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Let
IB2 :=

{
(x, y) ∈R2 : x2 + y2 ≤ 1

}
(1)

denote the unit disc on the plane and

um(t) :=
1√
π

sin (m + 1) arccos t√
1 − t2

, (2)

m = 0, 1, . . . , t ∈ [−1, 1], are the Chebyshev polynomials of the second kind. For an arbi-
trary sequence of real phases {ϕm}∞m=0, we get on IB2 the corresponding discrete sequence of
Chebyshev ridge polynomials{{

um

(
x cos

(
kπ

m + 1
+ ϕm

)
+ y sin

(
kπ

m + 1
+ ϕm

))}m

k=0

}∞

m=0

. (3)

These systems are very useful tool in the theory of approximation of functions by feed–forward
neural networks [1], [2]. It is known [2] that for an arbitrary sequence of real phases {ϕm}∞m=0,
the system (3) is a complete orthonormal system in L2(IB2). We consider convergence problem
to zero for Fourier coefficients (0 ≤ k < m + 1, m = 0, 1, . . . )

am(f, k, ϕm) :=
∫
IB2

f(x, y) um

(
x cos

(
kπ

m + 1
+ ϕm

)
+ y sin

(
kπ

m + 1
+ ϕm

))
dx dy (4)

of a function f ∈ Lp(IB2) with respect to the systems (3). The partial Lp-integral moduli of
continuity of a function f ∈ Lp(IB2) are defined as follows

ω1(δ; f)p := sup
|h|≤δ

(∫
IB2

⋂
IB2(1,h)

|f(x + h, y) − f(x, y)|p dxdy

)1
p

, (5)
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and

ω2(δ; f)p := sup
|h|≤δ

(∫
IB2

⋂
IB2(2,h)

|f(x, y + h) − f(x, y)|p dxdy

)1
p

. (6)

where

IB2(1, h) :=
{
(x, y) ∈R2 : (x + h, y) ∈ IB2

}
, IB2(2, h) :=

{
(x, y) ∈R2 : (x, y + h) ∈ IB2

}
.

(7)
In the present article we shall prove the following theorems.

Theorem 1 Let {ϕm}∞m=0 be an arbitrary sequence of real numbers and f ∈ Lp(IB2), p > 3
2
.

Then the ridge Chebyshev –Fourier coefficients of f tend to zero:

lim
m→∞

max
0≤k≤m

|am(f, k, ϕm)| = 0. (8)

Theorem 2 There exists a function g ∈ L
3
2 (IB2) such that

ω1(δ; g) 3
2

= O

⎛
⎝(

1

lg 1
δ

) 1
3

⎞
⎠ , (δ → 0+); ω2(δ; g) 3

2
= 0, (δ ∈ (0, 1)) (9)

and for each sequence {ϕm}∞m=0 the following inequality holds true

lim sup
m→∞

max
0≤k≤m

|am(g, k, ϕm)| ≥ C1 > 0, (10)

where C1 is an absolute constant.

The next statement follows from Theorem 2.

Corollary 1 There exists a function g ∈ L
3
2 (IB2) that satisfies (9) and for each sequence

{ϕm}∞m=0 Fourier series of g with respect to the system (3) diverges in L
3
2 (IB2) .

Proof of the Corollary. First we prove that for m = 0, 1, . . . , k = 0, 1, . . . m, and for each
sequence {ϕm}∞m=0 we have

∫
IB2

∣∣∣∣∣um

(
x cos

(
kπ

m + 1
+ ϕm

)
+ y sin

(
kπ

m + 1
+ ϕm

))∣∣∣∣∣ dxdy ≥
√

π

2
. (11)
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Indeed, according to (1) and (2)

∫
IB2

∣∣∣∣∣um

(
x cos

(
kπ

m + 1
+ ϕm

)
+ y sin

(
kπ

m + 1
+ ϕm

))∣∣∣∣∣ dxdy

=
∫
IB2

|um(x)|dxdy =
2√
π

∫ 1

−1
| sin (m + 1) arccosx| dx

=
2√
π

∫ π

0
| sin (m + 1)ϑ| sinϑdϑ ≥ 2√

π

∫ π

0
(sin (m + 1)ϑ sin ϑ)2 dϑ

=
1

2
√

π

∫ π

0
(1 − cos 2(m + 1)ϑ)(1 − cos 2ϑ) dϑ =

√
π

2
.

