3 Uniform flows and graph symmetries

Our reference to algebraic graph theory is [26]. It is well known that the
set of all permutations on V constitute a group on V which is called the
automorphism group of G. Let Aut(G) denote the automorphism group of
G, and let Γ be a subgroup of Aut(G), then we write Γ < Aut(G). Note
that the action of any Γ < Aut(G) on E partitions E into equivalent classes.
We call each class a Γ-edge orbit.

A uniform flow f is called a Γ-invariant [20, 21] if for any g ∈ Γ and
any p ∈ P , we have f(p) = f(g(p)). Next, we show how to construct an
invariant uniform flow in which the number of active paths depends on the
structure of Γ, thus in certain desirable cases which includes Cayley graphs
we will have integral uniform flows. Let (a, b) ∈ V × V , we define the ab
stabilizer of Γ, denoted by Γab to be the set of all automorphisms in Γ which
map a to a and b to b. Formally, Γab = {γ ∈ Γ|γ(a) = a, γ(b) = b}. For
p ∈ P , and (a, b) ∈ V × V , let Γ(p) and Γ(a, b), denote {γ(p)|γ ∈ Γ}, and
{(γ(a), γ(b))|γ ∈ Γ}.

Theorem 1 A Γ-invariant uniform flow f∗ in G can be computed in a
polynomial time of |V | and |Γ| so that the number of active paths for any
pair (a, b) ∈ V × V is at most |Γab|. Moreover, any active ab path p has
L(p) = L(a, b), and µf∗ ≤ L

|E1| , where E1 is the smallest Γ-edge orbit.

Proof. The action of Γ partitions V × V into equivalence classes
R1, R2, ..., Rk; thus (a, b) and (c, d) are in the same equivalent class, if
c = γ(a), and d = γ(b), for some γ ∈ Γ. Moreover, for any (a, b) ∈ V × V ,
and any two shortest ab paths, p1, p2 define

p1 Rab p2, iff p2 = γ(p1) for some γ ∈ Γ.
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It is easily seen that, for any (a, b) ∈ V ×V , Rab is an equivalence relation on
the set of shortest ab paths; let Rp

ab denote the equivalence class containing
the shortest ab path p and note that |Rp

ab| ≤ |Γab|.

We now describe the construction of f∗ in each Ri. For i = 1, 2, ..., k,
select a vertex pair (ai, bi) in Ri, and also select one shortest path pi from
ai to bi. Define for i = 1, 2, ..., k,

f∗(p) =

{
1

|Rpi
ab|

, if p ∈ Γ(pi),
0, otherwise.

The claim regarding the time complexity is easy to verify. Moreover, the
invariance of f∗, and the claim regarding the number of active paths are
direct consequence of the construction. Now let (a, b) ∈ Ri, i = 1, 2, ..., k
and note that

∑
p∈Pab

f∗(p) =
∑

p∈Paibi
f∗(p) = |Rpi

aibi
| 1
|Rpi

aibi
| = 1. Finally,

the upper bound on the congestion follows by observing that any two edges
in E1 must host the same amount of flow, and applying a simple averaging
argument same as in [21]. �

Note that in any edge transitive graph G, with Γ = Aut(G), we have
E = E1, and indeed in this case f∗ is edge optimal with µf∗ = L

|E| , since
by the duality theory of linear programming [15] L

|E| is a lower bound on
the congestion of any uniform flow. Moreover, when G is a Cayley graph,
|Γab| = 1, hence f∗ is an integral uniform flow (it has exactly one active path
per vertex pair) and can be used for packet routing. Indeed in this case the
general construction in Theorem 1 implies our previous ad-hoc results in
Theorems 3.2, and 3.3 of [19] for off line computation of packet routes.

For G =< V,E > and Γ < Aut(G), let {E1, E2, ..., Ek} be the set of Γ-orbits
of E. We say that G is Γ-orbit proportional (or orbit proportional when the
context is clear) if for all (i, j) ∈ V × V , any ij path p with L(p) = L(i, j)
and any ij path q, we have

|q ∩ Em| ≥ |p ∩ Em|, m = 1, 2, ..., k.

In order to have examples, we note that any edge transitive graph is
orbit proportional with respect to its automorphism group and any tree is
orbit proportional with respect to the trivial group.

