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Abstract

We study tight wavelet frames and bi�frames� associated with given scaling func�
tions� which are obtained with the unitary and mixed extension principles� All possible
solutions of the corresponding matrix equations are found� It is proved that the prob�
lem of the extension may be always solved with two framelets� In particular� if masks
of the scaling functions are polynomials �rational functions�� then the corresponding
framelets with polynomial �rational� masks can be found�
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� Introduction

The main goal of our paper is to present an explicit construction of an arbitrary wavelet
frames �or framelets�� generated by a re�nable function� We shall consider only functions of
one variable in the space L��R� with the inner product

hf� gi �
Z �

��
f�x�g�x� dx�

As usual we denote by �f ��� Fourier transform of the function f�x� � L��R��

�f��� �

Z �

��
f�x�e�ix� dx�

Suppose a real�valued function � � L��R� satis�es the following conditions�
�a� ���	�� � m���� ������ where m� is essentially bounded 	��periodic function

�b� lim��� ����� � �	������


then the function � is called re�nable or scaling� m� is called a mask of �� and the relation
in item �a� is called a re�nement equation�
In spite of the fact that in most practically important cases the re�nement function can

be easily reconstructed by its mask� the problem of existence of a scaling function� satisfying
a re�nement equation with the given mask is not completely solved� Here we shall not discuss
the problem of recovering the function � by its mask� So in what follows the notion of a
re�nable function is primary for us and a mask is only attribute of a re�nable function�

�



Every re�nable function generates multiresolution analysis �MRA� of the space L��R��
i�e�� a nested sequence

� � � � V �� � V � � V � � � � � � V j � � � �

of closed linear subspaces of L��R� such that
�a� �j�ZV j � �


�b� �j�ZV j � L��R�

�c� f�x� � V j � f�	x� � V j�� �

To obtain the MRA we just have to take as above V j the closure of the linear span of the
functions f��	jx � n�gn�Z� Ful�llment of item �a� and �b� for the obtained spaces V j was
proved in ��� Property �c� is evident�
The most popular approach to the design of orthogonal and bi�orthogonal wavelets is

based on construction of MRA of the space L��R�� generated with a given re�nable function�
S�Mallat �� shown that if the system f��x�n�gn�Zconstitutes Riesz basis of the space V ��
then there exists a re�nable function � � V � with a mask m� such that the functions f��x�
n�gn�Zform an orthonormal basis of V �� If we denote by W j the orthogonal complement of
the space V j in the space V j��� then the function � �which is called a wavelet�� de�ned by
the relation

���	�� �� m����������

where m���� � ei�m��� � ��� generates orthonormal basis f��x� n�gn�Zof the space W ��
Thus� the system �

	k����	kx� n�
�
n�k�Z ���

constitutes an orthonormal basis of the space L��R��
We see that if we have a re�nable function� generating Riesz basis� then we have explicit

formulae for the wavelets� associated with this functions� It gives a simple method for
constructing wavelets� Generally speaking� any orthonormal basis of L��R� of the form ���
is called a wavelet system� However� wavelet construction based on multiresolution has
advantage from the point of view e�ectiveness of computational algorithms� because it leads
to pyramidal scheme of wavelet decomposition and reconstruction �sf� ����
It is well�known that the problem of �nding orthonormal wavelet bases� generated by a

scaling function� can be reduced to solving the matrix equation

M���M���� � I� �	�

where

M��� �

�
m���� m����

m��� � �� m��� � ��

�
�

m�����m���� are essentially bounded functions m����� � m����� i�e�� Fourier series of
these functions have real coe�cients� It is known �see ��� that for any scaling function ��x�
and associated wavelet ��x�� generating an orthogonal wavelet basis� the corresponding
masks m�����m���� satisfy �	�� Any re�nable function �� whose mask m� is solution to �	��
generates a tight frame �see �� for the case when m� is polynomial� the general case was
proved in �	��

	



We cannot independently look for functions m� and m�� In fact� usually we �nd a solution
of the equation

jm����j� � jm��� � ��j� � �� ���

then all possible functions m� can be represented in the form

m���� � ����ei�m��� � ��� ���

were ���� is an arbitrary ��periodic function� satisfying j����j � �� ����� � �����
Now suppose we have an arbitrary re�nable function ���� with the mask m� which does

not satisfy ���� Then the set f��x � n�gn�Zdoes not constitute an orthonormal basis of
V �� If this set forms a Riesz basis� then we can use orthogonalization� proposed by S�Mallat�
However� in this case� when the function � has a compact support� usually this property fails
for the orthogonalized basis� This argues for construction other systems keeping compactness
of support� It will be shown in Section � that tight frame of wavelets leads to one of the
possible compactly supported syastems�
We note that sometimes the orthogonalization can be conducted even if our set is not a

Riesz basis� The simplest example gives a re�nable function

��x� �

�
��	� jxj � �

�� jxj 	 �


with the mask m���� � cos 	�� In this case the MRA coincides with the Haar�s MRA� Thus�
the function

��x� �

�
�� � � x � �

�� x 	 � or x 
 �


is a natural orthogonalization�
Nevertheless� it is easy to design a re�nable function such that its MRA does not allow

orthogonalization� Indeed� let us introduce a re�nable function ��x� � sin �ax��x� where
� 
 a 
 �� It generates the space V � which consists of those functions of L��R� with
Fourier transform supported on ��a�� a�� Thus� for any function f � V � the functionP

k�Zj �f�� � 	k��j� vanishes on the set ���� � n ��a�� a�� Hence� its integer translates do
not form an orthonormal bases �see ���� In this case the traditional procedure of constructing
orthonormal wavelet basis cannot be applied� We note that by the same reason even a bi�
orthogonal pair with this MRA cannot be constructed�
The last example gives one more reason to consider wavelet frames� Let us recall that a

frame in a Hilbert space H is a family of its elements ffkgk�Zsuch that for any f � H