Consequently for the function g from Theorem 2 we get

max
0≤k≤m

∥∥∥∥∥am(g, k, ϕm) um

(
x cos

(
kπ

m + 1
+ ϕm

)
+ y sin

(
kπ

m + 1
+ ϕm

))∥∥∥∥∥
3
2

≥ C2 max
0≤k≤m

|am(g, k, ϕm)|

for each sequence {ϕm}∞m=0 and m = 0, 1, . . . , where C2 is an absolute positive constant. Now
the Corollary follows from (10).
Proof of Theorem 1 . First we note that for each ε ∈ (0, 1) there exists a constant Bε such
that ∫

IB2
|um(x)|3−εdxdy ≤ Bε, m = 0, 1, . . . . (12)

Indeed

∫
IB2

|um(x)|3−εdxdy = 2

(
1√
π

)3−ε ∫ 1

−1
| sin (m + 1) arccosx|3−ε

(√
1 − x2

)ε−2
dx

= 4

(
1√
π

)3−ε ∫ π
2

0
| sin (m + 1)ϑ|3−ε (sin ϑ)ε−1 dϑ

= 4

(
1√
π

)3−ε (
(m + 1)3−ε π1−ε 2ε−1

∫ π
m+1

0
ϑ2 dϑ + 4 π1−ε 2ε−1

∫ π
2

π
m+1

ϑε−1 dϑ

)

= 4

(
1√
π

)3−ε (
o(1) +

4π

2ε

)
as m → ∞ .
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Now let p > 3
2

and 1
p

+ 1
q

= 1. Then using Helder’s inequality and (12) we obtain that for an

arbitrary f from Lp(IB2) the following inequality holds true:

max
0≤k≤m

|am(f, k, ϕm)| ≤ ‖f‖p ‖um‖q, m = 0, 1, . . . .

For a given positive δ we can find a function h = hδ ∈ L2(IB2) such that

‖f − h‖p ≤ δ.

Consequently (cf.(12))

max
0≤k≤m

|am(f, k, ϕm)| ≤ ‖f − h‖p ‖um‖q + max
0≤k≤m

|am(h, k, ϕm)|

≤ Oq(δ) + o(1) as m → ∞

Theorem 1 is proved. The next statement is essential in the proof of Theorem 2.

Lemma 1 For each m, m ≥ m0, there exists a function qm−1(x) of one variable, defined on
[-1,1] such that the function Qm−1(x, y) defined by

Qm−1(x, y) := qm−1(x) for (x, y) ∈ IB2, (13)

satisfies the following conditions:

max
0≤k≤m−1

|am−1(Qm−1, k, ϕ)| ≥ C3 (log m)
1
3 for all real ϕ, (14)

‖Qm−1‖ 3
2
≤ C4 , (15)

ω1(δ; Qm−1) 3
2
≤ ωm−1(δ) :=

{
C5(m

2δ)
2
3 (log m)−

2
3 for 0 ≤ δ ≤ 2

m2

2C5 for δ > 2
m2

(16)

ω2(δ; Qm−1) 3
2

= 0 for all δ ∈ (0, 1) , (17)

where C3 , C4 , m0 , C5 are positive absolute constants and

am(f, k, ϕ) :=
∫
IB2

f(x, y) um

(
x cos

(
kπ

m + 1
+ ϕ

)
+ y sin

(
kπ

m + 1
+ ϕ

))
dx dy. (18)
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Proof of the Lemma. Consider the functions f
(m)
k (x), −1 ≤ x ≤ 1, k = 1, 2, . . . , [

√
m] :

f
(m)
k (x) =

{
1
k2 for x ∈

[
cos (2k+1)π

m
, cos 2kπ

m

]
,

0 otherwise on [−1, 1]
(19)

and let

qm−1(x) :=
m2

(log m)
2
3

[
√

m]∑
k=1

f
(m)
k (x). (20)

Now introduce the function Qm−1(x, y) defined on the unit disc IB2

Qm−1(x, y) := qm−1(x) for (x, y) ∈ IB2. (21)

First we prove that for m ≥ m
(1)
0

‖Qm−1‖ 3
2
≤ C4, (22)

for some absolute constant m(1)
0 . Indeed (cf.(19), (20), (21))

