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Abstract

We study tight wavelet frames and bi-frames, associated with given scaling func-
tions, which are obtained with the unitary and mized extension principles. All possible
solutions of the corresponding matrix equations are found. It is proved that the prob-
lem of the extension may be always solved with two framelets. In particular, if masks
of the scaling functions are polynomials (rational functions), then the corresponding
framelets with polynomial (rational) masks can be found.
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1 Introduction

The main goal of our paper is to present an explicit construction of an arbitrary wavelet
frames (or framelets), generated by a refinable function. We shall consider only functions of
one variable in the space L*(R) with the inner product

()= [ floratards.
As usual we denote by f(w) Fourier transform of the function f(z) € L3(R),
fo = [~ s .

Suppose a real-valued function ¢ € L*(R) satisfies the following conditions:

(a) ¢(2w) = my(w)p(w), where my is essentially bounded 2w-periodic function;

(b) litn, o pleo) = (27) /%
then the function ¢ is called refinable or scaling, mg 1s called @ mask of ¢, and the relation
in item (a) is called a refinement equation.

In spite of the fact that in most practically important cases the refinement function can
be easily reconstructed by its mask, the problem of existence of a scaling function, satisfying
a refinement equation with the given mask is not completely solved. Here we shall not discuss
the problem of recovering the function ¢ by its mask. So in what follows the notion of a
refinable function is primary for us and a mask is only attribute of a refinable function.



Every refinable function generates multiresolution analysis (MRA) of the space L*(R),
i.e., a nested sequence

e CVreVlc Vi Cc VI C L.

of closed linear subspaces of L?(R) such that

(a) NjezV? = &;

(b) UjezVi = L*(R);

(c) f(z) € VI & f(2z) € Vitl |
To obtain the MRA we just have to take as above V7 the closure of the linear span of the
functions {¢(2/z — n)}nez. Fulfillment of item (a) and (b) for the obtained spaces V¢ was
proved in [1]. Property (c) is evident.

The most popular approach to the design of orthogonal and bi-orthogonal wavelets is
based on construction of MRA of the space L?(R), generated with a given refinable function.
S.Mallat [7] shown that if the system {¢(z —n)}ncz constitutes Riesz basis of the space V°,
then there exists a refinable function ¢ € V° with a mask m such that the functions {¢(z —
) }nez form an orthonormal basis of V0. If we denote by W/ the orthogonal complement of
the space V7 in the space V/*! then the function v (which is called a wavelet), defined by
the relation

P(2w) = my(w)(w),
where my(w) = €my(w + 7), generates orthonormal basis {1)(z — n)},ecz of the space W°.
Thus, the system

{2k/2¢(2kx - n)}n,kEZ (1)

constitutes an orthonormal basis of the space L*(R).

We see that if we have a refinable function, generating Riesz basis, then we have explicit
formulae for the wavelets, associated with this functions. It gives a simple method for
constructing wavelets. Generally speaking, any orthonormal basis of L?(R) of the form (1)
is called a wavelet system. However, wavelet construction based on multiresolution has
advantage from the point of view effectiveness of computational algorithms, because it leads
to pyramidal scheme of wavelet decomposition and reconstruction (sf. [3]).

It is well-known that the problem of finding orthonormal wavelet bases, generated by a
scaling function, can be reduced to solving the matrix equation

M(w)M™(w) =1, (2)
where ) )
Mol W m\w
M =
() ( mo(w +7) my(w+ m) ) ’
mo(w), m1(w) are essentially bounded functions mo(—w) = mg(w), i.e., Fourier series of

these functions have real coefficients. It is known (see [3]) that for any scaling function p(z)
and associated wavelet (z), generating an orthogonal wavelet basis, the corresponding
masks mo(w), my(w) satisfy (2). Any refinable function ¢, whose mask my is solution to (2),
generates a tight frame (see [6] for the case when mg is polynomial, the general case was
proved in [2]).



We cannot independently look for functions mg and m;. In fact, usually we find a solution
of the equation

[mo(@)[* + [mo(w + m)[* = 1, (3)
then all possible functions m; can be represented in the form
ma(w) = alw)eFmolw + 1), @)

were a(w) is an arbitrary m-periodic function, satisfying |a(w)| =1, a(—w) = m.

Now suppose we have an arbitrary refinable function ¢(w) with the mask mo which does
not satisfy (3). Then the set {@(x — n)},ez does not constitute an orthonormal basis of
V0. If this set forms a Riesz basis, then we can use orthogonalization, proposed by S.Mallat.
However, in this case, when the function ¢ has a compact support, usually this property fails
for the orthogonalized basis. This argues for construction other systems keeping compactness
of support. It will be shown in Section 4 that tight frame of wavelets leads to one of the
possible compactly supported syastems.

We note that sometimes the orthogonalization can be conducted even if our set is not a
Riesz basis. The simplest example gives a refinable function

o(z) = {1/27 lz| < 1,

0, [z >1;

with the mask mo(w) = cos 2w. In this case the MRA coincides with the Haar’s MRA. Thus,

the function
() = 1, 0<z2<1;
AT = 0, z>1orz<0;

1s a natural orthogonalization.

Nevertheless, it 1s easy to design a refinable function such that its MRA does not allow
orthogonalization. Indeed, let us introduce a refinable function ¢(z) = sin wax/wx, where
0 < a < 1. It generates the space V° which consists of those functions of L*(R) with
Fourier transform supported on [—am,aw]. Thus, for any function f € V° the function
> ken | f(w + 2km)|? vanishes on the set [—m, 7]\ [—ar, ax]. Hence, its integer translates do
not form an orthonormal bases (see [3]). In this case the traditional procedure of constructing
orthonormal wavelet basis cannot be applied. We note that by the same reason even a bi-
orthogonal pair with this MRA cannot be constructed.