Akfk� �
X
k�Z

jhf� fkij� � Bkfk��

where optimal A and B are called frame constants� If A � B� the frame is called a tight
frame� In the case when a tight frame has unit frame constants �for example� if it is an
orthonormal basis� for any function f � L��R� the expansion

f �
X
n�Z
hfn� fifn ���

�



is valid� To construct the expansion in an arbitrary frame we need a dual frame f �fkgk�Z
such that

hfn� �fki � �n�k ��

�
�� n � k�
�� n �� k�

In this case

f �
X
n�Z
h �fn� fifn� ���

The frame
�f�l

j�kgj�k�Z
�n
l��
� where �l

j�k�x� � 	
j���l�	jx� k�� generated by translates and

dilations of �nite number of functions� is called an a�ne or wavelet frame�
The both relations ��� and ��� require computation of the inner products� i�e�� integrals�

It means that even if the function � or the dual function �� have a short support� the compu�
tation of the inner products for big negative j has a high computational cost� The problem of
decreasing the computational cost of decomposition and reconstruction algorithms is solved
in the theory of orthogonal wavelet bases with the help of the pyramidal scheme� The main
idea of this algorithm is to �nd a good approximation of the function f from the space V n

in the form
f�x� 	

X
k�Z

cn�k�n�k�x�� where �n�k�x� �� 	
n����	nx� k��

Then the computation of the expansionX
k�Z

cn�k�n�k�x� �
X
l�n

X
k�Z

dl�k�l�k�x�

can be implemented only with discrete convolutions by the recursion formulae

cj�l �
X
k�Z

cj���k�hk��l� dj�l �
X
k�Z

cj���k�gk��l�

and
cj���l �

X
k�Z

cj�khl�k �
X
k�Z

cj�kgl�k�

where hk and gk are coe�cients of the expansions

m���� �
�p
	

X
k�Z

hke
�ik�� m����

�p
	

X
k�Z

gke
�ik��

In the case when the mask m� of a re�nable function � does not satisfy ��� we cannot
construct an orthonormal bases of V � of the form f��x � k�� ��x � k�g� However� we can
hope that there exists a collection of several framelets ��� ��� � � � � �n � V �� satisfying the
following conditions�
�� functions

�f�l
j�kgj�k�Z

�n
l��
form a tight frame of the space L��R�


	� for algorithms of decompositions and reconstruction the recurrent formulae

h�j�k� fi � cj�l �
X
k�Z

cj���k�hk��l� h�g
j�k� fi � dqj�l �

X
k�Z

cj���k�g
q
k��l� � � q � n� ���

�



and

cj���l �
X
k�Z

cj�khl�k �
nX

q��

X
k�Z

dqj�kg
q
l�k� ���

where gqk are coe�cients of the expansions mq��� � 	����
P

k�Zg
q
ke
�ik�� take place�

The goal of Section 	 is to show that this problem can be solved with at most two
framelets and to present explicit formulae for masks of the framelets� In Sections � and �
we prove that in the case when m���� is either a rational function or a polynomial we can
choose m����� m���� as rational functions or polynomials respectively�
In Section � generalization of the results from Sections 	 � � for wavelet bi�frames are

considered�

� General Framelets

Let � be a re�nable function with a mask m�� ��k��� � mk���	� �����	� � V �� where each
mask mk is a 	��periodic and essentially bounded function for k � �� 	� � � � � n� It is well�
known that for constructing practically important tight frames the matrix

M��� �
�

m���� m���� � � � mn���
m��� � �� m��� � �� � � � mn�� � ��

�
�

plays an important role�
It is easy to see that the equality

M���M���� � I ���

is equivalent to ��� and ����
It turns out that ��� also implies the tightness of the corresponding frame�

Theorem �� If ��� holds� then the functions f�kgnk�� generate a tight frame of L��R��

Remark� For n � � this theorem was proved in �	� For an arbitrary n it was proved in
�� under some additional decay assumption for ��� In �� Theorem � was called the unitary
extension principle�
We split the proof of Theorem � into several lemmas�

Lemma �� Let the masks fmkgnk�� satisfy ���� then for any �

jml���j� � jml�� � ��j� � �� l � �� �� � � � � n� ����

Proof� Obviously� without loss of generality it su�ces to prove inequality ���� only for l � ��
Let us rewrite relation ��� in the form

M ��� ��M����M�
���� �

�
� � jm����j� �m����m��� � ��

�m����m��� � �� �� jm��� � ��j�
�
� ����

�



where

M���� �

�
m���� m���� � � � mn���
m��� � �� m��� � �� � � � mn�� � ��

�
�

The Hermitian matrix M ��� has eigen�values

����� 
 �� ����� � �� jm����j� � jm��� � ��j��

By de�nition ����� M ��� is a positive de�nite matrix� Hence� ����� � �� It implies ����
Lemma �� If � � L��R� is a re�nable function with a mask m��� satisfying the condition

jm���j� � jm�� � ��j� � � a�e�� ��	�

then Sj ��
P

k�Zjhf��j�kij� 
� for any function f � L��R� and

�i� lim
j��

Sj � kfk�
 �ii� lim
j���

Sj � ��

where �j�k � 	j����	jx� k��

Proof� First� we prove that X
k�Z

j���x� 	�k�j� � �

	�
� ����

We note that due to ��	� and the continuity ����� at � � � we have j�����j � �	������ a�e�
Thus� for any positive l �Zwe obtain