∫
IB2

|Qm−1(x, y)| 32dxdy = 2
∫ 1

−1
|qm−1(x)| 32

√
1 − x2dx

= 2
[
√

m]∑
l=1

∫ cos 2lπ
m

cos
(2l+1)π

m

|qm−1(x)| 32
√

1 − x2dx = 2
m3

log m

[
√

m]∑
l=1

1

l3

∫ cos 2lπ
m

cos
(2l+1)π

m

√
1 − x2dx

≤ 2
m3

log m

[
√

m]∑
l=1

1

l3
sin

(2l + 1)π

m

(
cos

2lπ

m
− cos

(2l + 1)π

m

)

= 4
m3

log m

[
√

m]∑
l=1

1

l3
sin

(2l + 1)π

m
sin

π

2m
sin

(4l + 1)π

2m

≤ C5

log m

[
√

m]∑
l=1

1

l
≤ C6 for m ≥ m

(1)
0 ,

where m
(1)
0 , C5, C6 are absolute positive constants. Now we prove that for m ≥ m

(2)
0 the

following inequality is true

max
0≤k≤m

|am−1(Qm−1, k, ϕ)| ≥ C3 (log m)
1
3 for all real ϕ, (23)
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where C3 and m
(2)
0 are absolute positive constants. Indeed, it is known [2] that if F ∈

L2
w([−1, 1]), w(t) = 2

√
1 − t2, t ∈ [−1, 1], then for the function

P (x, y) := F (x) (x, y) ∈ IB2 (24)

we have

am(P, k, ϕ) :=

√
π

m + 1
F̂ (m)um

(
cos

(
kπ

m + 1
+ ϕ

))
(25)

where k = 0, 1, . . . m, ϕ ∈ (−∞,∞) and

F̂ (m) := 2
∫ 1

−1
F (t)um(t)

√
1 − t2dt . (26)

Further we show that for some absolute positive constant C7

|q̂(m−1)(m − 1)| ≥ C7(log m)
1
3 . (27)

According to (19), (20), (26) we get

q̂(m−1)(m − 1) := 2
∫ 1

−1
qm−1(t)um−1(t)

√
1 − t2dt

= 2
m2

(log m)
2
3

[
√

m]∑
k=1

∫ 1

−1
f

(m)
k (t)um−1(t)

√
1 − t2dt

= 2
m2

(log m)
2
3

[
√

m]∑
k=1

1

k2

∫ cos 2kπ
m

cos
(2k+1)π

m

sin m arccos tdt

≥ 2
m2

(log m)
2
3

[
√

m]∑
k=1

1

k2

∫ (2k+1)π
m

2kπ
m

sin mϑ sin ϑdϑ

≥ C8
1

(log m)
2
3

[
√

m]∑
k=1

1

k
≥ C7(log m)

1
3 ,

where C7 and C8 are positive absolute constants. Let ϕ0 be such that ϕ0 = ϕ (mod π)
and 0 ≤ ϕ0 < π. Now we prove that there exists an integer k1 = k1(ϕ0) with the properties

∣∣∣∣∣um−1

(
cos

(
k1π

m
+ ϕ0

))∣∣∣∣∣ ≥ 2

π
m and 0 ≤ k1 ≤ m − 1. (28)
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Consider the following cases: let first 0 ≤ ϕ0 < π
2m

. In this case we take k1 := 0. We see
that then (cf.(2))

∣∣∣∣∣um−1

(
cos

(
k1π

m
+ ϕ0

))∣∣∣∣∣ = |um−1 (cosϕ0)|
| sin m arccos (cosϕ0)|

| sin ϕ0|
≥ 2

π
m .

If now π
2m

≤ ϕ0 < π
m

then we choose k1 = m − 1. It is clear that then

∣∣∣∣∣um−1

(
cos

(
k1π

m
+ ϕ0

))∣∣∣∣∣ =

∣∣∣∣∣um−1

(
cos

(
(m − 1)π

m
+ ϕ0

))∣∣∣∣∣
=

∣∣∣∣um−1

(
− cos

(
π

m
− ϕ0

))∣∣∣∣ =
∣∣∣∣um−1

(
cos

(
π

m
− ϕ0

))∣∣∣∣
=

| sin m
(

π
m
− ϕ0

)
|

| sin
(

π
m
− ϕ0

)
|

≥ 2

π
m .