The last example gives one more reason to consider wavelet frames. Let us recall that a
frame in a Hilbert space H is a family of its elements {fi }rez such that for any f € ‘H

AlLFIP <D I FP < BIIFIP
keZ

where optimal A and B are called frame constants. If A = B, the frame is called o tight
frame. In the case when a tight frame has unit frame constants (for example, if it is an
orthonormal basis) for any function f € L*(R) the expansion

F= Afasf)fn (5)

nez



is valid. To construct the expansion in an arbitrary frame we need a dual frame {fk}kez

such that .
s ]-7 n=r,
<fn7fk> = 5”7’“ = { ()7 n 75 k.

In this case

= fu ) (6)

nez

The frame {{Tp;,k}j,keZ}?:la where ¢;k(w) — 29/%4) (292 — k), generated by translates and
dilations of finite number of functions, is called an affine or wavelet frame.
The both relations (5) and (6) require computation of the inner products, i.e., integrals.
It means that even if the function ¢ or the dual function 4 have a short support, the compu-
tation of the inner products for big negative 7 has a high computational cost. The problem of
decreasing the computational cost of decomposition and reconstruction algorithms is solved
in the theory of orthogonal wavelet bases with the help of the pyramidal scheme. The main
idea of this algorithm is to find a good approximation of the function f from the space V™
in the form
flz) ~ Z CrgPnk(2), where o, p(z) 1= 2"/2g0(2”:13 — k).
keZ

Then the computation of the expansion
N cnrni(z) = DY dughia(z)
keZ I<n keZ
can be implemented only with discrete convolutions by the recursion formulae

cj1 = E Cit1,kPr—a1, dj; = E Cjt1,kGk—215

kEZ kEZ

Cit1] = E cirhi—r + E Cikgi—k;

kEZ kEZ

and

where hj, and g, are coefficients of the expansions

1 —ikw 1 —ikw
mo(w) = Ethe \ ml(cu)75 nge )

kEZ kEZ

In the case when the mask mg of a refinable function ¢ does not satisfy (3) we cannot
construct an orthonormal bases of V! of the form {¢(z — k), ¢ (z — k)}. However, we can
hope that there exists a collection of several framelets !, 4%, ... "™ € V1, satisfying the
following conditions:

1) functions {{¢;,k}j,keZ}?:1 form a tight frame of the space L*(R);

2) for algorithms of decompositions and reconstruction the recurrent formulae

<S0j7k7 f> = G5 = Z Cj+1,k]_7/k—2l7 < jkv .f> = d;l = Z cj-l-l,kglz_zlv 1 S q S n, (7)

kEZ kEZ



and

Ciara =Y cixhik+ Y > diglt (8)

keZ q=1 keZ

where g are coefficients of the expansions m,(w) = 27%/2 > ez gie=*  take place.

The goal of Section 2 is to show that this problem can be solved with at most two
framelets and to present explicit formulae for masks of the framelets. In Sections 3 and 4
we prove that in the case when mg(w) is either a rational function or a polynomial we can
choose my(w), mo(w) as rational functions or polynomials respectively.

In Section 5 generalization of the results from Sections 2 — 4 for wavelet bi-frames are
considered.

2 General Framelets

Let ¢ be a refinable function with a mask my, ik(w) = mp(w/2)P(w/2) € V!, where each
mask my, is a 2w-periodic and essentially bounded function for & = 1,2,...,n. It is well-
known that for constructing practically important tight frames the matrix

M(w):(mo(“’) mi(w) . ma(w) )

mo(w+7) mi(w+x) ... my(w+7)

plays an important role.
It is easy to see that the equality

M(w)M*(w) = I 9)

is equivalent to (7) and (8).
It turns out that (9) also implies the tightness of the corresponding frame.

Theorem 1. If (9) holds, then the functions {{p*}7_, generate a tight frame of L*(R).

Remark. For n = 1 this theorem was proved in [2]. For an arbitrary n it was proved in
[9] under some additional decay assumption for ¢. In [9] Theorem 1 was called the unitary
extension principle.

We split the proof of Theorem 1 into several lemmas.

Lemma 1. Let the masks {my},_, satisfy (9), then for any w
lmy(w)]? + my(w+ 7)) <1, 1=0,1,...,n. (10)

Proof. Obviously, without loss of generality it suffices to prove inequality (10) only for I = 0.
Let us rewrite relation (9) in the form

(o) = Mowlylo) = (eIl mlemls EEV) )

—mo(w)mo(w + ) 1 — |mo(w + 7)|?



where

M) = (MOl i)

mi(w+7) malw+m) ... my(w+ )

The Hermitian matrix M(w) has eigen-values

A(w) =1, Ao(w) = 1 — |mo(w)|? — |mo(w + 7).

By definition (11), M(w) is a positive definite matrix. Hence, As(w) > 0. It implies (1).

O

Lemma 2. If ® € L*(R) is a refinable function with a mask m(w) satisfying the condition

m(w)|* + [m(w + 7)]* < 1 a.e.,
then S; = o7 [(f. ®jx)|* < oo for any function f € L*(R) and
@) ImS=f% G lim s =0,
where ®;p, = 2j/2(1)(2j:13 — k).

Proof. First, we prove that

1
Z :13—|—27Tk|2<—
e 27

(12)

(13)

We note that due to (12) and the continuity (i>(w) at w = 0 we have |(i>(w)| < (27)7Y? ace.