We previously proved the following Theorem [20].
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Theorem 2 Assume that G =< V,E > is Γ-orbit proportional. Let f̂
be a Γ-invariant uniform flow on G such that every ij active path p has
L(p) = L(i, j). Then we have:

(i) f̂ is edge optimal in G.

(ii) Assume that {E1, E2, ..., Et} is the set of Γ-orbits of E and for any
i = 1, 2, ..., t, let di be a distance function with di(e) = 1, if e ∈ Ei, and
di(e) = 0, otherwise. Then µG = µf̂ = maxi µdi .

Observe that the flow f∗ constructed in Theorem 1, satisfies the con-
dition of Theorem 2, and hence when G is orbit proportional f∗ is edge
optimal. Indeed, the Theorems allow to estimate the optimal congestion of
f∗ in an orbit proportional graph. For instance for Qk (k-dimension cube),
which is edge transitive and hence orbit proportional, Theorems 1, 2 give
µf∗ = 2k. Moreover, since Qk is a Cayley graph [26], for any vertex pair
a, b, Γab is the identity, and thus f∗ is an optimal integral uniform flow.
Finally, as we have shown in [20] the class of vertex transitive orbit propor-
tional graphs is closed under Cartesian product. Hence, the class of orbit
proportional graphs for which f∗ is edge optimal is fairly large.

4 The structure of cube connected cycles and but-
terfly

It is well known that the cube connected cycles and the butterfly (with
wrap-around) are Cayley graphs with the same underlying group Γ which
is the wreath product of Zn and Z2 but with different generating sets. We
exploit this structure in the following. Let N = {0, 1, 2, ..., n − 1} and
Θn = {gW,i : W ⊆ N, i ∈ N}. For i, j ∈ N , let i⊕j denote i+j modulo n. For
U ⊆ N and i ∈ N , let U⊕i = {j⊕i : j ∈ U}. Set V �U = (V ∪U)\(V ∩U).
Now Θn is a group with identity g∅,0 and operations

gW,tgU,i = gW�(U⊕t),i⊕t and g−1
W,t = gW⊕(n−t),n−t.

The n-dimensional cube-connected cycles CCn is a Cayley graph over Θn

with the generating set
H = {g∅,1, g{0},0}.
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We term the edges produced by the first generator cyclic edges and the
edges produced by the second generator cubic edges. It is easy to see that
CCn =< V,E >, where

V = {(W, i) : W ⊆ N, i ∈ N}

and (W, i)(U, j) ∈ E if i = j = W � U (cubic edges in dimension i) or if
(i − j ≡ 1 mod n or j − i ≡ 1 mod n) and U = V (cyclic edges).

Let BBn denote the n-dimensional butterfly with wrap-around. It is well
known that BBn is a Cayley graph over Θn with the generating set H =
{g∅,1, g{0},n−1}. We term the edges arising from the first generator cyclic
edges and the edges arising from the second generator cubic edges. It is easy
to see that BBn =< V,E >, where

V = {(X, i) : X ⊆ N, i ∈ N},

and (X, i)(Y, j) ∈ E if X = Y and (i − j ≡ 1 mod n or j − i ≡ 1 mod n)
(cyclic edges) or X � Y = i and j ≡ i− 1 mod n (cubic edges in dimension
i).

Let Cn be the cycle on the vertex set N = {0, 1, . . . , n−1} with the edge set
{0, 1}, {1, 2}, ..., {n − 1, 0}. Define C+

n be Cn with one loop added at every
vertex. For any walk w in CCn or BBn, let Cyclic(w) and Cubic(w) denote
the multiset of cyclic edges and the multiset of cubic edges, respectively, in
w. Any i, j ∈ N (i �= j) split Cn (C+

n ) into two edge disjoint ij paths. We
refer to these paths as left side and right side, where the vertices of the left
side precede, and the vertices of the right side follow i in the cyclic order of
N . For convenience, we assume that the right side is the short side and has
length L(i, j).

Let i and j be two vertices of C+
n (Cn) and T ⊆ N . A gap induced by T is

any ab path p such that (i) a, b ∈ T ∪ {i, j}, (ii) no intermediate vertex of p
is in T ∪ {i, j}. The length of any gap is the number of edges in this gap. A
gap induced by F ⊆ E(Cn) is the gap induced by the set of vertices of edges
of F , such that the gap does not use edges of F . For i �= j, it makes sense
to speak about gaps on the left side and gaps on the right side.

