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Abstract

We study the approximation of a function class F in Lp by choosing first a basis
B and then using n-term approximation with the elements of B. Into the compe-
tition for best bases we enter all greedy (i.e. democratic and unconditional [20])
bases for Lp. We show that if the function class F is well oriented with respect to a
particular basis B then, in a certain sense, this basis is the best choice for this type
of approximation. Our results extend the recent results of Donoho [9] from L2 to
Lp, p �= 2.
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Dedicated with much admiration to Professor M.J.D. Powell on the occasion of
his 65-th birthday and retirement.

1 Introduction

Although nonlinear approximation takes many forms, its usual setting is n-term approxi-
mation. Let X be a Banach space with norm ‖·‖X and let B = (bk) be a (Schauder) basis
for X. Throughout this paper whenever considering a basis B for X, we shall assume
that the elements bk of the basis are normalized by ‖bk‖X = 1. For each n ≥ 0, we denote
by Σn(B) the set of all functions

S =
∑
k∈Λ

akbk, (1.1)

where #Λ ≤ n. Thus the functions in Σn(B) can be written as a linear combination of
at most n of the basis elements bk. In the case n = 0, Σ0 is the empty set. If f ∈ X, the
error of n-term approximation using the basis B is given by

σn(f)X := σn(f, B)X := inf
S∈Σn(B)

‖f − S‖X , n ≥ 0. (1.2)

∗This work has been supported in part by the Office of Naval Research Contract N00014-91-J-1076
and the National Science Foundation grants DMS 9970326, DMS 0104112
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Note in particular that σ0(f)X = ‖f ||X .
We sometimes wish to understand this type of approximation for a class F of functions

from X. Given such a class, we define

σn(F0)X := σn(F0, B)X := sup
f∈F0

σn(f, B)X (1.3)

with F0 the unit ball of F . The asymptotic behavior for σn(F0, B)Lp is known for many
function classes F and many bases B. For example, for the trigonometric basis B = T d

consisting of the complex exponentials eik·x with k ∈ ZZd, this asymptotic behavior has
been found (see [14]) for all Sobolev and Besov classes and all 1 ≤ p ≤ ∞. Also, much
interest has centered around this form of approximation when the basis B consists of
wavelets [9, 11, 26] or spline functions [8]. We also note that n-term approximation
has found many interesting applications in image/signal processing [10, 12], statistical
estimation [16], and numerical methods for PDEs [3, 4].

Given a basis B and a Banach space X, one of the central questions in n-term approxi-
mation is to characterize the set of functions which have a common rate of approximation.
For 0 < q ≤ ∞ and α > 0, we let Aα

q (B, X) denote the set of all functions f ∈ X for
which

‖f‖Aα
q (B,X) :=

{
(
∑

n≥0(n + 1)αq−1σn(f, B)q
X)1/q, 0 < q < ∞,

supn≥0(n + 1)ασn(f, B)X , q = ∞,
(1.4)

is finite. The set Aα
q (B, X) is called an approximation class and (1.4) defines a quasi-

norm on this class. Approximation classes have been characterized for wavelet bases
[11], [25], splines [24, 8], and more general classes [17],[19],[15]. In addition to the above
references, we mention the papers [5] and [19] for good expositions of the essential elements
in establishing such characterizations. We mention in this introduction only one result
which will serve to orient the reader.

Let B = (bk) be an orthonormal basis for L2. Then

Aα
∞(B, L2) = {f =

∑
k

akbk : (ak) ∈ �τ,∞}, 1/τ = α + 1/2, (1.5)

where w�τ := �τ,∞ is the Lorentz space weak �τ . In other words, the class Aα
∞ is the

set of all functions f whose representation with respect to the basis B yields coefficients
an = an(f) whose rearrangement cn(f) into decreasing size (in absolute value) decays like
O(n−α−1/2). Similar characterizations are known when the approximation takes place in
Lp, p �= 2 and the basis B is greedy. These results are explained in detail in §2.

