

Industrial Mathematics Institute

1998:24

On Riemann-Lebesgue theorem for the systems of Chebyshev ridge polynomials

R. Getsadze

Preprint Series

Department of Mathematics University of South Carolina

On Riemann - Lebesgue theorem for the systems of Chebyshev ridge polynomials

R. Getsadze

Let

$$
\begin{equation*}
\mathbb{B}^{2}:=\left\{(x, y) \in R^{2}: x^{2}+y^{2} \leq 1\right\} \tag{1}
\end{equation*}
$$

denote the unit disc on the plane and

$$
\begin{equation*}
u_{m}(t):=\frac{1}{\sqrt{\pi}} \frac{\sin (m+1) \arccos t}{\sqrt{1-t^{2}}} \tag{2}
\end{equation*}
$$

$m=0,1, \ldots, t \in[-1,1]$, are the Chebyshev polynomials of the second kind. For an arbitrary sequence of real phases $\left\{\varphi_{m}\right\}_{m=0}^{\infty}$, we get on \mathbb{B}^{2} the corresponding discrete sequence of Chebyshev ridge polynomials

$$
\begin{equation*}
\left\{\left\{u_{m}\left(x \cos \left(\frac{k \pi}{m+1}+\varphi_{m}\right)+y \sin \left(\frac{k \pi}{m+1}+\varphi_{m}\right)\right)\right\}_{k=0}^{m}\right\}_{m=0}^{\infty} \tag{3}
\end{equation*}
$$

These systems are very useful tool in the theory of approximation of functions by feed-forward neural networks [1], [2]. It is known [2] that for an arbitrary sequence of real phases $\left\{\varphi_{m}\right\}_{m=0}^{\infty}$, the system (3) is a complete orthonormal system in $L^{2}\left(\mathbb{B}^{2}\right)$. We consider convergence problem to zero for Fourier coefficients $(0 \leq k<m+1, m=0,1, \ldots)$

$$
\begin{equation*}
a_{m}\left(f, k, \varphi_{m}\right):=\int_{\mathbb{B}^{2}} f(x, y) u_{m}\left(x \cos \left(\frac{k \pi}{m+1}+\varphi_{m}\right)+y \sin \left(\frac{k \pi}{m+1}+\varphi_{m}\right)\right) d x d y \tag{4}
\end{equation*}
$$

of a function $f \in L^{p}\left(\mathbb{B}^{2}\right)$ with respect to the systems (3). The partial L^{p}-integral moduli of continuity of a function $f \in L^{p}\left(\mathbb{B}^{2}\right)$ are defined as follows

$$
\begin{equation*}
\omega_{1}(\delta ; f)_{p}:=\sup _{|h| \leq \delta}\left(\int_{\mathbb{B}^{2} \bigcap \mathbb{B}^{2}(1, h)}|f(x+h, y)-f(x, y)|^{p} d x d y\right)^{\frac{1}{p}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{2}(\delta ; f)_{p}:=\sup _{|h| \leq \delta}\left(\int_{\mathbb{B}^{2} \bigcap \mathbb{B}^{2}(2, h)}|f(x, y+h)-f(x, y)|^{p} d x d y\right)^{\frac{1}{p}} . \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbb{B}^{2}(1, h):=\left\{(x, y) \in R^{2}:(x+h, y) \in \mathbb{B}^{2}\right\}, \quad \mathbb{B}^{2}(2, h):=\left\{(x, y) \in R^{2}:(x, y+h) \in \mathbb{B}^{2}\right\} \tag{7}
\end{equation*}
$$

In the present article we shall prove the following theorems.
Theorem 1 Let $\left\{\varphi_{m}\right\}_{m=0}^{\infty}$ be an arbitrary sequence of real numbers and $f \in L^{p}\left(\mathbb{B}^{2}\right), p>\frac{3}{2}$. Then the ridge Chebyshev-Fourier coefficients of f tend to zero:

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \max _{0 \leq k \leq m}\left|a_{m}\left(f, k, \varphi_{m}\right)\right|=0 \tag{8}
\end{equation*}
$$