Thus, for any positive [ € Z we obtain

2l_1 2l-1 141
Yo 1@(w+2nk)? = Y [ Im(@7Mw + 27k)) P @27 (w + 27k))?
k=—2! k=—2!n=1
2l_1 141
< o Z [T Im2 " (w + 2nk))?
k=—2!n=1
1 2l_1 /141 I+1
<o (H m(27" (w + 20 k)2 + [ (2" (@ + 2m (h — 2’>>>|2)
T k=0 n=1 n=1
1 2l—1 |
<o [m(27" (w + 2k))
k=0 n=1
1 ol-1_1 l l
<o (H m (27" (w + 20k) [P + [ ] Im(27"(w + 2 (k + 2"1)))I2>
T k=0 n=1 n=1
1 2i-1-11-1
—-n 2
< on 2 g|m(2 (w4 21k))* < --- <

1
o0



Applying Plancherel and Parseval formulae, we have

Z (f, @) = 272" J / )612_j“’k dw

2

kEZ keZ
2
=272~ J ( w 1 279%9p )(i>(2_j(w + 27T2jn))> 27k
kEZ —71'21
2
= (2n)? / 3 (Flw+ 2m2m) (2w + 202im) )| deo = (x| (14)
—m2 nez

where Fj(w) = Enez <f(w + 27T2jn)(i>(2_j(w + 27T2jn))) . Let us introduce the following
sequences of functions

: .
Of(“’)’ w] < 2 i=01,2,. ..,

|w|22j7r; 9 j:f_gj7

ist) = {

Y

Gi(w) =Y (gj(w +2727n) b (27 (w + 272m)) )

nez

Hiw) =Y (ﬁj(w +2727n) 8 (27 (w + 27%7m)) ).

nez

It is clear that on the one hand ||G,|| — (27)*/%||f|| as § — oo and on the other hand,
in view of (13),

e [
—w2J

2

dw

Z < (w+ 27T2jn)(i>(2_j(w + 27T2jn)))

w2l
§/ Z ﬁj(w+2ﬂ2jn)‘22‘@(2_jw—|—27rn)‘2 dw
—m2i neZ neZ

w2l

a .2 1 .
> [hsw + 202 | dw = )12 =5 0, as j > 0. (15)
™
neZ

Thus, since
1G5l = 1 H; || < | F5l| = [1G; + Hyll < IG5l + [l
it follows from (14) and (15) that

Y f @in)lP = @ i) = 2| fI* = [I£]1°, as j — +oo.

kEZ

Thus, relation (i) is proved.

Now we shall prove (ii). Let us denote by x g the indicator function of a segment [— R, R]
and by fr the function fyr. We fix an arbitrary ¢ > 0 and choose R > 0 such that
If(1—xzr)| <e.



Since

SUF B <2 [(Fro i) +2 ) [(f = fro @)

kEZ kEZ keZ

<2 " [(fr. ®a) P+ IIf — frll/m <23 fa. ®ju) +/x.

kEZ kEZ

we need only to prove that

. ] 2
jgr—noo Z [(fr, ;)" = 0.

kEZ

If we assume that 2/ R < 1/2, then the last relation follows from the chain of inequalities

Z|<fR,<I>j,k>|2=k§%( /lmKRf(w) () ) D Oy CHE

kEZ kEZ

-1y [

dw—HfH“:/ ®*(z)dz — 0 as j — —o0
ke, letk|<2/R Urez[—2/ R+k,20 R+K]

U
Lemma 3. If (9) holds, then for any f € L*(R) and J € Z
SN KA =D W feadP+ DD D il < oo
k=1 jl€Z leZ k=1 j>J IEZ
Proof. Tt follows from (9) that
[mo(w) | + [me (W) + -+ + [ma(w)[* = 1,
mo(w)mo(w + 7) + my(w)mi(w + 7) + -+« + my(w)my,(w + 7) = 0.
So by analogy with (14) for any L € Z
D NFen P+ D I F vkl
leZ k=1 IEZ
w2l 2
— (27)? / Y ( Flw + 2728 g2 F(w + le))) dw
—-m2" ez
n w2l 2
+ (2n)? / Y ( fw + 2m2B (25w + 20201)) | dow
k=17 72" | ez,
2
= O.)—I—27T2le 2=L-1(y 4+ 27x2L] 2=L-1(y 4+ 27x2L] dw
(2 Z/Z( @ T DR M)




n 72
- (27r)2 / . Z <f(w + 27T2L+1l)g?3(2_L_1w + 27Tl)> mp(27 L w)| dw
—T2% | ez

Ay

n n2l
+ (27‘(’)2 / Z <f(w 4ol o 27T2L)g?7(2_L_1w + 27l + 7T)> mp(27 L w4+ )| dw
leZ

As
L

n 72
+ (27)? Z/ ) Almk(2—L—1w)A_2mk(2_L_lw + 7)dw
k=0 —72
L

n 72
+ (27)? Z/ Aomy (2L tw + F)A_lmk(2_L_1w)dw

k=0 —m2l

= (2)? /_:L >

leZ

2

<f(w + 27T2L+1l)g?3(2_L_1w + 27Tl)> dw

2

dw

L

w2
+ (27)? /
—qm2L
molt1

= (2x)? /_ﬁw >

leZ

Z <f(w 4ol o 27T2L)g?7(2_L_1w + 27l + 7T)>

leZ

2

<f(w + 27T2L+1l)g?3(2—L—1w + 27Tl)> dw

= 3 {fopriia)[? < oo

leZ
Using Lemma 2, we obtain the statement of Lemma 3. U

Now Theorem 1 is an easy consequence of Lemmas 1 — 3.