�l��X
k���l

j���� � 	�k�j� �
�l��X
k���l

l��Y
n��

jm�	�n�� � 	�k��j�j���	�n�� � 	�k��j�

� �

	�

�l��X
k���l

l��Y
n��

jm�	�n�� � 	�k��j�

� �

	�

�l��X
k��

�
l��Y
n��

jm�	�n�� � 	�k��j� �
l��Y
n��

jm�	�n�� � 	��k � 	l���j�
�

� �

	�

�l��X
k��

lY
n��

jm�	�n�� � 	�k��j�

� �

	�

�l����X
k��

�
lY

n��

jm�	�n�� � 	�k��j� �
lY

n��

jm�	�n�� � 	��k � 	l�����j�
�

� �

	�

�l����X
k��

l��Y
n��

jm�	�n�� � 	�k��j� � � � � � �

	�
�

�



Applying Plancherel and Parseval formulae� we have

X
k�Z

jhf��j�kij� � 	�	�j
X
k�Z

����Z �

��
�f������	�j��ei�

�j�k d�

�����

� 	�	�j
X
k�Z

�����
Z ��j

���j

�X
n�Z
�f�� � 	�	jn����	�j�� � 	�	jn��

�
ei�

�j�k d�

�����
�

� �	���
Z ��j

���j

�����X
n�Z

�
�f�� � 	�	jn����	�j�� � 	�	jn��

	�����
�

d� � �	� kFjk��� ����

where Fj��� �
P

n�Z
�
�f�� � 	�	jn����	�j�� � 	�	jn��

	
� Let us introduce the following

sequences of functions

�gj��� �

�
�f���� j�j 
 	j�

�� j�j � 	j�
 � hj � f � gj � j � �� �� 	� � � � �

Gj��� �
X
n�Z

�
�gj�� � 	�	

jn����	�j�� � 	�	jn��
	
�

Hj��� �
X
n�Z

�
�hj�� � 	�	

jn����	�j�� � 	�	jn��
	
�

It is clear that on the one hand kGjk  �	������kfk as j  � and on the other hand�
in view of �����

kHjk� �
Z ��j

���j

�����X
n�Z

�
�hj�� � 	�	

jn����	�j�� � 	�	jn��
	�����

�

d�

�
Z ��j

���j

X
n�Z

����hj�� � 	�	jn�����X
n�Z

����	�j� � 	�n���� d�
� �

	�

Z ��j

���j

X
n�Z

����hj�� � 	�	jn����� d� � �
	�
k�hjk�  �� as j �� ����

Thus� since
kGjk � kHjk � kFjjj � kGj �Hjk � kGjk� kHjk�

it follows from ���� and ���� thatX
k�Z

jhf��j�kij� � �	�kFjk��  	�k �fk� � kfk�� as j  ���

Thus� relation �i� is proved�
Now we shall prove �ii�� Let us denote by R the indicator function of a segment ��R�R

and by fR the function fR� We �x an arbitrary � 	 � and choose R 	 � such that
kf�� � R�k 
 ��

�



SinceX
k�Z

jhf��j�kij� � 	
X
k�Z

jhfR��j�kij� � 	
X
k�Z

jhf � fR��j�kij�

� 	
X
k�Z

jhfR��j�kij� � kf � fRk�� � 	
X
k�Z

jhfR��j�kij� � ����

we need only to prove that

lim
j���

X
k�Z

jhfR��j�kij� � ��

If we assume that 	jR � ��	� then the last relation follows from the chain of inequalities

X
k�Z

jhfR��j�kij� �
X
k�Z

�Z
jxj�R

f�x��j�k�x� dx

��

� kfk�
X
k�Z

Z
jxj�R

��j�k�x� dx

� kfk�
X
k�Z

Z
jx�kj��jR

���x� dx � kfk�
Z
�k�Z ���jR�k��jR�k�

���x� dx � � as j  ��

Lemma �� If ��� holds� then for any f � L��R� and J �Z
nX

k��

X
j�l�Z

jhf� �k
j�lij� �

X
l�Z

jhf� �J�lij� �
nX

k��

X
j�J

X
l�Z

jhf� �k
j�lij� 
��

Proof� It follows from ��� that

jm����j� � jm����j� � � � � � jmk���j� � ��

m����m��� � �� �m����m��� � �� � � � ��mn���mn�� � �� � ��

So by analogy with ���� for any L �Z

X
l�Z

jhf� �L�lij� �
nX

k��

X
l�Z

jhf� �k
L�lij�

� �	���
Z ��L

���L

�����X
l�Z

�
�f�� � 	�	Ll� ���	�L�� � 	�	Ll��

	�����
�

d�

� �	���
nX

k��

Z ��L

���L

�����X
l�Z

�
�f�� � 	�	Ll� ��k�	�L�� � 	�	Ll��

	�����
�

d�

� �	���
nX

k��

Z ��L

���L

�����X
l�Z

�
�f �� � 	�	Ll�mk�	�L���� � 	�	Ll�� ���	�L���� � 	�	Ll��

	�����
�

d�

�



� �	���
nX

k��

Z ��L

���L

����������
X
l�Z

�
�f�� � 	�	L��l� ���	�L��� � 	�l�

	