Theorem 2 There exists a function $g \in L^{\frac{3}{2}}\left(\mathbb{B}^{2}\right)$ such that

$$
\begin{equation*}
\omega_{1}(\delta ; g)_{\frac{3}{2}}=O\left(\left(\frac{1}{\lg \frac{1}{\delta}}\right)^{\frac{1}{3}}\right),(\delta \rightarrow 0+) ; \quad \omega_{2}(\delta ; g)_{\frac{3}{2}}=0,(\delta \in(0,1)) \tag{9}
\end{equation*}
$$

and for each sequence $\left\{\varphi_{m}\right\}_{m=0}^{\infty}$ the following inequality holds true

$$
\begin{equation*}
\limsup _{m \rightarrow \infty} \max _{0 \leq k \leq m}\left|a_{m}\left(g, k, \varphi_{m}\right)\right| \geq C_{1}>0 \tag{10}
\end{equation*}
$$

where C_{1} is an absolute constant.
The next statement follows from Theorem 2.
Corollary 1 There exists a function $g \in L^{\frac{3}{2}}\left(\mathbb{B}^{2}\right)$ that satisfies (9) and for each sequence $\left\{\varphi_{m}\right\}_{m=0}^{\infty}$ Fourier series of g with respect to the system (3) diverges in $L^{\frac{3}{2}}\left(\mathbb{B}^{2}\right)$.

Proof of the Corollary. First we prove that for $m=0,1, \ldots, k=0,1, \ldots m$, and for each sequence $\left\{\varphi_{m}\right\}_{m=0}^{\infty}$ we have

$$
\begin{equation*}
\int_{\mathbb{B}^{2}}\left|u_{m}\left(x \cos \left(\frac{k \pi}{m+1}+\varphi_{m}\right)+y \sin \left(\frac{k \pi}{m+1}+\varphi_{m}\right)\right)\right| d x d y \geq \frac{\sqrt{\pi}}{2} \tag{11}
\end{equation*}
$$

Indeed, according to (1) and (2)

$$
\begin{aligned}
& \int_{\mathbb{B}^{2}}\left|u_{m}\left(x \cos \left(\frac{k \pi}{m+1}+\varphi_{m}\right)+y \sin \left(\frac{k \pi}{m+1}+\varphi_{m}\right)\right)\right| d x d y \\
& =\int_{\mathbb{B}^{2}}\left|u_{m}(x)\right| d x d y=\frac{2}{\sqrt{\pi}} \int_{-1}^{1}|\sin (m+1) \arccos x| d x \\
& =\frac{2}{\sqrt{\pi}} \int_{0}^{\pi}|\sin (m+1) \vartheta| \sin \vartheta d \vartheta \geq \frac{2}{\sqrt{\pi}} \int_{0}^{\pi}(\sin (m+1) \vartheta \sin \vartheta)^{2} d \vartheta \\
& =\frac{1}{2 \sqrt{\pi}} \int_{0}^{\pi}(1-\cos 2(m+1) \vartheta)(1-\cos 2 \vartheta) d \vartheta=\frac{\sqrt{\pi}}{2} .
\end{aligned}
$$

Consequently for the function g from Theorem 2 we get

$$
\begin{aligned}
& \max _{0 \leq k \leq m}\left\|a_{m}\left(g, k, \varphi_{m}\right) u_{m}\left(x \cos \left(\frac{k \pi}{m+1}+\varphi_{m}\right)+y \sin \left(\frac{k \pi}{m+1}+\varphi_{m}\right)\right)\right\|_{\frac{3}{2}} \\
& \geq C_{2} \max _{0 \leq k \leq m}\left|a_{m}\left(g, k, \varphi_{m}\right)\right|
\end{aligned}
$$

for each sequence $\left\{\varphi_{m}\right\}_{m=0}^{\infty}$ and $m=0,1, \ldots$, where C_{2} is an absolute positive constant. Now the Corollary follows from (10).
Proof of Theorem 1 . First we note that for each $\epsilon \in(0,1)$ there exists a constant B_{ϵ} such that

$$
\begin{equation*}
\int_{\mathbb{B}^{2}}\left|u_{m}(x)\right|^{3-\epsilon} d x d y \leq B_{\epsilon}, \quad m=0,1, \ldots \tag{12}
\end{equation*}
$$

Indeed

$$
\begin{aligned}
& \int_{\mathbb{B}^{2}}\left|u_{m}(x)\right|^{3-\epsilon} d x d y=2\left(\frac{1}{\sqrt{\pi}}\right)^{3-\epsilon} \int_{-1}^{1}|\sin (m+1) \arccos x|^{3-\epsilon}\left(\sqrt{1-x^{2}}\right)^{\epsilon-2} d x \\
& =4\left(\frac{1}{\sqrt{\pi}}\right)^{3-\epsilon} \int_{0}^{\frac{\pi}{2}}|\sin (m+1) \vartheta|^{3-\epsilon}(\sin \vartheta)^{\epsilon-1} d \vartheta \\
& =4\left(\frac{1}{\sqrt{\pi}}\right)^{3-\epsilon}\left((m+1)^{3-\epsilon} \pi^{1-\epsilon} 2^{\epsilon-1} \int_{0}^{\frac{\pi}{m+1}} \vartheta^{2} d \vartheta+4 \pi^{1-\epsilon} 2^{\epsilon-1} \int_{\frac{\pi}{m+1}}^{\frac{\pi}{2}} \vartheta^{\epsilon-1} d \vartheta\right) \\
& =4\left(\frac{1}{\sqrt{\pi}}\right)^{3-\epsilon}\left(o(1)+\frac{4 \pi}{2 \epsilon}\right) \quad \text { as } m \rightarrow \infty .
\end{aligned}
$$