Thus, the problem of constructing tight frames, generated by a refinable function, can
be reduced to finding my, satisfying (9). Now we shall describe all possible solutions to (9).

Let the mask my satisfy (12). Unit eigen-vectors of the matrix M(w) can be represented
in the form

(ei“’mo(w + 7T)> mo(w)
s )= | im0 B@FD

e“mo(w) 7 molw )
B(w) B(w)
where B(w) is an arbitrary m-periodic measurable functions, satisfying |B(w)|* = |mo(w)|* +
|mo(w + 7)|* a. e. For definiteness, we can take here the positive root of the right-hand

Vi (w) =

expression. For those w when mgy(w) = mo(w+ 7)) = 0 the matrix M(w) becomes the identity
matrix, so any vector is its eigen vector. In this case we put v;(w) = (1,0)7, v2(w) = (0,1)7.



Thus, we have

M(w) = P(w)A(w)P*(w), (16)
where
(ei‘”mo(w + 7T)> mo(w) 1 .
o B() Blw) e
Plw) _(ei“’mo(w)> mo(w + 7) o A) ( 0 1—|mo(w)]* = |mo(w+ m)J? ) '
B(w) B(w)

We note that eigen vectors are determined up to multiplicaion by a scalar function of absolute
value 1 a.e. We have chosen normalization convenient for the further considerations.

Theorem 2. Let a 2n-periodic function mo(w) satisfy (12). Then there exists a pair of 2m-
periodic measurable functions mq, ma which satisfy (9) for n = 2. Any solution of (9) can
be represented in the form of the first row of the matrix

M(w) = P(w)v/Aw)Q(w),
where Q(w) is an arbitrary unitary (a.e.) matriz with w-periodic measurable components.

Proof. The matrix My, can be represented in the form of its singular decomposition

where P, Q are unitary matrices, D(w) is a non-negative diagonal matrix. These represen-
tations may differ by multiplication of columns of the matrix P by functions oy (w), az(w),
|y (w)| = |as(w)| = 1 and simultaneous multiplication of rows of the matrix Q by aj'(w)
and a;'(w). Thus, in view of (11), (16) without loss of generality we can suppose P = P,
D =+/A.

Let us prove that we can take any a. e. unitary matrix with w-periodic elements as above
Q(w) = Q(w). In fact, our choice is restricted to such matrices.

For any 2 x 2 matrix Z we denote by ZF the matrix with the transposed rows. On the
one hand we have

My(w+7)=Plw+7)D(w+ m)Q(w+7) = PR(w)’D(w)Q(w + 7),
on the other hand
ME = (P(w)D(w) Q())F = PR(w)D()Q(w).

Since Mf;”(w) = My(w + 7), it means that Q(w + 7) = Q(w) at least for those w and w4«
for which Ay(w) = Ap(w+m) # 0. If Ay(w) = Az(w+7) = 0, then My (w) does not depend on
the choice of the second row of the matrix Q, so we can take an arbitrary values of Q(w + )
and Q(w). In particular, we can suppose Q(w + 7) = Q(w). O

Remark. To describe all possible solution to (9) for an arbitrary n we have to take an
arbitrary m x n unitary matrix () with w-periodic elements and 2 x n matrix D’ which is
extension of the matrix VA by mean of filling all new columns with zeros.

10



3 Framelets with rational masks

For numerical implementation framelets with rational and polynomial masks are the most
suitable. Under the assumptions of Section 2 we require additionally that mg(w) is a rational
2m-periodic function with real coefficients, i1.e., mg 1s a ratio of trigonometric polynomials
with real coefficients. It is well-known that in spite of the fact that such functions have
infinitely many non-zero Fourier coefficients, implementation of numerical algorithms for
this case can be economically designed with, so-called, recursive filters.

The only difference of the case of a rational mask and the general case is that we have to
extract square root with more care. If mg(w) is a rational function, then B(w) = |mo(w)|? +
|mo(w + 7)|? and A(w) = 1 — |mo(w)|* — |mo(w + 7)|* are rational non-negative functions.
So according to Riesz lemma, we can take such rational w-periodic functions A(w) and B(w)
that |A(w)|* = A(w), |B(w)|* = B(w). Thus, we have proved the following statement.

Theorem 3. Let a 2w-periodic rational function mo(w) satisfy (12). Then there exists a
pair of 2w-periodic rational functions my, mq which satisfy (9). Any such rational solution
to (9) can be represented in the form of the first row of the matriz

M(w) = P(w) D(w)Q(w), (17)

where Q(w) is an arbitrary unitary rational matric with w-periodic rational components,

p@= (g e )

4 Framelets with polynomial masks

The subject of this section is framelets generated by compactly supported refinable functions.
Such functions has polynomial masks. They are the most simple from the point of view of
numerical implementation. Our main goal is to prove the existence of compactly supported
framelets for this case.

Here the degree of trigonometric polynomial E?:l are®, where a; # 0 and aj, # 0, is
defined to be k — L.

We denote by L a set of all Laurent polynomials with real coefficients, and by £,, a set
of Laurent polynomial with real coefficients of degree at most n, i.e.,

k
L, = {Zajzj l,kEZ;ajER;OSk—ZSn}-

i=l

Theorem 4. Let a trigonometric polynomial mo(w) of degree n satisfy (12). Then there
exists a pair of trigonometric polynomials my, ms of the degree at most n which satisfy (9).