It is natural to try to allow more flexibility into the approximation process by allowing
the choice of basis B to depend either on the function f or the class F . We call this type
of approximation highly nonlinear because of the extra degree of nonlinearity. We denote
by B a collection of bases B which will enter into the competition for best basis.

The first results for best basis approximation were given by Kashin [18] who showed
that for any orthonormal basis B and any 0 < α ≤ 1, we have

σn(Lip α, B)L2 ≥ cn−α (1.6)

where the constant c depends only on α. It follows from this that any of the standard
wavelet or Fourier bases are best for the Lipschitz classes when the approximation is car-
ried out in L2 and the competition is held over all orthonormal bases. The estimate (1.6)
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rests on some fundamental estimates for the best basis approximation of finite dimen-
sional hypercubes using orthonormal bases. We shall also make use of these results in our
analysis.

Donoho [9] has also studied the problem of best bases for a function class F . He calls
a basis B best for F if

σn(F0, B)X = O(n−α), n → ∞, (1.7)

and no other basis B′ from B satisfies

σn(F0, B
′)X = O(n−β), n → ∞, (1.8)

for a value of β > α. Donoho has shown that in some cases it is possible to determine a
best basis (in the above sense) for the class F by intrinsic properties of how the class gets
represented with respect to the basis. In Donoho’s analysis (as was the case for Kashin as
well) the space X is L2 (or equivalently any Hilbert space) and the competition for a best
basis takes place over all complete orthonormal systems (i.e. B consists of all complete
orthonormal bases for L2).

In view of (1.5), the question of how well a function class F0 can be approximated by
elements from B is transferred to learning the structure of the coefficient body Θ(F0, B) :=
{(ak(f)) : f ∈ F0}. The main result of [9] is that if F is a function space and B is an
orthonormal basis for X for which Θ(F0, B) is bounded, orthosymmetric, and solid then
B is a best basis for F in the above sense. In particular, if B is an unconditional basis
for F , then B is a best basis for this function class, since the body for F with respect to
this basis is inscribed and circumscribed by multiples of an orthosymmetric solid set.

Any extension of the Kashin and Donoho results from L2 to Lp requires a substitute
of the notion of orthonormal bases in L2. For this purpose, we shall use the notion of
greedy basis (introduced in [20]) which in the case of Banach spaces is equivalent to the
notion of a democratic, unconditional basis.

We say that a basis B for X is democratic if for any two finite subsets Λ, Λ′ of the
same cardinality, we have

‖
∑
k∈Λ

bk‖X ≤ C‖
∑
k∈Λ′

bk‖X (1.9)

with C an absolute constant.
Notice, that in a Hilbert space H each orthonormal basis is a democratic and uncon-

ditional basis. In this paper, we shall consider the search for a best basis B for F in
the sense of Donoho. We shall enter into the competition for best basis all unconditional
democratic bases. Given a function class F ⊂ X, we shall say that the basis B is aligned
to F if whenever f ∈ F , f =

∑
k ak(f)bk, and g ∈ X with g =

∑
k ak(g)bk then

|ak(g)| ≤ |ak(f)|, k = 1, 2, . . . ,−→ c0‖g‖F ≤ ‖f‖F (1.10)

with c0 = c0(F) > 0 an absolute constant. Our main result, given in §3, shows that
whenever B is an unconditional democratic basis for Lp and F is a function class in Lp

such that B is aligned to F then B is a best basis for F in the sense described above.
We shall also prove in §4 several variants and improvements of this result. For example,

we enlarge the search for a best basis to all unconditional bases and we treat approximation
in a general Banach space X. We are also able to give a finer description of the asymptotic
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decay of the best basis error. For example, in Theorem 4.2 we show that whenever a
function class F is aligned to a greedy basis B for X and satisfies

lim sup
m→∞

mασm(F0, B)X > 0, (1.11)

then for any unconditional basis B′ we have

lim sup
m→∞

mα(log2 m)ασm(F0, B
′)X > 0. (1.12)

The purpose of this paper is to introduce techniques based on metric entropy and
encoding for determining optimal bases. The results of this paper can be applied in
a variety of settings. In a subsequent paper, we shall employ these results (and some
modifications as well) to determine best basis selection for Besov and Triebel-Lizorkin
classes when the approximation takes place in Lp.

