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Abstract

Let G be a connected bipartite graph�We give a short proof� using a variation of

Menger�s Theorem� for a new lower bound which relates the bipartite crossing number of

G� denoted by bcr�G�� to the edge connectivity properties of G� The general lower bound

implies a weaker version of a very recent result� establishing a bisection based lower bound

on bcr�G� which has algorithmic consequences� Moreover� we show further applications of

our general method to estimate bcr�G� for �well structured� families of graphs� for which
tight isoperimetric inequalities are available� For hypercubes and ��dimensional meshes�

the upper bounds �asymptotically� are within multiplicative factors of 	 and �� from the

lower bounds� respectively� The general lower bound also implies a lower bound involving

eigenvalues of G�

� Introduction and summary

The planar crossing number problem is the problem of drawing a graph with minimum number
of edge crossings in the plane� This is a di�cult� and important problem which is studied in
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graph theory and also in the theory of VLSI ���� ��� ���� Computing the value of the planar
crossing number is NP �hard ��	�� and exact values are known only for very restricted classes
of graphs� The exact value of the planar crossing number is not known� even for the complete
graph Kn� for arbitrary values of n� Indeed� there has been numerous results regarding the
approximate values of the crossing number for very speci
c graphs ���� ���� In this paper we
study a variation of the planar crossing number� Let G � V�� V�� E� be a connected bipartite
graph� where V�� V� is the bipartition of vertices into independent sets� and E is the edge set�
A bipartite drawing of G consists of placing the vertices of V� and V� into distinct points on two
horizontal lines y � �� y � � in the xy�plane� respectively� and then drawing each edge with one
straight line segment which connects the points of y � � and y � � where the endvertices of the
edge were placed� Hence� placing the vertices will determine the whole drawing� The bipartite
crossing number of G� denoted by bcrG� is the minimum number of crossings of edges over all
bipartite drawings of G�
A motivation behind studying bcrG� is the routing of VLSI see for example ���� ����� De�

sirable features of a VLSI chip include small area and small delay� A crucial step in the VLSI
design is the routing stage in which the modules are interconnected� see ���� for details� The
modules are usually placed on the rows of a grid grids�� certain modules on consecutive rows
must be connected using wires� The wires are splitted into horizontal and vertical segments�
where horizontal and vertical segments are assigned to di�erent layers� Although no two wires
are allowed to cross each other physically� wires can cross over each other� that is� one horizontal
segment may run on the top of a vertical segment so that the projection of the two segments
cross� Cross overs are undesirable since they create delay� We can think of modules and wires
connecting them on two consecutive rows of grid as vertices and edges of a bipartite graph�
Hence� by relaxing the requirements� and allowing the routes to be straight lines between the
modules� the routing problem can be modeled as a bipartite drawing problem� A good solution
to the bipartite crossing number problem will allow the designer at an early stage of the de�
sign� to approximate the location of modules� minimizing the number of cross overs� assuming
that the modules will be connected using the straight line segments� Later� the designer can
re
ne and change the shape of wires at a 
nal stage of routing� It should be emphasized that�
minimizing the number of the crossings in the initial design� also will help to reduce the grid
sizes� and hence reducing the area �����
Another motivation behind studying the bipartite crossing number comes from graph drawing�

It is well known that bcrG� is one of the parameters which strongly in�uence the understanding
and the aesthetics of drawings of graphs drawn in a hierarchical fashion� For a survey on drawing
graphs see �����
The notion of bcrG� was 
rst introduced in ����� ���� and ����� where in ���� exact values for

bcrG� of complete and complete bipartite graphs and even cycles were obtained� Some basic
observations on bcrG� were made in ����� The bipartite crossing number problem is known to
be NP�complete� ��	� but can be solved in polynomial time for bipartite permutation graphs
����� and trees ����� A great deal of research has been devoted to the design of algorithms and
heuristics for solving this problem see for example ��� �� ��� ��� �	� �	� ����� Mutzel� and
J�unger and Mutzel ���� ��� had reported experiments indicating the success of their algorithms
in computing near�optimal values of bcrG� in certain cases� Despite their success in a practical
sense over the range of the applied data� these algorithms did not have a performance guarantee�
and thus one could not expect that they always generate a solution in polynomial time which is