Proof. In fact, we cannot control the choice of the matrices P(w) and D(w) in (17). So
we need to choose a unitary rational m-periodic matrix Q(w) such that M, (w) consists of
trigonometric polynomials.

11



Let us use the change of variable z = ¢* in (17 ) In what follows we consider the Laurent
polynomials A(c™) = mg(w), b(e*™) = B(w), a(e*™) = A(w).

e
After the change of variable the matrix P(w) becomes

We put the last representation of the matrix H(z) through procedure of reduction. If
polynomials h(z), h(—z), b(z*?) have a common factor z — zy, we cancel the correspond-
ing fractions in the second column of H(z) by z? — 22 and the first column we cancel
by 1/2* — 22. After all possible cancellations we obtain the same matrix H'(z) = H(z)
but its elements are expressed in terms of new functions h'(z) and b'(z). It is clear that
V(22)(1)2'%) = W(z)h'(1/2) + W' (—z)h'(—1/z) and numerators of the matrix H(z) do not
vanish simultaneously. Indeed, since the determinant of H(z) is equal to 1/z, if for some z,
we have h(z) = h(—20) = h(1/2z0) = h(—1/20) = 0, then either b(z3) = 0 or b(1/z3) = 0. It
means that the reduction of H(z) can be continued. We note that because the coeflicients
of h(z) and b(z) are real, the polynomials h'(z) and b'(z) also have real coefficients.

After takin the z-transform the elements ¢11(2%), qi2(2?), ¢21(2?), ¢22(2?) of the matrix
(Q(w) satisfy the relations

22(z) = Q11(1/Z)ZN7 qi2(2) = —Q21(1/Z)ZN, N e Z.

Here, without loss of generality, we may suppose N = 0, because any other choice leads to
the integer shift of one of the basic framelets.
To reduce poles of the matrix H'(z) after multiplication by Q(w) we suppose that

91(2)
Q11(Z) = b’(z) ) Q21(Z) = b’(l/z)’

where g1, g» are Laurent polynomials.

Let R = {£zF 425 ..., £2) be the set of all different roots of polynomial &'(22)d'(1/22).
We denote by k; the multiplicity of the root z;. It is clear that all four roots :I:z;—Ll have the
same multiplicity. So the degree of polynomial &'(2%)0'(1/2?) is equal to 43 k; = 4k, where
k is the degree of polynomial b'.

To prove the theorem we need to find polynomials g1, g» which satisfy equations

z

—K <_1> 91(2%) + a(2)W (2)g2(2%) = V' (22)' (1/2°) fu(2); (18)

z 22

1 (_1) 0 (i) A () (i) — V(A (1)) fo(2); (19)

12



- G) 91(2) + a(Z) (=2)ga2(2%) = V(") (1/2°) f3(2); (20)

z

%h/ G) s (zl_2> + a(Z2)W (—2)g (%) = V(2)(1/2") fal2). (21)

where fi, fs, f3, fa € L. Moreover, we need satisfy the condition of the unitarity of the
matrix @(w). Hence,

91(2)91(1/2) + 92(2)g2(1/2) = V' (2)b'(1/2). (22)

Now we leave aside equation (22) and prove existence of polynomials g, g2 € Ly, satis-
fying (18) — (21). Let us fix the lowest and highest powers of the polynomials ¢g; and g, and
suppose that their degree is equal to k. We have 2k 4+ 2 unknown coefficients.

First we show that there exist polynomials g; and g, satisfying equations (18) — (21) at
points of the set R. As it usually is in the case of a root # of multiplicity %, we require that
not only (18) — (21) turn to equality but also their derivatives of orders 1,2, ... k—1 do.

Equations (18) — (21) give us 16k homogeneous linear equations for 2k + 2 unknown
coeffitients of polynomials g; and g,. We shall prove that at most 2k of them are linearly
independent. The proof of this fact we conduct in 3 steps. Each of these steps are based on
the following lemma.

Lemma 4. Let a1(2), as(z), as(z), as(z), bi(2), ba(2) c1(2), ca(z) be Laurent polynomials,
lai(z0)|* + |aa(20)|? # 0, 1 is a positive integer. If

a1(2)bi(2) + as(2)bs(2) = (2 — 20)'ea(2), (23)

a1(z)ay(z) — as(z)ag(z) = (2 — z0)'es(2), (24)
then we have

as(2)bi(2) + as(2)ba(2) = (2 — z0)'e(2), (25)

where ¢(z) € L.

Proof. Let us assume for definiteness that a;(zo) # 0. We express b; from (23) and a4 from
(24). Using the obtained representations, we have

a3(2)b1(z) + aa(2)ba(z) =

)(Z - ZO)lcl(z) — az(2)bs(2) (z — ZO)lcz(z) + as(z)as(z)

a3(Z al(z) + b2(z) al(z) =
(2 — Zo)l“3(2)01(231:;()72(2)62(2) =: (2 — z0)'e(2).
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In the first step we prove that for every Z € R only one equation of the pairs {(18), (20)}
and {(19), (21)} should be retained. Indeed, on the one hand

i (-%) W) | ~
det 1 1 = ;a(z2)b’(z2)b’(1/z2) = (z = 2)kei(2), ealz) €L,
—;h’ (;) a(z*)h'(—2)

on the other hand, since a(z)a(1l/z) = 1 — b(2)b(1/%), a(z?) # 0 for any z € R. Hence, the
last matrix at point Z has at least one non-zero element. We assume for definiteness that the
first row contains non-zero element. Then by Lemma 4, if ¢; and g, at the point Z satisfy
(18) with multiplicity k, then they also satisfy (20) at least with the same multiplicity. So
at the point Z we can exclude equation (20) from consideration. In the same manner we
eliminate one of equations (19) and (21).