Now it remains only the case π
m

≤ ϕ0 < π. Let k0 = k0(ϕ0) be the integer such that

k0π

m
+ ϕ0 < π ≤ (k0 + 1)π

m
+ ϕ0 . (29)

It is clear that in this case (cf.(29), (30))

k0π

m
< π − ϕ0 ≤ π − π

m
and

(k0 + 1)π

m
≥ π − ϕ0 > 0 ,

and consequently,

0 ≤ k0 < m − 1 and 0 < π −
(

k0π

m
+ ϕ0

)
≤ π

m
. (30)

Now we have two subcases:

0 < π −
(

k0π

m
+ ϕ0

)
≤ π

2m
(31)

and
π

2m
< π −

(
k0π

m
+ ϕ0

)
≤ π

m
. (32)

7



Let
k1 := k0 in the first subcase and k1 := k0 + 1 in the second subcase. (33)

It is clear that in both cases(cf.(30))

0 ≤ k1 ≤ m − 1.

In the first subcase we have (cf.(2), (33), (31))∣∣∣∣∣um−1

(
cos

(
k1π

m
+ ϕ0

))∣∣∣∣∣ =

∣∣∣∣∣um−1

(
cos

(
k0π

m
+ ϕ0

))∣∣∣∣∣
=

∣∣∣∣∣um−1

(
cos

(
π −

(
k0π

m
+ ϕ0

)))∣∣∣∣∣ =
| sinm

(
π −

(
k0π
m

+ ϕ0

))
|

| sin
(
π −

(
k0π
m

+ ϕ0

))
|

≥ 2

π
m.

And at last for the second subcase we get (cf.(13), (33), (32))∣∣∣∣∣um−1

(
cos

(
k1π

m
+ ϕ0

))∣∣∣∣∣ =

∣∣∣∣∣um−1

(
cos

(
(k0 + 1)π

m
+ ϕ0

))∣∣∣∣∣
=

∣∣∣∣∣um−1

(
cos

(
(k0 + 1)π

m
+ ϕ0 − π

))∣∣∣∣∣ =
| sin m

((
(k0+1)π

m
+ ϕ0 − π

))
|

| sin
((

(k0+1)π
m

+ ϕ0 − π
))
|

≥ 2

π
m.

The inequality (28) and consequently the inequality (23) are proved. now we will estimate
ω1(δ; Qm−1) 3

2
. Taking account of the fact that for k = 1, 2, . . . [

√
m],

cos
(2k + 1)π

m
− cos

(2k + 2)π

m
≥ 2 sin

π

2m
sin

(4k + 3)π

2m
≥ 2

m2
,

we get for |h| ≤ 2
m2 (cf.(19), (20), (21))

∫
IB2

⋂
IB2(1,h)

|Qm−1(x + h, y) − Qm−1(x, y)| 32 dxdy ≤ |h| m3

log m

[
√

m]∑
k=1

1

k3
sin

(2k + 2)π

m

≤ C9 |h|
m2

log m

[
√

m]∑
k=1

1

k2
≤ C10|h|

m2

log m
,

and for |h| > 2
m2 we have (cf.(22))∫

IB2
⋂

IB2(1,h)
|Qm−1(x + h, y) − Qm−1(x, y)| 32 dxdy ≤

(
2‖Qm−1‖ 3

2

) 3
2 ≤ C11,
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for some absolute C9, C10 and C11. From (19), (20), (21) we see that the Lemma is established
completely.
Proof of Theorem 2 . We define an increasing sequence of positive integers {ml}∞l=1 by
induction. Let m1 = m0 + 1 where m0 is the number from the Lemma. Now let numbers
m1, m2 . . . ml−1 be already defined. Introduce the functions defined on IB2 and [-1,1] corre-
spondingly

Al−1(x, y) :=
l−1∑
k=1

1

(log mk)
1
3

Qmk−1(x, y) , (34)

and

Bl−1(x) :=
l−1∑
k=1

1

(log mk)
1
3

qmk−1(x) , (35)

where Qmk−1(x, y) and qmk−1(x) are functions from the Lemma corresponding to the number
mk. It is clear that (cf.(24), (19), (20)) Al−1(x, y) ∈ L2(IB2) , Bl−1(x) ∈ L2([−1, 1]) and (cf.
(24), (25), (26))

|am−1(Al−1, k, ϕ)| ≤ π|B̂l−1(m − 1)| , for all real ϕ .