We analyze the structure of shortest paths in CCn first. Let X = (W, i)
be a vertex of CCn; the projection of X on C+

n is the vertex i. This projection
can be extended to the edges and therefore to the walks of CCn in the
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following fashion: the cyclic edges of CCn are projected to the edges of C+
n ,

whereas the cubic edges of CCn are projected to the loops of C+
n . Given two

vertices X1 = (U, i) and X2 = (W, j) in CCn, it is convenient to analyze the
structure of any X1X2 walk p in CCn by projecting it on C+

n to get an ij
walk q in C+

n . Notice that L(p) = L(q), since each edge or loop contributes
one to the length of the walk in C+

n . Let X1 = (W, i) and X2 = (U, j) be two
distinct vertices of CCn. Any loop of an ij walk in C+

n at a vertex a ∈ N is
called an essential loop if a ∈ W�U , otherwise the loop is non-essential. An
ij walk w in C+

n is called an essential walk, if w has the following properties:
(i) every essential loop of C+

n is traversed by w exactly once, and (ii) every
non-essential loop of C+

n is traversed by w an even number of times.

Lemma 1 Let X1 = (W, i) and X2 = (U, j) be two distinct vertices of CCn

and p be a shortest X1X2 path in CCn that is projecting to a walk q of C+
n .

The following hold:

(i) Any X1X2 walk in CCn contains an odd number of edges from each
dimension i ∈ W � U , and an even number of edges from any dimension
j /∈ W � U .

(ii ) Any essential ij walk in C+
n is the projection of an X1X2 walk in

CCn.

(iii) |Cubic(p)| = |U � W |, with one cubic edge in each dimension i ∈
U � W .

(iv) q contains any edge of C+
n at most twice.

(v) Assume that i �= j and let l1 and l2 be the lengths of the longest gaps
induced by U � W on the right side and the left side of C+

n , respectively,
then, |Cyclic(p)| = n + min{L(i, j) − 2l1, n − L(i, j) − 2l2}.

(vi) Assume that i = j and let l be the length of the longest gap induced
by U � W on C+

n . Then, |Cyclic(p)| = min{n, 2n − 2l}.

Proof. (i) is easy to verify. (ii) can be shown employing induction on
|U � W |, but we omit the details. To prove (iii), assume to the contrary
that the path p violates (iii). Consider the projection of p on C+

n which is an
ij walk q. Now, delete all non-essential loops in q. Next, for any essential
loop of C+

n which is traversed more than once by q, delete unnecessary
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occurrences of the loop so that finally this loop is traversed only once by the
walk. The length of the resulting walk is strictly less than length of q and
satisfies the conditions of part (ii). Thus there is an X1X2 path p′ in CCn

Fig. 1 : Configurations of the ij walk q in Lemma 1
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with L(p′) < L(p), a contradiction. To prove (iv), observe that q is a shortest
ij walk among all ij walks in C+

n (in terms of the number of edges) which
goes through all essential loops. Since q can be viewed as a topologically
continuous curve, it has one of the two configurations illustrated in Figures
1.1 and 1.2, if i �= j. Similarly, q has one of the two configurations illustrated
in Figures 1.3 and 1.4, if i = j. This proves (iv). Finally, to show (v) observe
from Figures 1.1 and 1.2 that the portion of Cn which is not traversed by
q is a gap induced by U � W . However, q can be viewed as an ij shortest
walk in Cn containing all vertices in U �W ; thus, this gap is a longest gap.
Now if this gap is located on the left side of Cn, then,

|Cyclic(p)| + l1 = n + L(i, j) − l1,

otherwise,
|Cyclic(p)| + l2 = n + (n − L(i, j)) − l2,

it follows that

|Cyclic(p)| = n + min{L(i, j) − 2l1, n − L(i, j) − 2l2}.

The proof of (vi) is derived using Figures 1.3 and 1.4 in a similar fashion to
(v). �

Now we continue with the structure of shortest paths in the butterfly. A
walk w in Cn is called a labeled walk, if the edges in w are labeled cubic or
cyclic. If an edge is contained more than once in w, we allow different labels
at different occurrences of the edge. Let X = (W, i) be a vertex of BBn;
the projection of X on Cn is defined to be the vertex i of Cn. Given two
vertices X1 = (U, i) and X2 = (W, j) in BBn, it is convenient to analyze
the structure of any X1X2 walk p in BBn by projecting it on Cn to get a
labeled ij walk q in Cn. Any edge of q which is the projection of a cyclic
edge of p is labeled cyclic, any edge of q which projection of a cubic edge of
p is labeled cubic. Let X1 = (W, i),X2 = (U, j) be two distinct vertices in
BBn; an edge (i, i⊕1) in Cn is called essential, if i⊕1 ∈ W � U . A labeled
ij walk w in Cn is called an essential walk, if it has the following properties:
(i) every essential edge is assigned the cubic label exactly once in w, and
(ii) the number of occurrences of any non-essential edge with cubic label in
w is even. Note that an essential walk w can use an essential edge e several
times with cyclic label, as long as e is labeled cubic in w only once.
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Lemma 2 Let X1 = (W, i) and X2 = (U, j) be two distinct vertices of BBn.
Assume p is a shortest X1X2 path in BBn projecting to a walk q of Cn. The
following hold:

(i) Let w be the projection of any X1X2 walk in BBn to Cn, then, the
number of occurrences of any non-essential edge with cubic label in w is
even.

(ii) Any ij essential walk w in Cn is the projection of an X1X2 walk in
BBn.

(iii) q is a shortest ij essential walk in Cn.

(iv) q does not use any edge of Cn more than twice.

(v) Assume that i �= j and let l1 (l2) be the lengths of the longest gaps
induced by the set of edges {(m,m⊕1) : m⊕1 ∈ U � W} on the right (left)
side. Then, L(p) = L(q) = n + min(L(i, j) − 2l1, n − L(i, j) − 2l2).

(vi) Assume that i = j, and let l be the length of the longest gap induced
by the set of edges {(m,m⊕1) : m⊕1 ∈ U � W} on Cn, then L(p) =
min{n, 2n − 2l}.

Proof. The proof is like the proof of Lemma 1 and is therefore omitted.
�

Lemma 3 CCn is Θn-orbit proportional, while BBn is not.

Proof. Note that the edge orbits of CCn under Θn are the set of cyclic
edges and the set of cubic edges. Let X1 = (W, i) and X2 = (U, j) be two
vertices of CCn. By Lemma 1(iii) any X1X2 path p with L(p) = L(X1,X2)
must have |Cubic(p)| = |U �W |. Now assume that p′ is any X1X2 path in
CCn; by Lemma 1(i) p′ must have an odd number of cubic edges from each
dimension i, i ∈ U �W and even number of cubic edges from any dimension
i, i /∈ U �W . Thus, |Cubic(p′)| ≥ |Cubic(p)|. Assume to the contrary that,
|Cyclic(p′)| < |Cyclic(p)|, and consider q′ the projection of p′ on C+

n . Then,
q′ can be converted to an essential ij walk q̂ in C+

n by applying the method in
Lemma 1(iii) to remove the unnecessary essential and non-essential loops.
For the path p̂ whose projection is q̂ we have, |Cubic(p̂)| = |U � W | =
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|Cubic(p)|, and |Cyclic(p̂)| = |Cyclic(p′)| < |Cyclic(p)|. It follows that
L(p̂) < L(p), a contradiction.

To show that BBn is not orbit proportional, take BB4, X1 =
({2, 4}, 1), X2 = (∅, 2). Consider two shortest X1X2 paths p1 and p2,

p1 : ({2, 4}, 1)cubic({4}, 2)cyclic({4}, 3)cubic(∅, 4)cyclic(∅, 3)cyclic(∅, 2)

p2 : ({2, 4}, 1)cubic({4}, 2)cubic({3, 4}, 3)cubic({3}, 4)cyclic({3}, 3)cubic(∅, 2).

Observe that p1 has 2 cubic and 3 cyclic edges, while p2 has 1 cyclic and 4
cubic edges; thus BB4 is not Θn-orbit proportional.�

Lemma 4 Assume U ⊆ N is chosen randomly with uniform distribution.
Then,

(i) Prob(
∣∣∣|U | − n

2

∣∣∣ ≤ n2/3) = 1 − o(1).

(ii) Prob( length of the longest gap induced by Uon Cn < log2 n) = 1−o(1).

(iii) Let E′ be a random subset of edges of Cn chosen with the probability
2−n. Then

Prob( length of the longest gap induced by E′ on Cn < log2 n) = 1 − o(1).

(iv) Assume that p is any ij path in Cn. Then

Prob(||p ∩ U | − L(p)
2

| ≤ n2/3) = 1 − o(1).