In the second step we reject equations, corresponding to the roots Z and 1/2. Now for
two roots Z and 1/Z we have 4k equations. It turns out that at most 2k of them are linearly
independent. We show that we can keep only equations of the form (18) and (20). Indeed,
let us assume that in the previous step we kept equation (18) for 2 € R and equation (19)
for 1/2. Now we prove that linear equations generated by (19) for 1/Z can be omitted. We
apply the change of variable z — 1/z to (19). Then the left-hand part of (19) becomes

a(1/2*)W (1) 2)gi(2*) — zh'(—2)ga(2%). (26)
Since

det %h (_9 M) = B () (1)22) (B (22 (1) )R (2) (1) 2) — 1)
(3ol o ’

z z

where b(z) = b(z)/¥/(z), is divisible by (z — Z)¥, so expression (26) is also divisible by (z — z)*
and the left-hand part of (19) is divisible by (z — 1/2)F.

Dependence of the equations, generated by (21), is obtained by the same reasons. Indeed,
after transform z — 1/z the left-hand part of (21) is equal to

a1/ R (=1/2)g1 (%) + = (2)ga(2?).

%h’ (-%) a(22)I(z)
det ) (i)hf(_yz) o = b(22)b(1/ 2K ()R (—1/2),

z

Since

then the left-hand part of (21) is divisible by (z — 1/2)*.
In the third step we prove that equations, corresponding Z and —Z, are linear dependent.
Let us assume that we have chosen equation (18) for the both roots +2. After substitution
z — —z the right-hand part of (18) is transformed to

Y (1> 91(2%) + a(2*)h' (—2)ga(2°).

z z
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Since

%h’ (—% a(2?)h' () 1
det | © 1 = —a(2) () (1/2%)
—;h’ (; a(z*)h'(—2) #

is divisible by (z — Z)*, then the equations for —Z are linear dependent of the equations for
z.

In the case, when we take equation (18) for Z and equation (20) for —Z, the corresponding
linear equations coincides.

Thus, we have proved the existence of a pair of polynomials ¢;,92 € L,, satisfying
equations (18) — (21) on all of R. Although the polynomial ¥ (2?)d'(1/2?) can have complex
roots, it is easy to check that we can choose polynomials g;, g» with real coefficients. Indeed, if
2o 1s a root of b'(2?)b/(1/2%), then %, is also a root. Coefficients of the equations, corresponding
these roots, differ in complex conjugation. So instead of them we can consider real equations,
corresponding to real and imagine parts of the initial equations.

Thus, we have 2k homogeneous linear equation for 2k + 2 unknown values. Let us take
any non-degenerate solution of the system. Now we prove that for the corresponding pair of

polynomials g; and gs of order at most k, satisfying (18) — (21) and the relation
gi(1) +g3(1) = b°(1), (27)
satisfies also the equation
91(2)91(1/2) + g2(2)g2(1/2) = V' (2)b'(1/2). (28)

Indeed, let us assume for definiteness that z € R and |W/(=1/2)|* + |a(z*)R/(2)|> # 0. By
(19), we have

%h’ —2 a(2)h'(z) | . )
o] * (i) ) (L) .- (—1) o (i) — (P (g (i) _

— V() (1/2) fa(2).

Thus, by Lemma 4 and from (18) the expression g¢1(z)g1(1/2) 4+ g2(2)g2(1/2) is divisible
by (z — Z)*. It means that polynomials in the left-hand and right-hand part of (28) have
common 2k zeros. It remains to normalize the left-hand polynomial according to (27). The
normalization is not possible only in the case when g1(1) = ¢2(1) = 0. However, it implies
that the left-hand part of (28) has 2k + 1 zeros. It follows from this that g1(z)g:1(1/z) +
92(2)g2(1/z) = 0. Hence, g1(z) = g2(2) = 0. It contradicts the assumption that at least one
of the polynomials g; and g is non-degenerate.

O

We note that there are infinitely many solutions ¢; and g, satisfying (27). It is not difficult
to prove that there is a unique solution, satisfying the initial conditions

(1) =a, g(1)=0b, a®+b = (¥(1)> (29)

15



Indeed, let us introduce 2 real linear independent vectors 7, " of the dimension 2k + 2,
composed of coefficients of the polynomials g7, g5 and g7, g4, satisfying (18) — (21). In this
case the vectors (g7(1), g5(1)) and (g7(1),g5(1)) are linear independent. It follows from the
fact that in the opposite case we can obtain a non-degenerated solution g1, g» to (18) — (21)
for which ¢1(1) = ¢2(1) = 0. However, we mentioned above that this is impossible. Thus,
we can satisfy any initial condition (29).

Since differences between any two solutions, satisfying (29), take value 0 at the point
z = 1, they are equal to 0 identically. Hence, there is only one pair of polynomials g;, gs,
satisfying (29).

Problems of data representation require that the basic functions have approximately as
many vanishing moments as order of smoothness which the data have. So to adapt the frame
to the given data we need control the number of vanishing moments. Conditions (29) can
be useful to control multiplicity of root of trigonometric polynomials m;(w) and ms(w) at
the point w = 0. In turn the multiplicity determines the number of vanishing moments of
the framelets.

5 Bi-framelets

Many authors explain the popularity of bi-orthogonal wavelets by the possibility to combine
symmetry and compact support of the basic functions. However, the bi-orthogonality gives
more flexibility for adaptation to problems arising in applications.