2 Democratic and unconditional bases

In this section, we state and prove some elementary results about unconditional and
democratic bases which are preparatory to our main results in the sections that follow.
While we could work in more generality, we shall restrict our attention to the case X = Lp,
1 < p < ∞, since these are the main examples of the theory we put forward.

The main result of this section is the characterization of the approximation classes for
n-term approximation using a greedy basis. It is possible to obtain these characterizations
directly from the properties of greedy bases. In [25], this was done for bases that are Lp-
equivalent to the univariate Haar basis. Recently, it has been independently shown by
Gribonval and Nielsen [17] and Kerkyacharian and Picard [19] that the method from [25]
works for arbitrary greedy basis. To keep this paper as self contained as possible, we shall
derive the characterization of approximation classes in this section. Rather than use the
method of [25], we shall use the approach of proving Jackson and Bernstein inequalities for
the approximation process. This is a standard vehicle for characterizing approximation
classes (see for example [5]).

Let B := (bk) be an unconditional basis for Lp with ‖bk‖Lp = 1. This means that
whenever |αk| ≤ |βk|, k = 1, 2, . . ., then

‖
∞∑

k=1

αkbk‖Lp ≤ C‖
∞∑

k=1

βkbk‖Lp, (2.1)

with C an absolute constant.
As we have noted in the introduction, the basis B is said to be democratic if for any

finite sets Λ and Λ′ of the same cardinality, we have

‖
∑
k∈Λ

bk‖Lp ≤ C‖
∑
k∈Λ′

bk‖Lp , (2.2)

with C an absolute constant independent of the cardinality. There is a result in functional
analysis [22] that says that for any unconditional basis B = (bk), normalized so that
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‖bk‖Lp = 1, there is a subsequence kj, j = 1, 2, . . ., such that (bkj
) satisfies

‖
∞∑

j=1

αkj
bkj

‖p
Lp



∞∑

j=1

|αkj
|p.

It follows that for any democratic and unconditional basis B for Lp, we have

‖
∑
k∈Λ

bk‖Lp 
 (#Λ)1/p (2.3)

with the constants of equivalency depending at most on B and p.
For an unconditional, democratic basis B in Lp, then the above results combine to

show that
C1 min

k∈Λ
|ak| (#Λ)1/p ≤ ‖

∑
k∈Λ

akbk‖Lp ≤ C2 max
k∈Λ

|ak| (#Λ)1/p (2.4)

for any finite set Λ with C1, C2 > 0 absolute constants1.
The concept of democratic basis was first introduced by Konyagin and Temlyakov

[20] in their study of greedy algorithms. Given a basis B for X and a positive integer
n, the greedy algorithm assigns to f ∈ X the n-term greedy approximant Gn(f) :=∑

j∈Λn(f) aj(f)bj, where Λn(f) is the set of the n indices of the largest coefficients aj(f)
in absolute value. The basis B is said to be greedy if there is an absolute constant C such
that

‖f − Gn(f)‖X ≤ Cσn(f, B)X (2.5)

holds for all f and n. The main result in [20] is that a basis B is greedy for X if and
only if it is unconditional and democratic for X. In other words, for each such basis,
the greedy strategy of picking the n largest coefficients of f is equivalent (up to absolute
constants) to finding the best n-term approximation to f .