�Technically speaking� the NP�hardness of the problem was proved for multigraphs� but it is widely assumed
that it is also NP�hard for simple graphs�
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provably close to the optimal solution� Thus� these algorithms would not 
t the notion of the
theoretically e�cient approximation algorithm ��	�� For a more restricted problem when the
positions of the vertices of V� are 
xed Eades and Wormald ���� designed a polynomial time
algorithm which approximates the bipartite crossing number within a multiplicative factor of
� in this restricted problem� See also ��� ���� and the survey �����
The latest progress in this area was made recently ���� in which we fully explored the structure

of bipartite drawing by relating them to the linear arrangement problem� In particular� we
showed Theorem ��� in ����� that when the maximum and minimum degrees are close to each
other� then the asymptotic values of bcrG� and the optimal linear arrangement of G have the
same order of magnitude� Hence� we derived a provably good approximation algorithm� with
performance guarantees of Ologn log logn� from the optimal� for computing bcrG�� Moreover�
we veri
ed in ����� using the connection between the linear arrangement problem and bipartite
drawings� that bcrG� is large compared to the bisection of G� Consequently� we showed that
a standard divide and conquer algorithm also approximates bcrG� within a factor of Olog� n�
from the optimal� in polynomial time� when the maximum and minimum degrees in G are close
to each other�
In this paper we develop a new lower bound argument using Menger�s Theorem which relates

the bipartite crossing number of a graph to the edge connectivity properties of G Theorem
����� The result easily implies good lower bounds involving the bisection� the edge isoperimetric
properties and the eigenvalues of the graph� In particular we give a short proof� establishing a
large lower bound involving the bisection of G Corollary ����� on bcrG�� The bisection based
lower bound presented here is weaker than the one in ����� Nonetheless� its proof is short�
and in fact the lower bound is strong enough to show that for sparse graphs arising in the
VLSI applications� the standard divide and conquer algorithm can approximate bcrG� within
a factor of Olog� n� from the optimal value� in polynomial time� Moreover� the approach taken
here allows to derive lower bounds on the values of bcrG� which are within small multiplica�
tive constants from the upper bounds� for well structured graphs in which tight isoperimetric
inequalities are available� Results of this nature are signi
cant in graph theory� much in the
spirit of similar results regarding estimating the approximate values of the planar crossing
number for certain graphs� For instance for the ��dimensional mesh or grid� MM�N� we
get �

�
M�N �OM� �MN� � bcrMM�N�� � �

�
M�N �OMN� and for the N�dimensional

hypercube graph QN we get N	N���O	N� � bcrQN � � N	N��� Finally� we provide a general
lower bound for bcrG� in terms of the smallest positive Laplacian eigenvalue of the graph�
This paper is the extended version of our conference paper �����
For G � V�� V�� E�� we will assume throughout this paper that V � V� �V� and n � jV j� We

will denote the degree of vertex v by dv�� and denote by �� the minimum degree among the
vertices in V�� For a bipartite drawing DG� of a graph G� let bcrDG�� denote the number of
the crossings in DG� i�e� the number of unordered pairs of crossing edges�� When the context
is clear we write D and bcrD�� Note that bcrG� � minD bcrD��

� A general lower bound method

For X � V de
ne

�X� � fuv � E � u � X� v � V �Xg�
The problem of 
nding good lower bounds for j�X�j� for all X � V � is an important problem
in graph theory and computer science and is studied under the heading edge isoperimetric
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inequalities ����
For X� Y � V � X � Y � � de
ne sepX� Y � to be a set of edges in G of smallest cardinality

which separates X from Y in G� Note that jsepX� Y �j � j�X�j�
For � � � � ���� the ��bisection of G� denoted by b�G�� is the smallest j�X�j� over all X�

with �jV j � jXj � �� ��jV j�
For a bipartite drawing D of G� let vk be the kth vertex on y � � from left� and let Ak denote

the set of the 
rst k vertices on y � � from the left� � � k � jV�j�

Theorem ��� Let D be a bipartite drawing of G � V�� V�� E�� then the following holds�

�bcrD� �
jV�j��X
k��

dvk���� �� jsepAk� V� � Ak�j � dvk���� �

Proof� Let Pk be a set of edge disjoint paths of largest cardinality with one end point in Ak and
the other in V� � Ak� A variant of Menger�s theorem ���� says that jPkj � jsepAk� V� � Ak�j�
Observe that each path in Pk� except for those including the k����st vertex vk�� on y � � from
the left� must cross all but one edges incident to the k � ���st vertex vk��� This observation
can be veri
ed by considering two cases� In the 
rst case� Pk does not go through any neighbor
of vk��� then it crosses all edges incident to vk��� In the second case� if Pk does go through any
neighbor t of vk��� then Pk has to cross all edges incident to vk�� but the edge vk��t�

v v vv v 43v21 k k+1

P

y=

y=

1

0

t

Fig� � � A path P � Pk crosses all but one edges incident with vk���

Thus the paths in Pk generate a total of at least �dvk��� � ���jPkj � dvk���� crossings on
the edges incident to vk�� and the theorem follows by taking the sum over all k� Note that a
factor of � is needed on the left hand side� since a crossing will be counted twice�� �

Leighton ���� proved that �b �
�
G�� � n� is a lower bound on the planar crossing number of

any graph G of bounded degree� In ����� we developed a general theory for studying the
bipartite drawings by relating them to the linear arrangement problem which is another well
known problem in the theory of VLSI ���� ���� In particular� using an elaborated proof� we
veri
ed that bcrG� �

P
x�V d

�x� � ��LG��� where � is the min degree� and LG� is the
optimal arrangement value� A consequence was that bcrG��

P
x�V d

�x� � ��nb��G��� A nice
application of Theorem ���� is to provide a weaker version of the bisection related result using
a short and direct proof� This weaker lower bound� however� is strong enough to show that the
standard divide and conquer algorithm has a good performance guarantee for approximating
bcrG�� when G is sparse�

	



Corollary ��� Let G � V�� V�� E�� Assume that jV�j � jV�j and the number of vertices of

degree � in jV�j is at most �jV�j� where � � � � � is a constant� Let �� be any positive constant

so that �� � �� �� and de�ne �� �
������

�
� Then for any � � �� it holds�

�bcrG� � ����
�
jV�jb�G�� X

v�V�

d�v��

In particular� for �� � ���
	
� we have �� �

���
	
� and it holds

�bcrG� � �
�
n��b ���

�

G�
�
� X

v�V�

d�v��

Proof� Consider the sum in Theorem ��� for those values of k which are at least ���jV�j and
hence � ��n�� and are at most jV�j������� Next note that there are jV�j��	��� � jV�j�� ���
such values of the index k� and also that for at least jV�j�� values� the corresponding term has

dvk��� � �� and hence dvk���� � � d�vk���
�

� ��
�
� To 
nish the proof� since �� � � and hence

b�� � b� � we will show that for the prescribed values of k� jsepAk� V� � Ak�j � b��G�� The set
sepAk� V� �Ak� partitions V into Xk and V �Xk such that Ak � Xk and V� �Ak � V �Xk�
Clearly jsepAk� V��Ak�j � j�Xk�j� and it su�ces to show that ��n � jXkj � �� ���n� Note
that jAkj � jXkj � n� jV� � Akj� for any k� Now observe that for ��n � k � jV�j�� ����� it
holds that jXkj � ��n� and jV� � Akj � �jV�j�� � n��� and hence proving the claim � �

Lower bounds that involve the bisection of a graph are known to be useful in showing the
performance guarantee of the approximation algorithms ��� ��� ���� Hence� a simple algorithmic
application of Corollary ��� is that the traditional divide and conquer algorithm can also be
used to approximate bcrG� within a factor of Olog� n� from the optimal� The divide stage of
the algorithm uses an approximation algorithm for bisecting a graph such as those in ���� ����
These bisecting algorithms have a performance guarantee of Ologn� from the optimal� The
details of the next result are standard� and similar but not identical� to ��� ��� ���� For
completeness we have included a proof in the appendix�

Theorem ��� Let G � V�� V�� E�� with jEj � m� jV�j � jV�j be a degree bounded graph�

Assume that the number of vertices of degree � in jV�j is at most �jV�j� where � � � is a con�

stant� Let A be a polynomial time algorithm to approximate the ���
	
�bisection of a graph with

a performance guarantee Ologn�� Consider a divide and conquer algorithm which recursively

bisects the graph G� using A� obtains the two drawings� and then inserts the edges of the bisec�

tion between these two drawings� This divide and conquer algorithm generates� in polynomial

time� a bipartite drawing D so that bcrD� is within a factor of Olog� n� from the optimal�

provided that m � n� � ��� where � 	 � is any positive constant�

Remarks� One may think that the above result is not too strong� since it is only valid for
degree bounded graphs� First� it should be noted that for problems arising in the applications
such as VLSI design� the underlying graphs are always degree bounded� and hence 
t the
framework described above� Second� the strength of the above result is justi
ed by noting that
the best existing approximation algorithm for the planar crossing number has the performance
guarantee of Olog� n� ����� only when the graph is degree bounded and has degree at least
	� Hence� we have obtained a factor of Olog� n� improvement in the performance guarantee
compared to the case of the planar crossing number� Finally� it should be noted that working
with the lower bound of Corollary ��� is essential and the previous lower bound of �b �

�
G���n�

can not be used to show the suboptimality of the solution� since it is too small compared to
the error terms appearing in the right hand side of the recurrence relation in Theorem ����
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� Bipartite crossing numbers of meshes and hypercubes

For M � N � let MM�N� denote the ��dimensional mesh i�e� the graph de
ned by the Carte�
sian product of anM�vertex path with an N�vertex path� Let QN denote the N�dimensional
hypercube graph� i�e� the Cartesian product of N ��vertex paths�
Using the results in ���� we can obtain bounds on bcrG� for hypercubes and meshes which

are tight within large constant multiplicative factors� In particular the ratio of upper to lower
bound will be about �� for the mesh� and about �� for the cube� In this section we improve
these constants� In the case of MM�N� we provide the exact values for the small values
M � �� �� We emphasize that our main contribution is improving the constants involving the
lower bounds� and that the constructions for the upper bounds are not di�cult to see�

Theorem ��� For a mesh MM�N�� 	 �M � N it holds�

�

	
M�N � �

	
M� � �

�
MN � �

�
M� � �M � bcrMM�N�� � �

�
M�N � �

�
MN�

Proof� Upper bound� View MM�N� as M rows and N columns� Note that each row or
column is a path� First we place all vertices in V� � V� on the line y � � in a column after
column manner� Then we project the vertices of V� on y � �� Note that edges in the same row
or same column do not cross each other� Moreover� edges in a column do not cross edges in
another column�
Consider a row� and the corresponding path in the drawing� This path produces at most a