Here we consider only bi-frames generated by two refinable functions. More detail infor-
mation on general construction of bi-framelets can be found in [5], [8], and [10].

Let ¢, € L*(R) be refinable functions with essentially bounded masks mg(w), mo(w).
It was shown in [5] and [10] that under appropriate choice of mg(w) and mgy(w), when ¢ and
g?) satisfy some very mild decaying condition, if the masks of functions {¢k,1;k}’,;‘:1 satisfy,
so-called, the mized extension principle

M) M(w) = 1, (30)
where
M(w) = ( i oo e )
mo(w+77) ml(w+77) m”(w—l_ﬂ) 7
—_ [ mo(w) my(w) My (w)
M) = ( io(w + 1) (W 7)o (w7 )

then the functions

{2 @ - },0) {{21'/21;1(2%_ ’“)},-,kez}

k3

=1 =1

constitute dual bi-frame systems.
In what follows we shall not discuss conditions for mo(w) and mg(w), under which we

can construct dual pair of frames. We just find all solutions to (30) for the masks mq, g of
refinable functions, satisfying inequality

|mo(w)mo(w) + mo(w + 7)mo(w +7)| > >0 a. e. (31)
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We introduce new matrices

M) = (TS male) ) ),

mi(w+7) mo(w) ... my(w+w)

oo (@) @) . )

(@) ( mi(w+7) Mma(w+w) ... mulw+n) )’

which contains only masks of bi-framelets, and give the general relations for their computa-
tion.

Theorem 5. For any essentially bounded 2w -periodic functions mg, mq, satisfying inequality
(31), there exist 2m-periodic measurable functions mq, ma, my, My which satisfy equation
(50). Any bounded solution of (30) can be represented in the form of the first rows of the
matrices

My(w) = P(w)Ay(w) G (w),

My(w) = P(w)As(w) G (),

where
<eiwm3(w + m) mo(w) (eiwmo(w n m) io(w)
_ B(w) B(w) 500 B(w) B(w)
P(w) —— , Pw) T~
B e*“mo(w) mo(w + ) _ (6 mO(“’)) mO&‘" + )
B(w) B(w) B(w) B(w)

Aale) = ( (1) )\1(()01) ) > Al = ( (1) Az(()w) ) 7

where B(w), E(w), A1(w), As(w) are any w-periodic bounded solutions to

B(w)B(w) = mo(w)mo(w) + mo(w + m)mo(w + )

and

Al(w)j\f,;(w) = Aw) := 1 — mp(w)mo(w) — mo(w + 7)mo(w + 7)

with real Fourier coefficients, G(w) is an arbitrary non-singular (a.e.) matriz with 7-periodic
measurable components with real Fourier coefficients such that Ay (w)G*(w) and Az(w)G ™ (w)
are essentially bounded.

Proof. The fact that the proposed expressions give us a solution to (30) can be verified by
a computation.

Let us prove that these expressions give all possible solutions. Obviously equation (30)
can be rewritten in the form

Moy () M () = ( L=mo(w)mo(w) — —mo(w)io(wtm) ) — P(w)A(w) P (@),

—mg(w + m)mo(w) 1 —me(w + 7)mo(w + 7)
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where

8@ = (0 e )

Taking into account that |det P(w)| = | det ﬁ(w)| — 1, for those w for which A(w) # 0 we
have
(A7 (@) P~ (@) My (@) (M) (P (@) (A3(w) ) = 1

Thus, if we denote (Afl(w)P_l(w)M¢(w))* by G(w), then we obtain necessary representa-
tions for My (w) and Mv¢(w).

Now we consider the case A(wp) = 0. Introducing the notation

—

A= P wo) My (wo), A= ﬁ_l(wo)M(Wo)a

~ (10
wFo (1),

1

we have

2 2

It means that if we denote by v',v?, @' w2 rows of the matrices A and Z, then for the inner
products of them relations (v, w') = 1 and (¢*,w?) = (v*,w") = (¥*,w?) = 0 hold. This is
possible if at least one of the vectors 4 and w? is equal to 0. If both of them are equal to
zero, we can take

1 0 1 1
Moo =) = (g 3 )o G =( 1 ).

where ¢’ is an arbitrary non-zero vector which is orthogonal to . )
We note that in this case the matrix G™*(wp) has the same first row as the matrix A.
Let us assume that v? # 0. In this case we have to take G*(wp) = A and

won=(30) mr=(40)

Now we prove necessity of the boundedness of the matrix A;(w)G*(w). Let us denote by
Amin(w) > 0 and A4z (w) > 0 the least and the biggest singular numbers of the matrix P(w).
Since |det P(w)| = 1, we have Apin(w) « Apaz(w) = 1. The boundedness of A4z (w) follows
from the boundedness of elements of the matrix P(w). It means that for some o > 0 we have
Amin(w) > o > 0. So if we assume that at least one element of A;(w)G*(w) is unbounded,
the matrix P(w)A;(w)G*(w) is also contains unbounded elements.

The boundedness of the matrix As(w)G~*(w) follows from the similar reasons.