Now let $p>\frac{3}{2}$ and $\frac{1}{p}+\frac{1}{q}=1$. Then using Helder's inequality and (12) we obtain that for an arbitrary f from $L^{p}\left(\mathbb{B}^{2}\right)$ the following inequality holds true:

$$
\max _{0 \leq k \leq m}\left|a_{m}\left(f, k, \varphi_{m}\right)\right| \leq\|f\|_{p}\left\|u_{m}\right\|_{q}, \quad m=0,1, \ldots
$$

For a given positive δ we can find a function $h=h_{\delta} \in L^{2}\left(\mathbb{B}^{2}\right)$ such that

$$
\|f-h\|_{p} \leq \delta
$$

Consequently (cf.(12))

$$
\begin{aligned}
& \max _{0 \leq k \leq m}\left|a_{m}\left(f, k, \varphi_{m}\right)\right| \leq\|f-h\|_{p}\left\|u_{m}\right\|_{q}+\max _{0 \leq k \leq m}\left|a_{m}\left(h, k, \varphi_{m}\right)\right| \\
& \leq O_{q}(\delta)+o(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

Theorem 1 is proved. The next statement is essential in the proof of Theorem 2.
Lemma 1 For each $m, m \geq m_{0}$, there exists a function $q_{m-1}(x)$ of one variable, defined on $[-1,1]$ such that the function $Q_{m-1}(x, y)$ defined by

$$
\begin{equation*}
Q_{m-1}(x, y):=q_{m-1}(x) \quad \text { for } \quad(x, y) \in \mathbb{B}^{2} \tag{13}
\end{equation*}
$$

satisfies the following conditions:

$$
\begin{gather*}
\max _{0 \leq k \leq m-1}\left|a_{m-1}\left(Q_{m-1}, k, \varphi\right)\right| \geq C_{3}(\log m)^{\frac{1}{3}} \quad \text { for all real } \varphi, \tag{14}\\
\left\|Q_{m-1}\right\|_{\frac{3}{2}} \leq C_{4}, \tag{15}\\
\omega_{1}\left(\delta ; Q_{m-1}\right)_{\frac{3}{2}} \leq \omega_{m-1}(\delta):=\left\{\begin{array}{ll}
C_{5}\left(m^{2} \delta\right)^{\frac{2}{3}}(\log m)^{-\frac{2}{3}} \\
2 C_{5} & \text { for } \\
\delta>\frac{2}{m^{2}}
\end{array} \text { for } 0 \leq \delta \leq \frac{2}{m^{2}}\right. \tag{16}\\
\omega_{2}\left(\delta ; Q_{m-1}\right)_{\frac{3}{2}}=0 \text { for all } \delta \in(0,1) \tag{17}
\end{gather*}
$$

where $C_{3}, C_{4}, m_{0}, C_{5}$ are positive absolute constants and

$$
\begin{equation*}
a_{m}(f, k, \varphi):=\int_{\mathbb{B}^{2}} f(x, y) u_{m}\left(x \cos \left(\frac{k \pi}{m+1}+\varphi\right)+y \sin \left(\frac{k \pi}{m+1}+\varphi\right)\right) d x d y \tag{18}
\end{equation*}
$$

Proof of the Lemma. Consider the functions $f_{k}^{(m)}(x),-1 \leq x \leq 1, k=1,2, \ldots,[\sqrt{m}]$:

$$
f_{k}^{(m)}(x)=\left\{\begin{array}{rr}
\frac{1}{k^{2}} & \text { for } x \in\left[\cos \frac{(2 k+1) \pi}{m}, \cos \frac{2 k \pi}{m}\right] \tag{19}\\
0 & \text { otherwise on }[-1,1]
\end{array}\right.
$$

and let

$$
\begin{equation*}
q_{m-1}(x):=\frac{m^{2}}{(\log m)^{\frac{2}{3}}} \sum_{k=1}^{[\sqrt{m}]} f_{k}^{(m)}(x) \tag{20}
\end{equation*}
$$