Proof. (i) follows from the normal convergence of the binomial distri-
bution. Conditioning on the event ||U | − n

2 | ≤ n2/3, we overestimate the
probability in (ii) if we take n/2 − O(n2/3) independent samples from the
vertices of Cn and ask for the probability of obtaining at least one gap of
length at least log2 n. This modified probability is at most

n

(
1 − log2 n

n

)n/2−O(n2/3)

= o(1).
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To verify (iii) observe that Prob(∃gap ≥ x) ≤ 2−x. Now, let x = 1 + log2 n
to finish the proof of (iii). Finally, to prove (iv) observe that

Prob(||p ∩ (U � W )| − L(p)/2| > n2/3) =
2

∑
t>Li,j/2+n2/3

(L(i,j)
t

)
2L(i,j)

= o(1).

�

5 Optimal integral uniform flows in CCn and BBn

To estimate the congestion of an optimal integral flow in CCn and BBn, we
will use probabilistic methods. It should be noted that although the tools
involve usage of probability, the final outcome is completely deterministic
and does not involve probability.

Theorem 3 For CCn =< V,E >, there exists an edge optimal integral
uniform flow f , such that µf = 5

4n22n(1 − o(1)).

Proof. Since CCn is a Cayley graph, our construction in Theorem 1 gives
an integral uniform flow. By Lemma 3 CCn is orbit proportional, hence by
Theorem 2(i) the flow f is edge optimal. To evaluate µf we use Theorem
2(ii). Define, d1(e) = 0, if e is cyclic and d1(e) = 1, if e is cubic. Similarly,
define d2(e) = 0, if e is cubic, and d2(e) = 1, if e is cyclic.

By Theorem 2(ii) we have, µf = max(µd1 , µd2). Note that, for X1 = (U, i) ∈
V and X2 = (W, j) ∈ V , by of Lemma 1(iii) we have, d1(X1,X2) = U �W .
It is easy to see that

∑
U⊆N

∑
W⊆N |U � W | = n

24n and hence that

∑
(X1,X2)∈V ×V

d1(X1,X2) =
n3

2
4n, (1)

thus, µd1 =
∑

(X1,X2)∈V ×V
d1(X1,X2)∑

e∈E
d1(e)

= n24nn/2
n2n−1 = n22n. Let X0 = (∅, 0) ∈ V

and X = (U, i) ∈ V , and assume that p is a shortest X0X path. Orbit
proportionality implies d2(X0,X) = |Cyclic(p)|. By Lemma 1(v)-(vi),

d2(X0,X) = |Cyclic(p)| ≤ n + L(0, i). (2)
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In order to study the distribution of distances dj(X0,X), we think about
X as a random variable and use facts from probability theory (the normal
convergence) to estimate the distribution. Next consider any vertex X =
(U, i), such that U is selected randomly with the probability 2−n; we refer to
X as a random vertex. For any random vertex X = (U, i), by Lemma 4(i),
||U | − n/2| = o(n) with probability 1 − o(1). It follows from Lemma 4(ii),
that U does not induce any gaps longer than log2n on C+

n with probability
1 − o(1). Therefore by Lemma 1(v)-(vi) we have,

d2(X0,X) = |Cyclic(X0,X)| = (n + L(0, i))(1 − o(1)) (3)

with the probability 1 − o(1). It follows from (2) and (3) that,∑
X=(W,i)∈V

d2(X0,X) = (1 − o(1))
∑

X=(W,i)∈V

(n + L(0, i)). (4)

(The sums in (4) are taken over all vertices!) It is easy to verify that,∑
X=(W,i)∈V (n + L(0, i)) = 5

4n22n(1 − o(1)), therefore,
∑

X∈V d2(X0,X) =
5
4n22n(1 − o(1)). It easily follows from the vertex transitivity of CCn that

∑
(X1,X2)∈V ×V

d2(X1,X2) = n2n
∑

X∈V

d2(X0,X) =
5
4
n34n((1 − o(1)). (5)

However, µd2 =
∑

(X1,X2)∈V ×V d2(X1,X2)/(n2n) = 5
4n22n(1 − o(1)) ≥ µd1 ,

for large n. Therefore, µf = 5
4n22n(1 − o(1)). �

Since BBn is not Θn-orbit proportional, the construction of Theorem 1 only
gives an integral approximate solution. (Our results in [19] can be used
to show that the congestion is within a multiplicative factor of 2 from the
optimal.) We will now present an algorithm which computes an integral
flow with asymptotically optimal congestion. The key point behind our
near-optimal uniform flow for BBn is a collection of shortest paths, which
uses each cyclic edge and each cubic edge about the same times. We note
that the complexity of the algorithm is O(n34n) .