It is clear that
lim

m→∞
|B̂l−1(m − 1)| = 0.

¿From the last equation we conclude that there is the number Nl−1 such that for all m ≥ Nl−1

|B̂l−1(m − 1)| ≤ C3

2π
(36)

where C3 is the constant from the Lemma. Now we define ml so that the following relations
are satisfied:

ml > ml−1, ml ≥ Nl−1, (37)

ml−1

(log ml)
1
3

≤ 1

l + 1
, (38)

2(log ml)
− 1

3 ≤ (log ml−1)
− 1

3 , (39)

and

m
4
3
l

log ml

≥ 2
m

4
3
l−1

log ml−1

. (40)
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Thus we have constructed the infinite increasing sequence of integers {ml}∞l=1. Consider the
function

g(x, y) :=
∞∑

k=1

1

(log mk)
1
3

Qmk−1(x, y) (41)

defined on IB2. It is obvious that (cf.(41), (22), (39))

‖g‖ 3
2
≤

∞∑
k=1

C4

(log mk)
1
3

< ∞ . (42)

Let {ϕm}∞m=0 be an arbitrary sequence of real numbers. According to (34), (41) we get for each
k = 0, 1, . . . ml − 1, l = 1, 2, . . . ,

aml−1(g, k, ϕml−1) = aml−1(Al−1, k, ϕml−1) + aml−1(Qml−1(log ml)
− 1

3 , k, ϕml−1)

+ aml−1(El, k, ϕml−1),

where

El(x, y) :=
∞∑

k=l+1

1

(log mk)
1
3

Qmk−1(x, y) . (43)

According to (25), (34), (35), (36), (26), (37) for each k = 0, 1, . . . ml − 1, l = 1, 2, . . . the
following inequality holds true

|aml−1(Al−1, k, ϕml−1)| ≤
C3

2
. (44)

On the other hand, it follows from (39), (15), (38) and (43) that for each k = 0, 1, . . . , ml − 1,
l = 1, 2, . . . , we have

|aml−1(El, k, ϕml−1)| = O

⎛
⎝ ∞∑

k=l+1

1

(log mk)
1
3

⎞
⎠ = O

(
1

l + 1

)
as l → ∞. (45)

Now it is easy to see that (cf. (45), (44)) for each k = 0, 1, . . . ml − 1, l = 1, 2, . . . , we get

|aml−1(Qml−1(log ml)
− 1

3 , k, ϕml−1)| ≤ |aml−1(g, k, ϕml−1)|
+|aml−1(Al−1, k, ϕml−1)| + |aml−1(El, k, ϕml−1)| ≤ |aml−1(g, k, ϕml−1)|

+
C3

2
+ O

(
1

l + 1

)
≤ max

0≤k≤ml−1
|aml−1(g, k, ϕml−1)|

+
C3

2
+ O

(
1

l + 1

)
as l → ∞
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and therefore according to the Lemma (cf.(14))

max
0≤k≤ml−1

|aml−1(g, k, ϕml−1)| ≥ max
0≤k≤ml−1

|aml−1(Qml−1(log ml)
− 1

3 , k, ϕml−1)|

C3

2
− O

(
1

l + 1

)
≥ C3 −

C3

2
− o(1) as l → ∞.

We see now that the relation (10) of theorem 2 is established. it is obvious from (13), (41) and
the Lemma that the function g(x, y) is in fact a function of one variable and consequently the
second equation in (17) is true. It remains only to estimate ω1(δ; g) 3

2
. Let for a given δ > 0 the

integer l0 = lo(δ) be such that
2

m2
l0+1

< δ ≤ 2

m2
l0

.

¿From (16), (41), (40), (39) we see that

ω1(δ; g) 3
2
≤

∞∑
k=1

1

(log mk)
1
3

ωmk−1(δ) ≤ C5 δ
2
3

l0∑
k=1

m
4
3
k

log mk

+ 2C5

∞∑
k=l0+1

1

(log mk)
1
3

≤ 2C5

m
4
3
l0

log ml0

δ
2
3 + 4C5

1

(log ml0+1)
1
3

≤ C12
1

log 1
δ

+C13
1(

log 1
δ

) 1
3

= O

⎛
⎜⎜⎝ 1(

log 1
δ

) 1
3

⎞
⎟⎟⎠ asδ → 0 + .

Theorem 2 is now proven.
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