Now introduce the function $Q_{m-1}(x, y)$ defined on the unit disc \mathbb{B}^{2}

$$
\begin{equation*}
Q_{m-1}(x, y):=q_{m-1}(x) \quad \text { for } \quad(x, y) \in \mathbb{B}^{2} . \tag{21}
\end{equation*}
$$

First we prove that for $m \geq m_{0}^{(1)}$

$$
\begin{equation*}
\left\|Q_{m-1}\right\|_{\frac{3}{2}} \leq C_{4}, \tag{22}
\end{equation*}
$$

for some absolute constant $m_{0}^{(1)}$. Indeed (cf.(19), (20), (21))

$$
\begin{aligned}
& \int_{\mathbb{B}^{2}}\left|Q_{m-1}(x, y)\right|^{\frac{3}{2}} d x d y=2 \int_{-1}^{1}\left|q_{m-1}(x)\right|^{\frac{3}{2}} \sqrt{1-x^{2}} d x \\
& =2 \sum_{l=1}^{[\sqrt{m}]} \int_{\cos \frac{(2 l+1) \pi}{m}}^{\cos \frac{2 l \pi}{m}}\left|q_{m-1}(x)\right|^{\frac{3}{2}} \sqrt{1-x^{2}} d x=2 \frac{m^{3}}{\log m} \sum_{l=1}^{[\sqrt{m}]} \frac{1}{l^{3}} \int_{\cos \frac{(2 l+1) \pi}{m}}^{\cos \frac{2 l \pi}{m}} \sqrt{1-x^{2}} d x \\
& \leq 2 \frac{m^{3}}{\log m} \sum_{l=1}^{[\sqrt{m}]} \frac{1}{l^{3}} \sin \frac{(2 l+1) \pi}{m}\left(\cos \frac{2 l \pi}{m}-\cos \frac{(2 l+1) \pi}{m}\right) \\
& =4 \frac{m^{3}}{\log m} \sum_{l=1}^{[\sqrt{m}]} \frac{1}{l^{3}} \sin \frac{(2 l+1) \pi}{m} \sin \frac{\pi}{2 m} \sin \frac{(4 l+1) \pi}{2 m} \\
& \leq \frac{C_{5}}{\log m} \sum_{l=1}^{[\sqrt{m]}} \frac{1}{l} \leq C_{6} \text { for } m \geq m_{0}^{(1)},
\end{aligned}
$$

where $m_{0}^{(1)}, C_{5}, C_{6}$ are absolute positive constants. Now we prove that for $m \geq m_{0}^{(2)}$ the following inequality is true

$$
\begin{equation*}
\max _{0 \leq k \leq m}\left|a_{m-1}\left(Q_{m-1}, k, \varphi\right)\right| \geq C_{3}(\log m)^{\frac{1}{3}} \quad \text { for all real } \quad \varphi, \tag{23}
\end{equation*}
$$

where C_{3} and $m_{0}^{(2)}$ are absolute positive constants. Indeed, it is known [2] that if $F \in$ $L_{w}^{2}([-1,1]), \quad w(t)=2 \sqrt{1-t^{2}}, \quad t \in[-1,1], \quad$ then for the function

$$
\begin{equation*}
P(x, y):=F(x) \quad(x, y) \in \mathbb{B}^{2} \tag{24}
\end{equation*}
$$

we have

$$
\begin{equation*}
a_{m}(P, k, \varphi):=\frac{\sqrt{\pi}}{m+1} \hat{F}(m) u_{m}\left(\cos \left(\frac{k \pi}{m+1}+\varphi\right)\right) \tag{25}
\end{equation*}
$$

where $k=0,1, \ldots m, \varphi \in(-\infty, \infty)$ and

$$
\begin{equation*}
\hat{F}(m):=2 \int_{-1}^{1} F(t) u_{m}(t) \sqrt{1-t^{2}} d t \tag{26}
\end{equation*}
$$

Further we show that for some absolute positive constant C_{7}

$$
\begin{equation*}
\left|\hat{q}_{(m-1)}(m-1)\right| \geq C_{7}(\log m)^{\frac{1}{3}} . \tag{27}
\end{equation*}
$$