Consider next the approximation classes Aα
q (B, Lp) which were defined in the intro-

duction (see (1.4)). It will be convenient in what follows to use the following equivalent
quasi-norm

‖f‖Aα
q (B,Lp) :=

⎧⎪⎪⎨
⎪⎪⎩

(∑∞
j=−1

[
2jασ2j (f, B)Lp

]q)1/q
, 0 < q < ∞,

supj≥−1 2jασ2j (f, B)Lp, q = ∞,

(2.6)

where by definition σ1/2(f, B)Lp := σ0(f, B)Lp .
It has been observed before [25],[17],[19] that for greedy bases, it is easy to characterize

these approximation classes in terms of the basis coefficients. We shall derive these results
in the next subsections for the completeness of this paper using the approach of [25, 5]
which was employed for wavelet bases. Our characterization of these spaces will be in
terms of the size of the basis coefficients as measured by their membership in certain
Lorentz spaces.

1We shall use the following convention concerning constants in this paper. The letter C will be
used for generic constants which may vary at each occurrence. Constants that are important in further
considerations will be denoted by C1, C2, . . .
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Let us recall the definition of the Lorentz sequence spaces �τ,q, 0 < τ < ∞, 0 < q ≤ ∞.
Given a sequence (cn), we denote by c∗n, n = 1, 2, . . ., its decreasing rearrangement. In
other words, c∗n is the n-th largest of the numbers |ck|. The sequence (cn) is said to be in
�τ,q if

‖(cn)‖�τ,q := ‖(n1/τc∗n)‖�q(w) (2.7)

is finite where �q(w) is the �q sequence space with the Haar measure w(n) := 1/n. The
space w�τ := �τ,∞ is called weak �τ and is equivalently described by

#{k : |ck| > ε} ≤ M τ ε−τ , (2.8)

for all ε > 0. The norm ‖(ck)‖ω�τ is the smallest value of M such that (2.8) holds.
We shall use the following result concerning the interpolation of Lorentz spaces (see

[1]). If 0 < τ1, τ2 < ∞ and 0 < q1, q2 ≤ ∞, then for any 0 < θ < 1 and 0 < q ≤ ∞, we
have

(�τ1,q1, �τ2,q2)θ,q = �τ,q (2.9)

where 1
τ

= 1−θ
τ1

+ θ
τ2

. Here, (X, Y )θ,q denotes the interpolation spaces generated by the
real method of interpolation (K-functionals).

2.1 Direct theorem

Let B = (bk) be a greedy basis for Lp, i.e. B is unconditional and democratic. In this
subsection, we shall prove that if f =

∑
k ak(f)bk with (ak(f))k>0 in w�τ , 1/τ = s + 1/p,

s > 0, then,
σn(f, B)Lp ≤ Cn−s‖(ak(f))‖w�τ , n = 1, 2, . . . , (2.10)

with the constant C depending only on p and s. To prove this, we let Λj := {k : 2−j <
|ak(f)| ≤ 2−j+1}. Then, for each k = 1, 2, . . ., we have

k∑
j=−∞

#Λj ≤ Mτ2kτ .

Let Sj :=
∑

k∈Λj
ak(f)bk and Tk :=

∑k
j=−∞ Sj. Then Tk ∈ Σn with n = Mτ2kτ . We have

‖f − Tk‖Lp ≤
∞∑

j=k+1

‖Sj‖Lp.

We fix j > k and estimate ‖Sj‖Lp. Since |ak(f)| ≤ 2−j+1 for all k ∈ Λj, we have from
(2.4),

‖Sj‖Lp ≤ C2−j(#Λj)
1/p ≤ CMτ/p2j(τ/p−1).

We therefore conclude that

‖f − Tk‖Lp ≤ CMτ/p
∞∑

j=k+1

2j(τ/p−1) ≤ CM(M2k)τ/p−1,

because τ/p − 1 = −sτ < 0. In other words, for n = Mτ2kτ , we have

σn(f, B)Lp ≤ CMn1/p−1/τ = CMn−s.

