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Abstract

We determine the minimum volume (sum of cardinalities) of an intersecting family of
subsets of an n-set, given the size of the family, by solving a simple linear program.
From this we obtain a lower bound on the average size of the sets in an intersecting
family. This answers a question of G. O. H. Katona, whose 60th birthday we celebrate
with this result.
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Intersecting Families

Let [n] denote the n-set {1,...,n}. A family of subsets of [n] is said to be intersect-
ing if every member intersects every other. Let F be a nonempty intersecting family
of subsets of [n], and set m = |F|. For any A C [n], not both A and its complement

[n]\A belong to F, so we deduce the well-known fact that m < 27~1 =%"" (?__11)

Let k be the greatest integer at most n such that Zle (T.L*l) < m. By convention,

i—1
(”:11) =0, so that when m =0, k£ = 0.

G.O.H. Katona asked [5] whether it is always true, when m > 0, that the average
size of the sets in F is at least

Sei(h))
>y ()

This bound is the average set size when F consists of all subsets of [n] of size at most
(i
for intersecting families of the Kleitman-Milner Theorem [6] for antichains (Sperner
families), and it is related to results in the paper, also in this special issue, of Bey,
Engel, Katona, and Leck for intersecting antichains [2].

Katona’s bound is obtained in this note by determining the intersecting families F
of size m with minimum average set size. It is more convenient to minimize the volume,
denoted by v(F), which is the sum of sizes ), |A|. The average set size in F is
v(F)/m. Define the profile vector p(F) = (po,...,pn), where p; = [{A € F : |A] = i}|.

We shall derive the families of minimum volume by associating a certain linear
program below with the problem and solving it by a series of simple shifts.

k containing the element 1 (and m = Zle ("~}))- Katona’s question is the analogue

(1) minimize Yoo ia

(2) subject to x; < (?:11) (0<i< %)
(3) vitani < (7)) (0<i<3)
(4) DicgTi =M

(5) 7 2 0 (0<i<n)

We first claim that p(F) is feasible in the LP, taking xz; = p;. Observe that the
constraints (2) hold by applying the Erdds-Ko-Rado Theorem [4] to the intersecting
families {A € F : |A| = i}. The constraints (3) hold since an i-subset and its com-
plement cannot both belong to F. Constraint (4) gives |F|, and (5) is trivial. The
objective value (1) is just the volume v(F).

Next we solve the LP. Start with any feasible solution x = (zy,...,x,). For each
i < %, increase x; and decrease r,_; by the same amount, min{z,_;, (?:11) —z;}.
All LP constraints continue to hold after these shifts. Further, for each ¢ < 2 we

2

either have z; < (7;__11) and z,_; = 0, or we have x; = (7;__11) and z,,_; < (7) —x; =

™) - () = ("7 = (,*71,)- Thus, along with (4) and (5), the new solution x

7 i—1 % n—i—1
satisfies these stricter conditions in place of (2) and (3):
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Intersecting Families

(6) z < (7)) (0<i<n).

Suppose there exist indices 7,7 with ¢ < j such that z; < (T;__ll) and z; > 0.
Choose the least such ¢ and the greatest such j. Now increase x; and decrease z; by

the same amount, min{z;, (?:11) — z;}. The resulting vector still satisfies (4), (5), (6).

Continue doing this until no such pair ¢ < j exists, which happens since the gaps
j—1 get smaller with each shift. Each of the shifts above strictly decreases the objective
function (1). When no further shifts are possible, let [ be the largest index such that
x; > 0. Then x; must be (?:11) for ¢ < [, and it must be 0 for ¢ > [. Hence, we must

be at the solution y with

(D), 1<i<k;
Yi = m_2§:1 (?:11), t=k+1;
0 otherwise.

In fact, y is the unique optimal LP solution, since we showed that it is strictly better
than any other feasible solution x.

Next observe that y is the profile vector for an intersecting family of size m. Let
a € [n] and consider the “star” of all subsets of [n] that contain a. Take every set in
the star of size at most k, along with any yx41 sets of size k+1 in the star. Any family
formed in this way for some a will be called a cone, and its profile is y.

Moreover, the only intersecting families with this profile are the cones. A nonempty
intersecting family F with profile y contains a singleton {a}, since y; = 1. Then all
sets in F must contain a, and F lies inside a star. Because of its profile, 7 must be a
cone. We have therefore proven:

Theorem. Let F be an intersecting family of subsets of [n] with |F| = m. Then
v(F) > v(C), where C is any cone, and equality holds if and only if F is a cone.

Tossing out the sets of (largest) size k + 1 strictly decreases the average size of
the sets in a cone, so we can answer Katona’s question:

Corollary. Let F be a nonempty intersecting family of subsets of [n]. Let m = |F|,
and define k to be the greatest integer at most n such that Zle (?:11) < m. Then
>, iin)

k n—
Zi=1 (1711)

and only if m = Zle (?__11) and F is a cone of size m.

the average size of the sets in F is at least Moreover, the bound is tight if

One can avoid the shifting operations in our proof by instead formulating the dual
LP and presenting its solution, call it z. It suffices to check the feasibility of y and z
and the equality of their objective values to establish their optimality. Complementary
slackness can be used to prove that y is uniquely optimal.
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Intersecting Families

Erdés (Péter), Frankl, and Katona determined the profile polytope for intersecting
families of an n-set, which is the convex hull of the profile vectors (in R™*!). This
means that its extreme points are known [3]. One can now add the constraint that
the family size be m by restricting attention to the intersection of the polytope with
the corresponding hyperplane. For the minimum volume problem, one would need to
determine the extreme point of this intersection that has the minimum value of (1).
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