According to (19), (20), (26) we get

$$
\begin{aligned}
& \hat{q}_{(m-1)}(m-1):=2 \int_{-1}^{1} q_{m-1}(t) u_{m-1}(t) \sqrt{1-t^{2}} d t \\
& =2 \frac{m^{2}}{(\log m)^{\frac{2}{3}}} \sum_{k=1}^{[\sqrt{m}]} \int_{-1}^{1} f_{k}^{(m)}(t) u_{m-1}(t) \sqrt{1-t^{2}} d t \\
& =2 \frac{m^{2}}{(\log m)^{\frac{2}{3}}} \sum_{k=1}^{[\sqrt{m}]} \frac{1}{k^{2}} \int_{\cos \frac{(2 k+1) \pi}{m}}^{\cos \frac{2 k \pi}{m}} \sin m \arccos t d t \\
& \geq 2 \frac{m^{2}}{(\log m)^{\frac{2}{3}}} \sum_{k=1}^{[\sqrt{m}]} \frac{1}{k^{2}} \int_{\frac{2 k \pi}{m}}^{\frac{(2 k+1) \pi}{m}} \sin m \vartheta \sin \vartheta d \vartheta \\
& \geq C_{8} \frac{1}{(\log m)^{\frac{2}{3}}} \sum_{k=1}^{[\sqrt{m}]} \frac{1}{k} \geq C_{7}(\log m)^{\frac{1}{3}},
\end{aligned}
$$

where C_{7} and C_{8} are positive absolute constants. Let φ_{0} be such that $\varphi_{0}=\varphi(\bmod \pi)$ and $0 \leq \varphi_{0}<\pi$. Now we prove that there exists an integer $k_{1}=k_{1}\left(\varphi_{0}\right)$ with the properties

$$
\begin{equation*}
\left|u_{m-1}\left(\cos \left(\frac{k_{1} \pi}{m}+\varphi_{0}\right)\right)\right| \geq \frac{2}{\pi} m \quad \text { and } \quad 0 \leq k_{1} \leq m-1 \tag{28}
\end{equation*}
$$

Consider the following cases: let first $0 \leq \varphi_{0}<\frac{\pi}{2 m}$. In this case we take $k_{1}:=0$. We see that then (cf.(2))

$$
\left|u_{m-1}\left(\cos \left(\frac{k_{1} \pi}{m}+\varphi_{0}\right)\right)\right|=\left|u_{m-1}\left(\cos \varphi_{0}\right)\right| \frac{\left|\sin m \arccos \left(\cos \varphi_{0}\right)\right|}{\left|\sin \varphi_{0}\right|} \geq \frac{2}{\pi} m
$$

If now $\frac{\pi}{2 m} \leq \varphi_{0}<\frac{\pi}{m}$ then we choose $k_{1}=m-1$. It is clear that then

$$
\begin{aligned}
& \left|u_{m-1}\left(\cos \left(\frac{k_{1} \pi}{m}+\varphi_{0}\right)\right)\right|=\left|u_{m-1}\left(\cos \left(\frac{(m-1) \pi}{m}+\varphi_{0}\right)\right)\right| \\
& =\left|u_{m-1}\left(-\cos \left(\frac{\pi}{m}-\varphi_{0}\right)\right)\right|=\left|u_{m-1}\left(\cos \left(\frac{\pi}{m}-\varphi_{0}\right)\right)\right| \\
& =\frac{\left|\sin m\left(\frac{\pi}{m}-\varphi_{0}\right)\right|}{\left|\sin \left(\frac{\pi}{m}-\varphi_{0}\right)\right|} \geq \frac{2}{\pi} m .
\end{aligned}
$$

Now it remains only the case $\frac{\pi}{m} \leq \varphi_{0}<\pi$. Let $k_{0}=k_{0}\left(\varphi_{0}\right)$ be the integer such that

$$
\begin{equation*}
\frac{k_{0} \pi}{m}+\varphi_{0}<\pi \leq \frac{\left(k_{0}+1\right) \pi}{m}+\varphi_{0} \tag{29}
\end{equation*}
$$

It is clear that in this case (cf.(29), (30))

$$
\frac{k_{0} \pi}{m}<\pi-\varphi_{0} \leq \pi-\frac{\pi}{m} \quad \text { and } \quad \frac{\left(k_{0}+1\right) \pi}{m} \geq \pi-\varphi_{0}>0
$$

and consequently,

$$
\begin{equation*}
0 \leq k_{0}<m-1 \quad \text { and } \quad 0<\pi-\left(\frac{k_{0} \pi}{m}+\varphi_{0}\right) \leq \frac{\pi}{m} \tag{30}
\end{equation*}
$$

Now we have two subcases:

$$
\begin{equation*}
0<\pi-\left(\frac{k_{0} \pi}{m}+\varphi_{0}\right) \leq \frac{\pi}{2 m} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\pi}{2 m}<\pi-\left(\frac{k_{0} \pi}{m}+\varphi_{0}\right) \leq \frac{\pi}{m} \tag{32}
\end{equation*}
$$