From the monotonicity of σn it follows that the last inequality holds for all n ≥ 1.
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2.2 Inverse estimate

In this subsection, we prove the following “inverse inequality” for n-term approximation
in Lp by elements from a greedy basis B = (bk). Let s > 0 and 1/τ = s + 1/p. For each
n ≥ 1, we let Σn(B) be the set of all S =

∑
k∈Λ ak(S)bk with #Λ ≤ n. Then, we have

‖(ak(S))k∈Λ‖w�τ ≤ Cns‖S‖Lp, S ∈ Σn(B), n = 1, 2, . . . . (2.11)

For the proof of (2.11), let ε > 0 and let Λε := {k ∈ Λ : |ak(S)| > ε} and S0 :=∑
k∈Λε

ak(S)bk. From (2.1) and (2.4), we know that

ε(#Λε)
1/p ≤ C‖S0‖Lp ≤ C‖S‖Lp. (2.12)

Hence,
ε(#Λε)

1/τ ≤ C(#Λε)
1/τ−1/p‖S‖Lp ≤ Cns‖S‖Lp, (2.13)

because 1/τ − 1/p = s and #Λε ≤ n. Taking a supremum over all ε > 0, the left side is
‖(ak(S))‖w�τ and we obtain (2.11).

2.3 Characterization of the approximation classes

Let B be a greedy basis for Lp. For any s > 0, let Xs be the space of all f ∈ Lp such that
f =

∑
k ak(f)bk with (ak(f)) ∈ w�τ where 1/τ := s + 1/p. We define the norm of f in Xs

by
‖f‖Xs := ‖(ak(f))‖w�τ .

From §2.1- §2.2, we have that Xs satisfies the Jackson and Bernstein inequalities for
n-term approximation,

σn(f, B)Lp ≤ Cn−s‖f‖Xs, n = 1, 2, . . . , f ∈ Xs, (2.14)

and
‖S‖Xs ≤ Cns‖S‖Lp, S ∈ Σn(B). (2.15)

From the general theory of approximation spaces in [12], we find

Aα
q (B, Lp) = (Lp, Xs)α/s,q (2.16)

with the latter the interpolation spaces for the pair (Lp, Xs). If the unconditional basis
B = (bk) is democratic, then the space Y0 := {f =

∑
k ak(f)bk : (ak(f)) ∈ �p,1} is

embedded in Lp and Lp is embedded in the space Y1 := {f =
∑

k ak(f)bk : (ak(f)) ∈ �p,∞}.
Using these embeddings and the interpolation result for Lorentz spaces (2.9), we obtain
that

Aα
q (B, Lp) = (Lp, Xs)α/s,q = {f =

∑
k

ak(f)bk : (ak) ∈ �τα,q}, (2.17)

with 1/τα = α + 1/p.
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3 Best basis

The next sections of this paper will consider the problem of finding a best basis B to use
in conjunction with n-term approximation for approximating a given function class F .
The present section will give a coarse version of our theory which uses as its main vehicle
the concept of Kolmogorov entropy and encoding. Later sections will give finer results
and treat variants of the best basis problem.

We fix 1 < p < ∞ and let B denote the class of all democratic, unconditional bases
for Lp. A function class F is a collection of functions f equipped with a norm

‖f‖F . (3.1)

We denote by F0 the unit ball of F . We shall consider function classes F which are
embedded in Lp which means

‖f‖Lp ≤ C‖f‖F , (3.2)

with C a constant depending only on p and F . Other conditions on F will be imposed
subsequently. The typical function classes are smoothness spaces such as the Besov or
Triebel-Lizorkin spaces.

We denote by Uτ the unit ball of w�τ and by aUτ the ball of radius a centered at the
origin. Given any basis B = (bk) ∈ B, we have that each f ∈ Lp has a unique expansion
in the basis B: f =

∑
k ak(f)bk. From the results of §2.3, we know that for any given

α > 0, a function f ∈ Lp satisfies σn(f, B)Lp = O(n−α) if and only if (ak(f)) ∈ w�τ with
1/τ = α + 1/p.