 �z �

��

mk�	�L����

����������

�

d�

� �	���
nX

k��

Z ��L

���L

����������
X
l�Z

�
�f �� � 	�	L��l � 	�	L� ���	�L��� � 	�l � ��

	

 �z �

��

mk�	�L��� � ��

����������

�

d�

� �	���
nX

k��

Z ��L

���L
��mk�	�L������mk�	

�L��� � ��d�

� �	���
nX

k��

Z ��L

���L
��mk�	�L��� � ����mk�	

�L����d�

� �	���
Z ��L

���L

�����X
l�Z

�
�f �� � 	�	L��l� ���	�L��� � 	�l�

	�����
�

d�

� �	���
Z ��L

���L

�����X
l�Z

�
�f�� � 	�	L��l � 	�	L� ���	�L��� � 	�l� ��

	�����
�

d�

� �	���
Z ��L��

���L��

�����X
l�Z

�
�f �� � 	�	L��l� ���	�L��� � 	�l�

	�����
�

d�

�
X
l�Z

jhf� �L���lij� 
��

Using Lemma 	� we obtain the statement of Lemma ��

Now Theorem � is an easy consequence of Lemmas � � ��
Thus� the problem of constructing tight frames� generated by a re�nable function� can

be reduced to �nding mk� satisfying ���� Now we shall describe all possible solutions to ����
Let the mask m� satisfy ��	�� Unit eigen�vectors of the matrix M ��� can be represented

in the form

�v���� �

BBB�
�
ei�m��� � ��

B���

�
�
�
ei�m����

B���

�
�CCCA � �v���� �

BB�
m����

B���
m��� � ��

B���

�CCA � B��� �� ��

where B��� is an arbitrary ��periodic measurable functions� satisfying jB���j� � jm����j��
jm��� � ��j� a� e� For de�niteness� we can take here the positive root of the right�hand
expression� For those � when m���� � m������ � � the matrix M ��� becomes the identity
matrix� so any vector is its eigen vector� In this case we put �v���� � ��� ��T � �v���� � ��� ��T �

�



Thus� we have

M ��� � P �������P ����� ����

where

P ��� �

BBB�
�
ei�m��� � ��

B���

�
m����

B���

�
�
ei�m����

B���

�
m��� � ��

B���

�CCCA � ���� �

�
� �
� �� jm����j� � jm��� � ��j�

�
�

We note that eigen vectors are determined up to multiplicaion by a scalar function of absolute
value � a�e� We have chosen normalization convenient for the further considerations�

Theorem �� Let a 	��periodic function m���� satisfy ��	�� Then there exists a pair of 	��
periodic measurable functions m�� m� which satisfy ��� for n � 	� Any solution of ��� can
be represented in the form of the �rst row of the matrixfM��� � P ���

p
����Q����

where Q�w� is an arbitrary unitary �a�e�� matrix with ��periodic measurable components�

Proof� The matrixM� can be represented in the form of its singular decomposition

M���� � P���D���Q����
where P�Q are unitary matrices� D��� is a non�negative diagonal matrix� These represen�
tations may di�er by multiplication of columns of the matrix P by functions ������ ������
j�����j � j�����j 
 � and simultaneous multiplication of rows of the matrix Q by ���� ���
and ���� ���� Thus� in view of ����� ���� without loss of generality we can suppose P 
 P �
D 
 p��
Let us prove that we can take any a� e� unitary matrix with ��periodic elements as above

Q��� � Q���� In fact� our choice is restricted to such matrices�
For any 	 � 	 matrix Z we denote by ZR the matrix with the transposed rows� On the

one hand we have

M��� � �� � P �� � ��D�� � ��Q�� � �� � PR���D���Q�� � ���

on the other hand

MR
� � �P ���D���Q����R � PR���D���Q����

SinceMR
���� �M��� � ��� it means that Q��� �� � Q��� at least for those � and � � �

for which ����� � ������� �� �� If ����� � ������� � �� thenM���� does not depend on
the choice of the second row of the matrix Q� so we can take an arbitrary values of Q�����
and Q���� In particular� we can suppose Q�� � �� � Q����

Remark� To describe all possible solution to ��� for an arbitrary n we have to take an
arbitrary n � n unitary matrix Q with ��periodic elements and 	 � n matrix D� which is
extension of the matrix

p
� by mean of �lling all new columns with zeros�

��



� Framelets with rational masks

For numerical implementation framelets with rational and polynomial masks are the most
suitable� Under the assumptions of Section 	 we require additionally that m���� is a rational
	��periodic function with real coe�cients� i�e�� m� is a ratio of trigonometric polynomials
with real coe�cients� It is well�known that in spite of the fact that such functions have
in�nitely many non�zero Fourier coe�cients� implementation of numerical algorithms for
this case can be economically designed with� so�called� recursive �lters�
The only di�erence of the case of a rational mask and the general case is that we have to

extract square root with more care� If m���� is a rational function� then B��� � jm����j��
jm��� � ��j� and A��� � � � jm����j� � jm��� � ��j� are rational non�negative functions�
So according to Riesz lemma� we can take such rational ��periodic functions A��� and B���
that jA���j� � A���� jB���j� � B���� Thus� we have proved the following statement�
Theorem �� Let a 	��periodic rational function m���� satisfy ��	�� Then there exists a
pair of 	��periodic rational functions m�� m� which satisfy ���� Any such rational solution
to ��� can be represented in the form of the �rst row of the matrix

fM��� � P ���D���Q���� ����

where Q�w� is an arbitrary unitary rational matrix with ��periodic rational components�

D��� �

�
� �
� A���

�
�

� Framelets with polynomial masks

The subject of this section is framelets generated by compactly supported re�nable functions�
Such functions has polynomial masks� They are the most simple from the point of view of
numerical implementation� Our main goal is to prove the existence of compactly supported
framelets for this case�
Here the degree of trigonometric polynomial

Pk
j�l ake

ijx� where al �� � and ak �� �� is
de�ned to be k � l�
We denote by L a set of all Laurent polynomials with real coe�cients� and by Ln a set

of Laurent polynomial with real coe�cients of degree at most n� i�e��

Ln ��

�
kX
j�l

ajz
j
��� l� k �Z
 aj � R
 � � k � l � n

�
�

Theorem �� Let a trigonometric polynomial m���� of degree n satisfy ��	�� Then there
exists a pair of trigonometric polynomials m�� m� of the degree at most n which satisfy ����

Proof� In fact� we cannot control the choice of the matrices P ��� and D��� in ����� So
we need to choose a unitary rational ��periodic matrix Q��� such that M���� consists of
trigonometric polynomials�

��



Let us use the change of variable z � ei� in ����� In what follows we consider the Laurent
polynomials h�ei�� � m����� b�e�i�� � B���� a�e�i�� � A����
After the change of variable the matrix P ��� becomes

H�z� �

BBBBBB�

�

z
h

�
��
z

�
b���z��

h�z�

b�z��

�
�

z
h

�
�

z

�
b���z��

h��z�
b�z��

�CCCCCCA �

We put the last representation of the matrix H�z� through procedure of reduction� If
polynomials h�z�� h��z�� b�z�� have a common factor z � z�� we cancel the correspond�
ing fractions in the second column of H�z� by z� � z�� and the �rst column we cancel
by ��z� � z��� After all possible cancellations we obtain the same matrix H

��z� � H�z�
but its elements are expressed in terms of new functions h��z� and b��z�� It is clear that
b��z��b����z��� � h��z�h����z� � h���z�h�����z� and numerators of the matrix H�z� do not
vanish simultaneously� Indeed� since the determinant of H�z� is equal to ��z� if for some z�
we have h�z�� � h��z�� � h���z�� � h����z�� � �� then either b�z��� � � or b���z��� � �� It
means that the reduction of H�z� can be continued� We note that because the coe�cients
of h�z� and b�z� are real� the polynomials h��z� and b��z� also have real coe�cients�
After takin the z�transform the elements q���z��� q���z��� q���z��� q���z�� of the matrix

Q��� satisfy the relations

q���z� � q�����z�z
N � q���z� � �q�����z�zN � N �Z�

Here� without loss of generality� we may suppose N � �� because any other choice leads to
the integer shift of one of the basic framelets�
To reduce poles of the matrix H ��z� after multiplication by Q��� we suppose that

q���z� �
g��z�

b��z�
� q���z� �

g��z�

b����z�
�

where g�� g� are Laurent polynomials�
LetR � f�z	�� ��z	�� � � � � ��z	�n g be the set of all di�erent roots of polynomial b��z��b����z���

We denote by kj the multiplicity of the root zj� It is clear that all four roots �z	�j have the
same multiplicity� So the degree of polynomial b��z��b����z�� is equal to �

P
kj � �k� where

k is the degree of polynomial b��
To prove the theorem we need to �nd polynomials g�� g� which satisfy equations

�

z
h�
�
��
z

�
g��z

�� � a�z��h��z�g��z�� � b��z��b����z��f��z�
 ����

��
z
h�
�
��
z

�
g�

�
�

z�

�
� a�z��h��z�g�

�
�

z�

�
� b��z��b����z��f��z�
 ����

�	



��
z
h�
�
�

z

�
g��z

�� � a�z��h���z�g��z�� � b��z��b����z��f��z�
 �	��

�

z
h�
�
�

z

�
g�

�
�

z�

�
� a�z��h���z�g�

�
�

z�

�
� b��z��b����z��f	�z�� �	��

where f�� f�� f�� f	 � L� Moreover� we need satisfy the condition of the unitarity of the
matrix Q���� Hence�

g��z�g����z� � g��z�g����z� � b��z�b����z�� �		�

Now we leave aside equation �		� and prove existence of polynomials g�� g� � Lk� satis�
fying ���� � �	��� Let us �x the lowest and highest powers of the polynomials g� and g� and
suppose that their degree is equal to k� We have 	k � 	 unknown coe�cients�
First we show that there exist polynomials g� and g�� satisfying equations ���� � �	�� at

points of the set R� As it usually is in the case of a root �z of multiplicity �k� we require that
not only ���� � �	�� turn to equality but also their derivatives of orders �� 	� � � � � �k � � do�
Equations ���� � �	�� give us ��k homogeneous linear equations for 	k � 	 unknown

coe�tients of polynomials g� and g�� We shall prove that at most 	k of them are linearly
independent� The proof of this fact we conduct in � steps� Each of these steps are based on
the following lemma�

Lemma �� Let a��z�� a��z�� a��z�� a	�z�� b��z�� b��z� c��z�� c��z� be Laurent polynomials�
ja��z��j� � ja��z��j� �� �� l is a positive integer� If

a��z�b��z� � a��z�b��z� � �z � z��
lc��z�� �	��

a��z�a	�z�� a��z�a��z� � �z � z��
lc��z�� �	��

then we have

a��z�b��z� � a	�z�b��z� � �z � z��
lc�z�� �	��

where c�z� � L�
Proof� Let us assume for de�niteness that a��z�� �� �� We express b� from �	�� and a	 from
�	��� Using the obtained representations� we have

a��z�b��z� � a	�z�b��z� �

a��z�
�z � z��lc��z�� a��z�b��z�

a��z�
� b��z�

�z � z��lc��z� � a��z�a��z�

a��z�
�

�z � z��
la��z�c��z� � b��z�c��z�

a��z�
�� �z � z��

lc�z��

��



In the �rst step we prove that for every �z � R only one equation of the pairs f����� �	��g
and f����� �	��g should be retained� Indeed� on the one hand

det

��������
�

z
h�
�
��
z

�
a�z��h��z�

��
z
h�
�
�

z

�
a�z��h���z�

�������� �
�

z
a�z��b��z��b����z�� � �z � �z�
kc��z�� c��z� � L�

on the other hand� since a�z�a���z� � � � b�z�b���z�� a��z�� �� � for any �z � R� Hence� the
last matrix at point �z has at least one non�zero element� We assume for de�niteness that the
�rst row contains non�zero element� Then by Lemma �� if g� and g� at the point �z satisfy
���� with multiplicity �k� then they also satisfy �	�� at least with the same multiplicity� So
at the point �z we can exclude equation �	�� from consideration� In the same manner we
eliminate one of equations ���� and �	���
In the second step we reject equations� corresponding to the roots �z and ���z� Now for

two roots �z and ���z we have ��k equations� It turns out that at most 	�k of them are linearly
independent� We show that we can keep only equations of the form ���� and �	��� Indeed�
let us assume that in the previous step we kept equation ���� for �z � R and equation ����
for ���z� Now we prove that linear equations generated by ���� for ���z can be omitted� We
apply the change of variable z � ��z to ����� Then the left�hand part of ���� becomes

a���z��h����z�g��z��� zh���z�g��z��� �	��

Since

det

��������
�

z
h�
�
��
z

�
a�z��h��z�

a

�
�

z�

�
h�
�
�

z

�
�zh���z�

�������� � b��z��b����z���b���z��b�����z��h��z�h����z�� ���

where b���z� � b�z��b��z�� is divisible by �z��z�
k� so expression �	�� is also divisible by �z��z�
k
and the left�hand part of ���� is divisible by �z � ���z�
k�
Dependence of the equations� generated by �	��� is obtained by the same reasons� Indeed�

after transform z � ��z the left�hand part of �	�� is equal to
a���z��h�����z�g��z�� � zh��z�g��z���

Since

det

��������
�

z
h�
�
��
z

�
a�z��h��z�

a

�
�

z�

�
h�����z� zh��z�

�������� � b�z��b���z��h��z�h�����z��

then the left�hand part of �	�� is divisible by �z � ���z�
k�
In the third step we prove that equations� corresponding �z and ��z� are linear dependent�
Let us assume that we have chosen equation ���� for the both roots ��z� After substitution

z � �z the right�hand part of ���� is transformed to

��
z
h�
�
�

z

�
g��z

�� � a�z��h���z�g��z���

��



Since

det

��������
�

z
h�
�
��
z

�
a�z��h��z�

��
z
h�
�
�

z

�
a�z��h���z�

�������� �
�

z
a�z��b��z��b����z��

is divisible by �z � �z�
k� then the equations for ��z are linear dependent of the equations for
�z�
In the case� when we take equation ���� for �z and equation �	�� for ��z� the corresponding

linear equations coincides�
Thus� we have proved the existence of a pair of polynomials g�� g� � Ln� satisfying

equations ���� � �	�� on all of R� Although the polynomial b��z��b����z�� can have complex
roots� it is easy to check that we can choose polynomials g�� g� with real coe�cients� Indeed� if
z� is a root of b��z��b����z��� then �z� is also a root� Coe�cients of the equations� corresponding
these roots� di�er in complex conjugation� So instead of them we can consider real equations�
corresponding to real and imagine parts of the initial equations�
Thus� we have 	k homogeneous linear equation for 	k � 	 unknown values� Let us take

any non�degenerate solution of the system� Now we prove that for the corresponding pair of
polynomials g� and g� of order at most k� satisfying ���� � �	�� and the relation

g����� � g����� � b������ �	��

satis�es also the equation

g��z�g����z� � g��z�g����z� � b��z�b����z�� �	��

Indeed� let us assume for de�niteness that �z � R and jh������z�j� � ja�z��h��z�j� �� �� By
����� we have

det

��������
�

z
h�
�
��
z

�
a�z��h��z�

g�

�
�

z�

�
g�

�
�

z�

�
�������� �
�

z
h�
�
��
z

�
g�

�
�

z�

�
� a�z��h��z�g�

�
�

z�

�
�

� b��z��b����z��f��z��

Thus� by Lemma � and from ���� the expression g��z�g����z� � g��z�g����z� is divisible

by �z � �z�
k� It means that polynomials in the left�hand and right�hand part of �	�� have
common 	k zeros� It remains to normalize the left�hand polynomial according to �	��� The
normalization is not possible only in the case when g���� � g���� � �� However� it implies
that the left�hand part of �	�� has 	k � � zeros� It follows from this that g��z�g����z� �
g��z�g����z� 
 �� Hence� g��z� 
 g��z� 
 �� It contradicts the assumption that at least one
of the polynomials g� and g� is non�degenerate�

We note that there are in�nitely many solutions g� and g� satisfying �	��� It is not di�cult
to prove that there is a unique solution� satisfying the initial conditions

g���� � a� g���� � b� a� � b� � �b������� �	��

��



Indeed� let us introduce 	 real linear independent vectors �r�� �r�� of the dimension 	k � 	�
composed of coe�cients of the polynomials g��� g

�
� and g

��
� � g

��
� � satisfying ����  �	��� In this

case the vectors �g������ g
�
����� and �g

��
����� g

��
����� are linear independent� It follows from the

fact that in the opposite case we can obtain a non�degenerated solution g�� g� to ����  �	��
for which g���� � g���� � �� However� we mentioned above that this is impossible� Thus�
we can satisfy any initial condition �	���
Since di�erences between any two solutions� satisfying �	��� take value � at the point

z � �� they are equal to � identically� Hence� there is only one pair of polynomials g�� g��
satisfying �	���
Problems of data representation require that the basic functions have approximately as

many vanishing moments as order of smoothness which the data have� So to adapt the frame
to the given data we need control the number of vanishing moments� Conditions �	�� can
be useful to control multiplicity of root of trigonometric polynomials m���� and m���� at
the point � � �� In turn the multiplicity determines the number of vanishing moments of
the framelets�

� Bi�framelets

Many authors explain the popularity of bi�orthogonal wavelets by the possibility to combine
symmetry and compact support of the basic functions� However� the bi�orthogonality gives
more !exibility for adaptation to problems arising in applications�
Here we consider only bi�frames generated by two re�nable functions� More detail infor�

mation on general construction of bi�framelets can be found in ��� ��� and ����
Let �� e� � L��R� be re�nable functions with essentially bounded masks m����� em�����

It was shown in �� and ��� that under appropriate choice of m���� and em����� when �� and
��� satisfy some very mild decaying condition� if the masks of functions f�k� ��kgnk�� satisfy�
so�called� the mixed extension principle

M���fM���� � I� ����

where

M��� �
�

m���� m���� � � � mn���
m��� � �� m��� � �� � � � mn�� � ��

�
�

fM��� � � em���� em���� � � � emn���em��� � �� em��� � �� � � � emn�� � ��

�
�

then the functionsn�
	j���l�	jx� k�

�
j�k�Z

on
l��

�

�n
	j�� ��l�	jx� k�

o
j�k�Z

�n

l��

constitute dual bi�frame systems�
In what follows we shall not discuss conditions for m���� and em����� under which we

can construct dual pair of frames� We just �nd all solutions to ���� for the masks m�� �m� of
re�nable functions� satisfying inequality

jm����em���� �m��� � ��em��� � ��j � � 	 � a� e� ����

��



We introduce new matrices

M���� �

�
m���� m���� � � � mn���
m��� � �� m���� � � � mn�� � ��

�
�

fM���� �

� em���� em���� � � � emn���em��� � �� em��� � �� � � � emn�� � ��

�
�

which contains only masks of bi�framelets� and give the general relations for their computa�
tion�

Theorem �� For any essentially bounded 	��periodic functions m�� em�� satisfying inequality
�
��� there exist 	��periodic measurable functions m�� m�� em�� em� which satisfy equation
�
��� Any bounded solution of �
�� can be represented in the form of the �rst rows of the
matrices

M���� � P ��������G
�����fM���� � eP ��������G������

where

P ��� �

BBBB�
�
ei� em��� � ��eB���

�
m����

B���

�
�
ei� em����eB���

�
m��� � ��

B���

�CCCCA � eP ��� �
BBB�
�
ei�m��� � ��

B���

� em����eB���
�
�
ei�m����

B���

� em��� � ��eB���

�CCCA �

����� �

�
� �
� �����

�
� ����� �

�
� �
� �����

�
�

where B���� eB���� ������ ����� are any ��periodic bounded solutions to

B��� eB��� � m����em���� �m��� � ��em��� � ��

and
����������� � ���� �� � �m����em���� �m��� � ��em��� � ��

with real Fourier coe�cients� G��� is an arbitrary non�singular �a�e�� matrix with ��periodic
measurable components with real Fourier coe�cients such that �����G���� and �����G�����
are essentially bounded�

Proof� The fact that the proposed expressions give us a solution to ���� can be veri�ed by
a computation�
Let us prove that these expressions give all possible solutions� Obviously equation ����

can be rewritten in the form

M����fM�
���� �

�
� �m����em���� �m����em��� � ��

�m��� � ��em���� � �m��� � ��em��� � ��

�
� P ������� eP �����

��



where

���� �

�
� �
� ����

�
�

Taking into account that jdetP ���j � jdet eP ���j � �� for those � for which ���� �� � we
have �

���� ���P
�����M����

� � fM�
����� eP ���������������

��
	
� I�

Thus� if we denote
�
���� ���P

�����M����
��
by G���� then we obtain necessary representa�

tions forM���� and fM�����
Now we consider the case ����� � �� Introducing the notation

A �� P������M������ eA �� eP������fM�����
we have

A � eA� � � � �
� �

�
�

It means that if we denote by �v���v�� �w���w� rows of the matrices A and eA� then for the inner
products of them relations h�v�� �w�i � � and h�v�� �w�i � h�v�� �w�i � h�v�� �w�i � � hold� This is
possible if at least one of the vectors �v� and �w� is equal to ��� If both of them are equal to
zero� we can take