Let

$$
\begin{equation*}
k_{1}:=k_{0} \quad \text { in the first subcase and } \quad k_{1}:=k_{0}+1 \quad \text { in the second subcase. } \tag{33}
\end{equation*}
$$

It is clear that in both cases(cf.(30))

$$
0 \leq k_{1} \leq m-1
$$

In the first subcase we have (cf.(2), (33), (31))

$$
\begin{aligned}
& \left|u_{m-1}\left(\cos \left(\frac{k_{1} \pi}{m}+\varphi_{0}\right)\right)\right|=\left|u_{m-1}\left(\cos \left(\frac{k_{0} \pi}{m}+\varphi_{0}\right)\right)\right| \\
& =\left|u_{m-1}\left(\cos \left(\pi-\left(\frac{k_{0} \pi}{m}+\varphi_{0}\right)\right)\right)\right|=\frac{\left|\sin m\left(\pi-\left(\frac{k_{0} \pi}{m}+\varphi_{0}\right)\right)\right|}{\left|\sin \left(\pi-\left(\frac{k_{0} \pi}{m}+\varphi_{0}\right)\right)\right|} \geq \frac{2}{\pi} m .
\end{aligned}
$$

And at last for the second subcase we get (cf.(13), (33), (32))

$$
\begin{aligned}
& \left|u_{m-1}\left(\cos \left(\frac{k_{1} \pi}{m}+\varphi_{0}\right)\right)\right|=\left|u_{m-1}\left(\cos \left(\frac{\left(k_{0}+1\right) \pi}{m}+\varphi_{0}\right)\right)\right| \\
& =\left|u_{m-1}\left(\cos \left(\frac{\left(k_{0}+1\right) \pi}{m}+\varphi_{0}-\pi\right)\right)\right|=\frac{\left|\sin m\left(\left(\frac{\left(k_{0}+1\right) \pi}{m}+\varphi_{0}-\pi\right)\right)\right|}{\left|\sin \left(\left(\frac{\left(k_{0}+1\right) \pi}{m}+\varphi_{0}-\pi\right)\right)\right|} \geq \frac{2}{\pi} m
\end{aligned}
$$

The inequality (28) and consequently the inequality (23) are proved. now we will estimate $\omega_{1}\left(\delta ; Q_{m-1}\right)_{\frac{3}{2}}$. Taking account of the fact that for $k=1,2, \ldots[\sqrt{m}]$,

$$
\cos \frac{(2 k+1) \pi}{m}-\cos \frac{(2 k+2) \pi}{m} \geq 2 \sin \frac{\pi}{2 m} \sin \frac{(4 k+3) \pi}{2 m} \geq \frac{2}{m^{2}}
$$

we get for $|h| \leq \frac{2}{m^{2}}$ (cf.(19), (20), (21))

$$
\begin{aligned}
& \int_{\mathbb{B}^{2} \bigcap \mathbb{B}^{2}(1, h)}\left|Q_{m-1}(x+h, y)-Q_{m-1}(x, y)\right|^{\frac{3}{2}} d x d y \leq|h| \frac{m^{3}}{\log m} \sum_{k=1}^{[\sqrt{m}]} \frac{1}{k^{3}} \sin \frac{(2 k+2) \pi}{m} \\
& \leq C_{9}|h| \frac{m^{2}}{\log m} \sum_{k=1}^{[\sqrt{m}]} \frac{1}{k^{2}} \leq C_{10}|h| \frac{m^{2}}{\log m},
\end{aligned}
$$

and for $|h|>\frac{2}{m^{2}}$ we have (cf.(22))

$$
\int_{\mathbb{B}^{2} \bigcap \mathbb{B}^{2}(1, h)}\left|Q_{m-1}(x+h, y)-Q_{m-1}(x, y)\right|^{\frac{3}{2}} d x d y \leq\left(2\left\|Q_{m-1}\right\|_{\frac{3}{2}}\right)^{\frac{3}{2}} \leq C_{11}
$$

for some absolute C_{9}, C_{10} and C_{11}. From (19), (20), (21) we see that the Lemma is established completely.
Proof of Theorem 2 . We define an increasing sequence of positive integers $\left\{m_{l}\right\}_{l=1}^{\infty}$ by induction. Let $m_{1}=m_{0}+1$ where m_{0} is the number from the Lemma. Now let numbers $m_{1}, m_{2} \ldots m_{l-1}$ be already defined. Introduce the functions defined on \mathbb{B}^{2} and $[-1,1]$ correspondingly