total of M � � crossings with all the edges in a 
xed column� since this path can intersect all
edges in any column with the exception of at least � edge which is incident to a vertex on the
path� We conclude that the total number of crossings between rows and columns is at most
M � ��MN � Now consider any two rows� and the two paths p�� and p� associated with them�
Observe that if an edge e in p� crosses an edge e� in p�� then either e and e� must both have
endpoints in two consecutive columns i� i��� or e and e� must have endpoints in � consecutive
columns i� i��� i��� Note that in this case column i�� contains one end point of e and one
end point of e��� In the former case we refer to the crossing associated with e and e� as type
one� and in the latter we refer to it as type two� Assume with no loss of generality that both
end points of p� are in V�� If p� has endpoints in V�� then crossing of any edge in p� with any
edge in p� must be a type two crossing� In this case the total number of crossings between p�
and p� is exactly N � �� On the other hand� if p� has both ends in V�� then crossing of any
edge in p� and any edge in p� must be a type one crossing� In this case the total number of
crossings between p� and p� is N � �� Thus the the total number of crossings between all rows
is at most

�
M

�

�
N � �� � M�M����N���

�
�

We conclude that the total number of crossings in our drawing is at most MM � ���N��
�

�
�
�
M�N � �

�
MN �

Lower bound� For the sake of simplicity assume that both M and N are even� Consider a
bipartite drawing of MM�N�� Then jV�j � MN��� Let Ak denote for k � �� �� ����MN�� the
set of the 
rst k vertices on y � � from the left� We use a variant of the proof of Theorem ����
De
ne a function

fx� �

���
��

�
p
x� if � � x �M��	�

M� if M��	 � x �MN �M��	�
�
p
MN � x� if MN �M��	 � x �MN�
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Now we use an edge isoperimetric inequality for meshes� It is known ��� 	� that for any X � V �
j�X�j � fjXj� holds� The set sepAk� V� � Ak� partitions V into Xk and V � Xk such that
Ak � Xk and V� � Ak � V � Xk� Clearly jsepAk� V� � Ak�j � j�Xk�j� As Ak � Xk �
V � V� � Ak�� the concavity of f gives

jsepAk� V� � Ak�j � minffjAkj�� fjV � V� � Ak�j�g � minffk�� fMN

�
� k�g�

There are at most M � N vertices in V� whose degree is less than 	� Let I denote the set of
these vertices� We are going to give a lower bound for the number of crossings for the edges
incident to vk��� It is convenient not to countthe contribution of vertices vk�� whose degree is
less than 	� Hence if k runs from � to MN�� � �� using only vertices vk�� whose degree is 	�
Theorem ��� yields that all Ak� V� �Ak� paths but 	 intersect at least � of the edges adjacent
to vk��� We obtain

bcrMM�N�� � �

�

MN
�

��X
k��
k����I

jsepAk� V� � Ak�j � 	��

The denominator � occurs before the sum since each crossing is counted at twice� Further�

bcrMM�N�� � �

�

�MN
�

��X
k��
k����I

minffk�� fMN

�
� k�g

�
��MN

�
�

�

M�

�X
k��
k����I

minffk�� fMN

�
� k�g

�
�

�

MN
�

�M�

�
��X

k�M�

�
��

k����I

minffk�� fMN

�
� k�g

�
�

�

MN
�

��X
k�MN

�
�
M�

�
k����I

minffk�� fMN

�
� k�g � �MN

� �

M�

�X
k��

p
k �

�

	
M�N �M� � 	M�� �MN � M �N�

�M

�

� �
Z M�

�

�

p
xdx�

�

	
M�N �M� � 	M�� �MN � M �N�

�M

�

� �

	
M�N � �

	
M� � �

�
MN � �

�
M� � �M�

�

Theorem ��� For N � � it holds�

bcrM�� N�� � �N � ��

�



Proof� Upper bound� Use the same �column after column� principle as in Theorem ���� It is
easy to see by induction on N that the resulting drawing has �N � � crossings�

2,1

1,1

3,1 3,2 3,3

2,3

1,31,2

2,2

1,1

2,1 1,2

3,1 2,2

3,2 2,3

1,3 3,3

y=

y=0

1

Fig� � � MeshM�	� 	� and its optimal bipartite drawing

Lower bound� Imagine that M�� N� consists of � row and N column vertices� Let M�� ��
denote the submesh induced by the last � column vertices� We proceed by induction on N � By a
case analysis we can show that bcrM�� ��� � �� Suppose that bcrM�� N���� � �N������
for N � 	 and consider M�� N�� Using a case analysis again one can show that the edges
incident to the last column vertices inM�� N� contain at least � crossings� In fact this can be
veri
ed considering the submesh M�� �� only� Therefore

bcrM�� N�� � bcrM�� N � ��� � � � �N � �� �

The result bcrM�� N�� � N � � can be easily deduced from the optimal bipartite drawing
of the even cycle C�N � �����

Theorem ��� For N � � it holds�

N	N�� �O	N� � bcrQN� � N	N���

Proof� To prove the upper bound� we draw QN recursively and prove a stronger bound by
induction�

bcrDQN���� � �N � ����N�	 � N � ��� � N � ��� ���N���

N � � provides the base case with unique drawing of Q�� To construct DQN�� we consider a
copy of DQN��� on the usual y � �� y � � lines� and translate it along the x axis far enough so
that DQN��� does not intersect the translated version denoted by D�QN���� Finally� we take
the mirror image of D�QN��� with respect to the line y � ��� to obtain a drawing D��QN����
Now connect by �N�� new edges� according to the recursive structure of the hypercube� the
corresponding vertices of DQN��� and D��QN��� to obtain DQN�� We have �bcrDQN����
crossings in the two subdrawings used in the recursion� Any new edge crosses exactly half of
the new edges �increasing� edges cross exactly the �decreasing� edges�� so new edges make
�N�� crossings each� totaling to ��N�� crossings� There are N � ���N�� old edges in DQN����
each old edge has a copy in D��QN���� Note that an new edge can cross either an old edge in
DQN���� or the copy of this edge in D��QN���� but not both� Hence the number of crossings
of new edges with edges of DQN��� �D��QN��� is at most �N��N � ���N���
Hence we have�

bcrDQN�� � �bcrDQN���� � ��N�� � N � ���N���N��

� ���N � ����N�	 � N � ��� � N � ��� ���N���

� ��N�� � N � ���N���N��

� N � ����N�� � N � ����N�� � N � �

�
����N��� � N	N���
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Fig� � � Bipartite drawings of Q� and Q��

Lower bound� We apply the same argument as for ��dimensional meshes� Consider a bipartite
drawing of QN � Note that jV�j � �N��� For k � �� �� ���� �N��� �� let Ak � V� denote the set of
the 
rst k vertices on y � � from the left� Following Bollob�as and Leader ��� de
ne a function
fx� as follows�

fx� �

�
xN � log x�� if � � x � �N���
�N � x�N � log�N � x��� if �N�� � x � �N �

Here log denotes logarithm of base ��� An edge isoperimetric inequality for hypercubes see e�g
���� says that for any X � QN � the inequality j�X�j � fjXj� holds� Following the reasoning
applied for meshes i�e� jsepAk� V� � Ak�j � min fk�� f�N�� � k�� for � � k � �N��� we
show that

jsepAk� V� � Ak�j � minfkN � log k�� �N�� � k�N � log�N�� � k��g�
Hence if k runs from � to �N�� � � we get

bcrQN �

� N � �

�

�N����X
k��

jsepAk� V� � Ak�j �N�

� N � �

�

�N����X
k��

minfkN � log k�� �N�� � k�N � log�N�� � k��g

� NN � ���N��

� N � ��
�N����X
k��

kN � log k� � N � ���N�� �NN � ���N��

� NN � ���N���N�� � �� � N � ���N�� �NN � ���N��

� N � ��
�N����X
k��

k log k�

where we used that for k � �N�� it holds kN � log k� � �N�� � k�N � log�N�� � k���
Observe that