To prove w-periodicity of components of the matrix G(w) we need just repeat the corre-
sponding reasoning from the proof of Theorem 2. 0

Theorem 6. Let trigonometric polynomials mo(w) and mo(w) satisfy (31) then there exist
trigonometric polynomials m(w), mi(w), ma(w), Mma(w), satisfying (50).
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Proof. Here we keep the notation of Theorem 5. Additionally we suppose that B(w), B(w)
are w-periodic trigonometric polynomials with real coefficients. We shall look for the matrix

Gw) T E(w) %Ew;

_ B(w B(w =~ N B(w) w
= | o) we | F9=| 5w
Bw) B(w) Bw) BW)

with w-periodic rational components such that the matrices My (w) = P(w)A(w)G*(w) and
My(w) = P(w)G*(w) consist of polynomials and G(w)G*(w) = I

Let us use the change of variable z = ¢, Introducing functions
h(e*) = mo(w), h(e*) =rmo(w), b(e*) = Bw), b(e*™) = B(w),
a(#*) = 1 = h(2)h(1/z) = h(=2)h(=1/2), L(z) = A(w),

91(62iw) = Q1(W)7 92(62“‘)) = Q2(W)7 93(62iw) = Q3(W)7 94(62iw) = Q4(W)a
we obtaln
1- 1 1 1
G e #() i
P(w) _ H(z) _ bl(]}l/z? b(z ) 7 ﬁ(w) _ ﬁ(z) _ bl(lll/z 1) b(Z2) ,
z (2) h(—z) z (2) h(—z)
b(1/z2)  b(z?) b(1/2%)  B(2?)
0(1/2)  ga(1/2) 0s(1/2)  g5(1/2)
G =it = | GG N | Ge=Te= | M
TH(1/23) B2 CB(1/z2) b2

We consider here only the case when a(z) # 0, otherwise we have the well-known case of a
unique framelet.

Let us introduce polyphase representation of Laurent polynomials. For a polynomilal
p(z) = 3 i_, prz" we denote by p.(z) and p,(z) its even and odd parts,

Yoot )= Y pamndt

m<2k<n m<2k+1<n

Thus, polyphase representation p(z) = p.(2?) + zp,(2?) takes place.
We shall prove that the functions

g1(2) = —V2zho(2), g2(2) = VEh(1/2).  gal2) = V3ho(1/2), galz) = —V22ho(2)

provide a solution to our problem.
First, we check that J(z)J*(z) = I. It follows directly from the fact that the equality

h(2)h(1/2) + h(—2z)h(—1/z) = b(z?)b(1/2?)
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can be re-written in the form
2 <he(z)l~7,e(1/z) + ho(z)izo(l/z)> — b(2)b(1/2).

Since we want the matrix H(z)L(z)J*(z) to be polynomial, the polynomials g; have to
satisfy the equations

2 (22 ) + a7 = B/ ) (32
L (_1) " (i) + a(2)h(z)as (i) = (1)) fol2); (33)
L (1) 61(22) + a(22)h(=2)ga(2) = b(D)b(1/22) fo2); (34)
L (1) " (i) + ({2 (i) = (2B fal ) (35)

where f17 f27 f37 f4 S L.
Let us check that g;, g satisfy (32). Using polyphase representation of the functions

h(z) and l;,(z), (32) can be re-written in the equivalent form

e G) 91(2) 4 a(2)he(2)g2(2) = b(2)b G) fre(#%),
L G) 91(2) + a(2)ho(2)ga(2) = b(2)b (%) fro(2%),

After substitution of g; and g, in the last system we have

Frolz) = \/% (1 ~ ho(2)h, (%)) L R = —\/%ho(z)ize (%) .

Easily to see that (34) gives us
f3,e(z) = fl,e(z)v f3,o(z) = _fl,o(z)-

In analogous way from (33) and (35) we obtain
1 = (1 1 - (1
EhE(Z)hO (;) \ fao(z) = _\/§z (1 — ho(2)h, (;)) )
f4,e(z) = f2,e(z)7 f4,o(z) = _f2,o(z)-

Now we show that for polynomials g;, g2, g3, g4 the matrix ﬁ[(z)j*(z) is polynomial. To
prove it we need to check that for the polynomials ¢; the equalities

fae(2) =

Ly (—1) 0a(2) + h(2)gs(22) = B(1/2)B() fu(2); (36)

z z
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L (1) gal2) + h(~2)gs(2) = D1/ fal2): (38)

() (%) + 21 () = b0/l (39)

where fi, fo, fs. fa € L, take place. Equalities (36) — (39) can be verified by computatlon
Moreover, it is easy to see that fl,e( )= f3 e(2) = % faolz) = —f470( )= — fl o(2) =

Foe(2) = Foo(2) = fae(z) = 0. N

Remark. If the scaling functions ¢(z) and @¢(x) are even, then the choice of functions g,
g2, 93, 94 in the proof of Theorem 6 provides us with even (up to a shift) framelets.

In spite of the fact that the construction of framelets in the proof of Theorem 6 is
degenerated for the dual multiresolution, it can be easily done more complex. Indeed, let
us take any polynomial matrix G(w) with 7-periodic polynomial elements and such that
the inverse matrix G~!(w) is also polynomial. Since we already have polynomial matrices
My (w) and Mv¢(w), the matrices My(w)G*(w) and Mv¢(w)g_1(w) are also polynomial.
The last procedure can be also implemented as a sequence of lifting steps (cf. [4]), applied
to polyphase representation of the matrices My (w) and vap(w) However, it should be
emphasized that such transforms do not lead to all possible polynomial solutions to (30).
The point is that obviously det |G(w)| is a monomial, det |G(w)| = det |é(w)| = 1. Thus, if
instead of the pair of matrices H(z)L(z)J*(z) and ﬁ[(z)j*(z) we consider the pair H(z)J*(z)
and H( VL(z )J*( ), they cannot be reduced one to another with the polynomial transform
G(w) unless det |L(z)| is a monomial.
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