$$
\begin{equation*}
A_{l-1}(x, y):=\sum_{k=1}^{l-1} \frac{1}{\left(\log m_{k}\right)^{\frac{1}{3}}} Q_{m_{k}-1}(x, y) \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{l-1}(x):=\sum_{k=1}^{l-1} \frac{1}{\left(\log m_{k}\right)^{\frac{1}{3}}} q_{m_{k}-1}(x) \tag{35}
\end{equation*}
$$

where $Q_{m_{k}-1}(x, y)$ and $q_{m_{k}-1}(x)$ are functions from the Lemma corresponding to the number m_{k}. It is clear that (cf. $\left.(24),(19),(20)\right) A_{l-1}(x, y) \in L^{2}\left(\mathbb{B}^{2}\right), B_{l-1}(x) \in L^{2}([-1,1])$ and (cf. (24), (25), (26))

$$
\left|a_{m-1}\left(A_{l-1}, k, \varphi\right)\right| \leq \pi\left|\hat{B}_{l-1}(m-1)\right|, \text { for all real } \varphi
$$

It is clear that

$$
\lim _{m \rightarrow \infty}\left|\hat{B}_{l-1}(m-1)\right|=0
$$

¿From the last equation we conclude that there is the number N_{l-1} such that for all $m \geq N_{l-1}$

$$
\begin{equation*}
\left|\hat{B}_{l-1}(m-1)\right| \leq \frac{C_{3}}{2 \pi} \tag{36}
\end{equation*}
$$

where C_{3} is the constant from the Lemma. Now we define m_{l} so that the following relations are satisfied:

$$
\begin{gather*}
m_{l}>m_{l-1}, \quad m_{l} \geq N_{l-1} \tag{37}\\
\frac{m_{l-1}}{\left(\log m_{l}\right)^{\frac{1}{3}}} \leq \frac{1}{l+1} \tag{38}\\
2\left(\log m_{l}\right)^{-\frac{1}{3}} \leq\left(\log m_{l-1}\right)^{-\frac{1}{3}} \tag{39}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{m_{l}^{\frac{4}{3}}}{\log m_{l}} \geq 2 \frac{m_{l-1}^{\frac{4}{3}}}{\log m_{l-1}} \tag{40}
\end{equation*}
$$

Thus we have constructed the infinite increasing sequence of integers $\left\{m_{l}\right\}_{l=1}^{\infty}$. Consider the function

$$
\begin{equation*}
g(x, y):=\sum_{k=1}^{\infty} \frac{1}{\left(\log m_{k}\right)^{\frac{1}{3}}} Q_{m_{k}-1}(x, y) \tag{41}
\end{equation*}
$$

defined on \mathbb{B}^{2}. It is obvious that (cf.(41), (22), (39))

$$
\begin{equation*}
\|g\|_{\frac{3}{2}} \leq \sum_{k=1}^{\infty} \frac{C_{4}}{\left(\log m_{k}\right)^{\frac{1}{3}}}<\infty \tag{42}
\end{equation*}
$$

Let $\left\{\varphi_{m}\right\}_{m=0}^{\infty}$ be an arbitrary sequence of real numbers. According to (34), (41) we get for each $k=0,1, \ldots m_{l}-1, l=1,2, \ldots$,

$$
\begin{aligned}
& a_{m_{l}-1}\left(g, k, \varphi_{m_{l}-1}\right)=a_{m_{l}-1}\left(A_{l-1}, k, \varphi_{m_{l}-1}\right)+a_{m_{l}-1}\left(Q_{m_{l}-1}\left(\log m_{l}\right)^{-\frac{1}{3}}, k, \varphi_{m_{l}-1}\right) \\
+ & a_{m_{l}-1}\left(E_{l}, k, \varphi_{m_{l}-1}\right)
\end{aligned}
$$

where

$$
\begin{equation*}
E_{l}(x, y):=\sum_{k=l+1}^{\infty} \frac{1}{\left(\log m_{k}\right)^{\frac{1}{3}}} Q_{m_{k}-1}(x, y) \tag{43}
\end{equation*}
$$

According to (25), (34), (35), (36), (26), (37) for each $k=0,1, \ldots m_{l}-1, l=1,2, \ldots$ the following inequality holds true

$$
\begin{equation*}
\left|a_{m_{l}-1}\left(A_{l-1}, k, \varphi_{m_{l}-1}\right)\right| \leq \frac{C_{3}}{2} \tag{44}
\end{equation*}
$$

On the other hand, it follows from (39), (15), (38) and (43) that for each $k=0,1, \ldots, m_{l}-1$, $l=1,2, \ldots$, we have

$$
\begin{equation*}
\left|a_{m_{l}-1}\left(E_{l}, k, \varphi_{m_{l}-1}\right)\right|=O\left(\sum_{k=l+1}^{\infty} \frac{1}{\left(\log m_{k}\right)^{\frac{1}{3}}}\right)=O\left(\frac{1}{l+1}\right) \quad \text { as } \quad l \rightarrow \infty \tag{45}
\end{equation*}
$$