������ � ������ �

�
� �
� �

�
� G����� �

�
v�� v��
v�� v��

�
�

where �v� is an arbitrary non�zero vector which is orthogonal to �w��
We note that in this case the matrix G������ has the same �rst row as the matrix �A�
Let us assume that �v� �� �� In this case we have to take G����� � A and

������ �

�
� �
� �

�
� ������ �

�
� �
� �

�
�

Now we prove necessity of the boundedness of the matrix �����G
����� Let us denote by

�min��� 	 � and �max��� 	 � the least and the biggest singular numbers of the matrix P ����
Since jdetP ���j � �� we have �min��� � �max��� � �� The boundedness of �max��� follows
from the boundedness of elements of the matrix P ���� It means that for some � 	 � we have
�min��� � � 	 �� So if we assume that at least one element of �����G���� is unbounded�
the matrix P ��������G���� is also contains unbounded elements�
The boundedness of the matrix �����G����� follows from the similar reasons�
To prove ��periodicity of components of the matrix G��� we need just repeat the corre�

sponding reasoning from the proof of Theorem 	�

Theorem �� Let trigonometric polynomials m���� and �m���� satisfy �
�� then there exist
trigonometric polynomials m����� �m����� m����� �m����� satisfying �
���

��



Proof� Here we keep the notation of Theorem �� Additionally we suppose that B���� �B���
are ��periodic trigonometric polynomials with real coe�cients� We shall look for the matrix

G��� �

BB�
q����

B���

q����eB���
�q����
B���

q	���eB���

�CCA � eG��� �
BBB�

q	���eB��� q����

B���

�q����eB��� q����

B���

�CCCA
with ��periodic rational components such that the matricesM���� � P �������G���� andfM���� � eP ��� eG���� consist of polynomials and G��� eG���� � I�
Let us use the change of variable z � ei�� Introducing functions

h�ei�� � m����� �h�ei�� � �m����� b�e�i�� � B���� �b�e�i�� � eB����
a�z�� � �� h�z��h���z� � h��z��h����z�� L�z� � �����

g��e
�i�� � q����� g��e

�i�� � q����� g��e
�i�� � q����� g	�e

�i�� � q	����

we obtain
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We consider here only the case when a�z� �
 �� otherwise we have the well�known case of a
unique framelet�
Let us introduce polyphase representation of Laurent polynomials� For a polynomilal

p�z� �
Pn

k�m pkz
k we denote by pe�z� and po�z� its even and odd parts�
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Thus� polyphase representation p�z� � pe�z�� � zpo�z�� takes place�
We shall prove that the functions
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p
	�he���z�� g��z� �

p
	he���z�� g	�z� � �

p
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provide a solution to our problem�
First� we check that J�z� eJ��z� � I� It follows directly from the fact that the equality

h�z��h���z� � h��z��h����z� � b�z���b���z��

��



can be re�written in the form
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he�z��he���z� � ho�z��ho���z�

	
� b�z��b���z��

Since we want the matrix H�z�L�z�J��z� to be polynomial� the polynomials gi have to
satisfy the equations
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where f�� f�� f�� f	 � L�
Let us check that g�� g� satisfy ��	�� Using polyphase representation of the functions

h�z� and �h�z�� ��	� can be re�written in the equivalent form�������
��
z
�ho

�
�

z

�
g��z� � a�z�he�z�g��z� � b�z��b

�
�

z

�
f��e�z���

�

z
�he

�
�

z

�
g��z� � a�z�ho�z�g��z� � b�z��b

�
�

z

�
f��o�z���

After substitution of g� and g� in the last system we have
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Easily to see that ���� gives us

f��e�z� � f��e�z�� f��o�z� � �f��o�z��
In analogous way from ���� and ���� we obtain
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f	�e�z� � f��e�z�� f	�o�z� � �f��o�z��
Now we show that for polynomials g�� g�� g�� g	 the matrix eH�z� �J��z� is polynomial� To

prove it we need to check that for the polynomials gl the equalities
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where �f�� �f�� �f�� �f	 � L� take place� Equalities ����  ���� can be veri�ed by computation�
Moreover� it is easy to see that �f��e�z� � �f��e�z� 
 �p

�
� �f��o�z� � � �f	�o�z� � � �p

�z
� �f��o�z� �

�f��e�z� � �f��o�z� � �f	�e�z� 
 ��
Remark� If the scaling functions ��x� and ���x� are even� then the choice of functions g��

g�� g�� g	 in the proof of Theorem � provides us with even �up to a shift� framelets�
In spite of the fact that the construction of framelets in the proof of Theorem � is

degenerated for the dual multiresolution� it can be easily done more complex� Indeed� let
us take any polynomial matrix G��� with ��periodic polynomial elements and such that
the inverse matrix G����� is also polynomial� Since we already have polynomial matrices
M���� and fM����� the matrices M����G���� and fM����G����� are also polynomial�
The last procedure can be also implemented as a sequence of lifting steps �cf� ���� applied

to polyphase representation of the matrices M���� and fM�
����� However� it should be

emphasized that such transforms do not lead to all possible polynomial solutions to �����

The point is that obviously det jG���j is a monomial� det jG���j � det j eG���j � �� Thus� if
instead of the pair of matrices H�z�L�z�J��z� and eH�z� eJ��z� we consider the pair H�z�J��z�
and eH�z�L�z� eJ��z�� they cannot be reduced one to another with the polynomial transform
G��� unless det jL�z�j is a monomial�
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