Butterfly Flow Algorithm

INPUT: < V,E >= BBn

OUTPUT: An integral uniform flow f .

Let X0 ← (∅, 0) and compute a shortest X0X path qX0X for every X �= X0.
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For all X = (A, i) ∈ V , X �= X0 Do

Denote by WX0X the 0i walk in Cn which is the projection of qX0X . (Recall
that L(0, i) is the length of a shortest 0i path on Cn.)

Case

L(0, i) < n√
8

: Consider any non-essential edge e which appears in WX0X

with cubic label. Notice that e must appear twice with cubic label in WX0X

and change the label of both occurrences of e in WX0X to cyclic. Denote this
new labeled walk in Cn by W ′

X0X . By Lemma 2(i), W ′
X0X is a 0i essential

walk and let hX0X be an X0X path in BBn which projects to W ′
X0X .

L(0, i) > n√
8

: Consider any non-essential edge e which appears twice in
WX0X with cyclic label; change the label of both occurrences of e in WX0X

to cubic. Denote this new walk in Cn by W ′
X0X . By Lemma 2(i), W ′

X0X is
a 0i essential walk and let hX0X be an X0X path in BBn which projects to
W ′

X0X .

EndCase

EndFor

Extend the set of paths S = {hX0X : X ∈ V, X �= X0} to a Θn-invariant
integral flow using the action of Θn. That is, compute Θn(S).

End.

Theorem 4 The Butterfly Flow Algorithm constructs an integral uniform
flow f in BBn =< V,E > with µf = 5

4n22n−1(1 + o(1)), which is asymptot-
ically optimal for large n.

Proof. It is easy to verify that the last step of the algorithm produces
a flow f which is integral Θn-invariant using shortest paths. Assume that
X = (U, i) is a random vertex of BBn, that is, U is selected randomly with
the probability 2−n, when i is arbitrary. Let X0 = (∅, 0). Consider the
X0X path qX0X computed at the initial step of the algorithm. Let WX0X

be the projection of qX0X on Cn, then by Lemma 2(iv)-(v) the portion of
Cn which is not traversed by WX0X must be a (longest) gap. Since U is
selected randomly, by Lemma 4(iv) the length of this gap is at most log2 n
with probability 1 − o(1). Therefore this gap is located with probability
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1 − o(1) on the shorter side of Cn. This is illustrated in Figure 2,

Fig. 2 : Illustration of WX0X for a random vertex of X = (U, i) of BBn

in which we have assumed that the right side of the Cn is the shorter side.
By Lemma 2, any edge e, which is located on the shorter side of Cn and
is contained in WX0X will appear in WX0X exactly twice. Also, any edge
e located on the long side will appear in WX0X exactly once. Next we
estimate (with probability 1 − o(1)) the number of essential edges labeled
cubic, the number of essential edges labeled cyclic, and the total number
of non-essential edges in WX0X . These values are easily estimated using
Lemma 2, Lemma 4, and the topological properties of WX0X illustrated in
Figure 2, and are recorded in the following Table.

long side of Cn short side of Cn

Number of essential edges
labeled cubic in WX0X

1
2(n − L(0, i)) − o(n) 1

2L(0, i) − o(n)
Number of essential edges
labeled cyclic in WX0X 0 1

2L(0, i) − o(n)
Total number of non-essential
edges in WX0X

1
2(n − L(0, i)) − o(n) 1

2L(0, i) − o(n)
Table 1. Distribution of essential and non-essential edges

of WX0X on different sides of Cn

If L(0, i) < n/
√

8, the Case statement in the algorithm guarantees that
any non-essential edge of WX0X which is located on the short side will be
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labeled cyclic in W ′
X0X . (Notice that any non-essential edge e of WX0X

which is located in the left side appears exactly once in WX0X . Thus, by
Lemma 2(i), e must have been labeled cyclic in WX0X . Consequently the
label of e does not change.) Therefore, employing the last two rows of Table,
we will get

|Cyclic(hX0X)| = |Cyclic(WX0X)| = ((n/2 + L(0, i))(1 − o(1)), (6)

with probability 1 − o(1). Similarly, using the first row of Table , we have

|Cubic(hX0X)| = |Cubic(WX0X)| = n/2 − o(n) (7)

with probability 1− o(1). Now assume that L(0, i) > n/
√

8, then, the Case
statement in the algorithm guarantees that any non-essential edge of WX0X

which is located on the short side of Cn will have a cubic label in W ′
X0X .