Now it is easy to see that (cf. (45), (44)) for each $k=0,1, \ldots m_{l}-1, l=1,2, \ldots$, we get

$$
\begin{aligned}
& \left|a_{m_{l}-1}\left(Q_{m_{l}-1}\left(\log m_{l}\right)^{-\frac{1}{3}}, k, \varphi_{m_{l}-1}\right)\right| \leq\left|a_{m_{l}-1}\left(g, k, \varphi_{m_{l}-1}\right)\right| \\
& +\left|a_{m_{l}-1}\left(A_{l-1}, k, \varphi_{m_{l}-1}\right)\right|+\left|a_{m_{l}-1}\left(E_{l}, k, \varphi_{m_{l}-1}\right)\right| \leq\left|a_{m_{l}-1}\left(g, k, \varphi_{m_{l}-1}\right)\right| \\
& +\frac{C_{3}}{2}+O\left(\frac{1}{l+1}\right) \leq \max _{0 \leq k \leq m_{l}-1}\left|a_{m_{l}-1}\left(g, k, \varphi_{m_{l}-1}\right)\right| \\
& +\frac{C_{3}}{2}+O\left(\frac{1}{l+1}\right) \quad \text { as } l \rightarrow \infty
\end{aligned}
$$

and therefore according to the Lemma (cf.(14))

$$
\begin{aligned}
& \max _{0 \leq k \leq m_{l}-1}\left|a_{m_{l}-1}\left(g, k, \varphi_{m_{l}-1}\right)\right| \geq \max _{0 \leq k \leq m_{l}-1}\left|a_{m_{l}-1}\left(Q_{m_{l}-1}\left(\log m_{l}\right)^{-\frac{1}{3}}, k, \varphi_{m_{l}-1}\right)\right| \\
& \frac{C_{3}}{2}-O\left(\frac{1}{l+1}\right) \geq C_{3}-\frac{C_{3}}{2}-o(1) \quad \text { as } \quad l \rightarrow \infty
\end{aligned}
$$

We see now that the relation (10) of theorem 2 is established. it is obvious from (13), (41) and the Lemma that the function $g(x, y)$ is in fact a function of one variable and consequently the second equation in (17) is true. It remains only to estimate $\omega_{1}(\delta ; g)_{\frac{3}{2}}$. Let for a given $\delta>0$ the integer $l_{0}=l_{o}(\delta)$ be such that

$$
\frac{2}{m_{l_{0}+1}^{2}}<\delta \leq \frac{2}{m_{l_{0}}^{2}}
$$

¿From (16), (41), (40), (39) we see that

$$
\begin{aligned}
& \omega_{1}(\delta ; g)_{\frac{3}{2}} \leq \sum_{k=1}^{\infty} \frac{1}{\left(\log m_{k}\right)^{\frac{1}{3}}} \omega_{m_{k}-1}(\delta) \leq C_{5} \delta^{\frac{2}{3}} \sum_{k=1}^{l_{0}} \frac{m_{k}^{\frac{4}{3}}}{\log m_{k}} \\
& +2 C_{5} \sum_{k=l_{0}+1}^{\infty} \frac{1}{\left(\log m_{k}\right)^{\frac{1}{3}}} \leq 2 C_{5} \frac{m_{l_{0}}^{\frac{4}{3}}}{\log m_{l_{0}}} \delta^{\frac{2}{3}}+4 C_{5} \frac{1}{\left(\log m_{l_{0}+1}\right)^{\frac{1}{3}}} \leq C_{12} \frac{1}{\log \frac{1}{\delta}} \\
& +C_{13} \frac{1}{\left(\log \frac{1}{\delta}\right)^{\frac{1}{3}}}=O\left(\frac{1}{\left(\log \frac{1}{\delta}\right)^{\frac{1}{3}}}\right) \text { as } \delta \rightarrow 0+.
\end{aligned}
$$

Theorem 2 is now proven.

References

[1] R.A. DeVore, K.I. Oskolkov and P.P.Petrushev. Approximation by feed-forward neural networks. Annals of Numerical Mathematics, 4 (1997), pp. 261-287.
[2] K.I. Oskolkov. Ridge approximation, Chebyshev-Fourier analysis and optimal quadrature formulas. (To appear).

Department of Mathematics, University of South Carolina, Columbia, SC 29208.
Department of Mathematics, Tbilisi State University, Tbilisi 380028, I.Chavchavadze ave. 1.