�N����X
k��

k log k �
Z �N��

�
x logxdx � N � ����N�	 � �

ln �
��N�
 �

�

	 ln �
�

Substituting this into the previous inequality we get the result� �

�



� Using eigenvalues in the general lower bound

We assume familiarity with spectral graph theory and Fan Chung�s recent book on the topic
���� which is our basic reference� We use Laplacian eigenvalues of a graph like ���� and de
ne

G as the smallest positive Laplacian eigenvalue of the graph G� Recall that the Laplacian of
a graph G is the matrix� IG� � AG�� where AG� is the adjacency matrix of the graph G
AG� is an n	n matrix with rows and columns indexed by vertices of the graph G and entries
auv� u� v � V equal to � if there is an edge between vertices u and v and � if not� and IG� is
the diagonal matrix with vertex degrees on the diagonal i�e� ivv � dv�� and iuv � � if u 
� v�
For X � V� let volX� denote

P
v�X dv��

The connection between eigenvalues and isoperimetric inequalities has been subject of study
since long� We recall the following theorem from Section ��� of ���� for X � V

j�Xj � 
G
�

minvolX�� volV �X��� ��

Assume now that G � V�� V�� E� is a bipartite graph in an optimal bipartite drawing D� Let
vi denote the i�th vertex in V� and Ai denote the set of the 
rst i vertices in V�� Let Xi denote
the side of Ai in the vertex partition de
ned by sepAi� V� � Ai�� Use ���

jsepAi� V� � Ai�j � j�Xij � 
G
�

minvolXi�� volV �Xi��

� 
G
�

minvolAi�� volV� � Ai���

Using the previous formula for estimating j�Xj in Theorem ���� instead of an explicit function
fx� that is rarely known� we end up with the estimate

�bcrG� �
jV�j��X
i��

dvi���� ��

�

G
�

minvolAi�� volV� � Ai��� dvi���

�
� ��

Formula �� gives tighter bounds than most approaches e�g� ���� or ���� or ���� combined with
����� but is not as good as using tight isoperimetric inequalities� if they are available�
Take for example the hypercubes� In this case 
QN

� ��N p� � in ���� and �� yields the
lower bound of Theorem ��� with a slightly weaker halved� multiplicative constant�

� Appendix

Proof of Theorem ��� Assume that using A� we partition the graph G to � vertex disjoint
subgraphs G� and G� recursively� Let m denote the number of edges in G� and �bG� denote the
number of those edges having one endpoint in the vertex set of G�� and the other in the vertex
set of G�� Let DG�

� and DG�
be the bipartite drawings already obtained by the algorithm for

G� and G�� respectively� so that the the vertices from the same part of G are on the same line�
Place DG�

on the left of DG�
so that the drawings are disjoint� Let DG denote the drawing

obtained for G� by inserting the edges in the bisection� We have

bcrD� � bcrDG�
� � bcrDG�

� � �b�G� � �bG�m� �bG�� � bcrDG�
� � bcrDG�

� �m�bG��

��



But since we use� the approximation algorithm A for bG�� we have �bG� � Ob��G� logn��
Now observe that m � On�� as the graph is degree bounded� and use Corollary ��� to obtain

bcrD� � bcrDG�
� � bcrDG�

� �O

�
lognbcrG� �

X
v�V

d�v��

�
�

Note that bcrG� �
P

v�V d
�v� � bcrG�� �

P
v�V �G�� d

�v� � bcrG��
�
P

v�V �G�� d
�v�� and hence we deduce after Ologn� iterations that

bcrD� � O

�
log� nbcrG� �

X
v�V

d�v��

�
�

To 
nish the proof� we will show that bcrG� � �
P

v�V d
�v��� Indeed we only need to show

bcrG� � �n�� since G is degree bounded� However� it is easy to see that bcrG� � m� n� �
����� and consequently we deduce that bcrG� � �n�� since m � � � ��n� �
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