Using rows one and three in Table , it is easily shown that with probability
1 − o(1)

|Cubic(hX0X)| = |Cubic(W ′
X0X)| = n/2 + L(0, i) − o(n),

whereas using rows two and three,

|Cyclic(hX0X)| = |Cyclic(W ′
X0X)| = n/2 − o(n), (8)

with probability 1 − o(1). Next, we claim that

∑
X∈V

|Cyclic(hX0X)| = (2−o(1))2n{
	 n√

8

∑

l=0

(
n

2
+l)+

	n
2

∑

l=� n√
8
�

n

2
} =

5
4
n22n−1(1+o(1)),

(9)

∑
X∈V

|Cubic(hX0X)| = (2−o(1))2n{
	 n√

8

∑

l=0

n

2
+

	n
2

∑

l=� n√
8
�
(
n

2
+l)} =

5
4
n22n−1(1+o(1)).

(10)
We now justify (9) and leave (10) to the reader. Consider a random vertex
X = (U, i) and let l = L(0, i). If l < n/

√
8, we can count with high accuracy

|Cyclic(hX0X)| using (6); likewise, if l > n/
√

8, we can count with high
accuracy |Cyclic(hX0X)| using (8). Now observe that there are 2n choices
for the random U , and typically 2 choices for a vertex at distance l from
the vertex 0 on Cn. This justifies the existence of two sums and in (9). The
evaluation of the sums is just algebra. Our estimates in (9) went through for
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random vertices. However, the number of cyclic and cubic edges for atypical
vertices is not too large either, since the diameter of the butterfly is O(n).
The contribution of the neglected case i = 0 is negligible. Denote pXY the
unique active XY path in f , use the fact that the orbits of Θn are the set
of cyclic edges and the set of cubic edges to obtain

CU =
∑

(X,Y )

|Cubic(pXY )| = n2n
∑

X∈V

|Cubic(hX0X)| =
5
2
n34n−1(1 + o(1)),

CY =
∑

(X,Y )

|Cyclic(pXY )| = n2n
∑

X∈V

|Cyclic(hX0X)| =
5
2
n34n−1(1 + o(1)).

Since f is Θn-invariant by construction, the value of f on any cyclic or
cubic edge is

CY

n2n
=

5
4
n22n−1(1 + o(1)), and

CU

n2n
=

5
4
n22n−1(1 + o(1)),

and µf = 5
4n22n−1(1 + o(1)). The identically one distance function d yields

∑
(X1,X2)∈V ×V

d(X1,X2) =
∑

(X1,X2)∈V ×V

L(X1,X2) = CY + CU. (11)

Consequently, µd =
∑

(X1,X2)∈V ×V
d(X1,X2)∑

e∈E
d(e)

= CU+CY
2n2n = 5

4n22n−1(1 + o(1)).

This verifies the asymptotic edge optimality of f , since by duality theory of
linear programming [15] µd is a lower bound on the congestion of an optimal
flow. �

6 A crossing number result

For the reading of this section we assume that the reader is familiar with
the concepts of crossing number, graph embedding [13] and randomized
rounding through our paper [21].

Theorem 5 The crossing number of the butterfly BBn is at least ( 16
125 −

o(1))4n.
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Proof. Let N = n2n, and let cr(G) denote the crossing number of any
graph G. One can easily apply the randomized rounding technique (like
the proof of Theorem 5.2 in our paper [21]) to obtain an embedding of the
complete graph KN into BBn with congestion µ which is (1/2+ o(1)) times
the edge forwarding index of BBn: for every unordered pair of vertices u, v
flip a coin independently to decide if you include the uv or the vu path
from the integral uniform flow in the embedding. Using standard results
on the crossing number from [13] and [21] cr(BBn) ≥ cr(KN )

µ2 − 16n2n−1.
Finally, use from [27] that for the crossing number of the complete graph
KN we have cr(KN ) ≥ ( 1

80 − o(1))N4. Merging all these results we obtain
cr(BBn) ≥ ( 16

125 − o(1))4n. �
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