Given a function class F with unit ball F0, we denote by A(F , B) := {(ak(f)) : f ∈
F0}. We consider T (F , B) := {τ : A(F , B) ⊂ aUτ , for some a > 0}. We know from (2.10)
that for each τ ∈ T (F , B), we have

σn(F0, B)Lp ≤ Cn−α, α := 1/τ − 1/p, (3.3)

with C independent of n.
Now define τ(F , B) := inf{τ : τ ∈ T (F , B)} and α(F , B) := 1

τ(F ,B)
− 1

p
. The fact that

τ(F , B) need not be attained will cause ε’s to appear in the discussion that follows. The
reader could neglect these for a simpler reading. The basis B provides n-term approxi-
mation order O(n−α(F ,B)+ε) for F0 whenever ε > 0. Moreover, if α > α(F , B), then one
can find functions f ∈ F0 such that σn(f, B)Lp �= O(n−α), n → ∞ (we do not give the
simple arguments to do this derivation).

We want to enter into a competition all bases B ∈ B to find out which basis provides
the best approximation order of the form O(n−α). Later sections of this paper will consider
finer descriptions of approximation order. The best approximation order in the above
sense is attained by taking

τ ∗ := τ ∗(F) := inf
B∈B

τ(F , B) (3.4)

and defining

α∗ := α∗(F) :=
1

τ ∗ − 1

p
. (3.5)
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We shall say that a basis B∗ ∈ B is best in coarse order for F if τ(F , B∗) = τ ∗(F).
The theorem which follows will show how to find best bases for function classes F

which are aligned with respect to a fixed basis B (see (1.10) for the definition of aligned).
We shall give several examples of such function classes and bases in the last section of
this paper.

The main theorem of this section is the following.

Theorem 3.1 If F is a function class in Lp and B̄ is a democratic, unconditional basis
to which F is aligned then B̄ is a best coarse order basis for F in the sense described
above, i.e. B̄ = B∗.

The remainder of this section will be devoted to a proof of this theorem. Let B̄ be the
basis of the theorem and let τ̄ := τ(F , B̄) and ᾱ := 1

τ̄
− 1

p
. It is sufficient to show that for

any β > ᾱ and any basis B ∈ B, we have

lim sup
n→∞

nβσn(F0, B)Lp > 0. (3.6)

Indeed, using the fact that B is greedy, the results of §2.3 combined with (3.6) then give
the theorem.

To prove (3.6) we need a technique of estimating from below the quantities σn(F0, B)Lp.
Let us make some historical remarks relevant to this problem. We already mentioned in
the introduction Kashin’s [18] and Donoho’s [9] results. Those results are based on the
method of inscribing a cube in the function class F0 and then studying lower estimates
for the inscribed cube. We will also employ this method. Another ingredient of our
technique is based on the following heuristic well known in approximation theory and
functional analysis: ”the smallest asymptotic characteristics of compact classes are the
entropy numbers”. Thus, we shall estimate from below the entropy numbers of the given
class F0.

To define the entropy numbers, we need the concept of Kolmogorov entropy which we
now define. If K is a compact subset of Lp and ε > 0, the covering number Nε(K) is
by definition the smallest integer N for which there is a covering of K by balls in Lp of
radius ≤ ε. Then,

Hε(K) := log2 Nε(K) (3.7)

is called the Kolmogorov ε- entropy of K. The Kolmogorov entropy allows one to encode
the elements of K by a bitstream. Namely, we label each of the balls in an optimal
covering of K in a one to one fashion by an integer between 0 and Nε(K) − 1 and then
represent each such integer by its binary representation. Thus each ball is identified with
a bitstream consisting of at most �Hε(K)� bits. This in turn gives an encoding of the
elements of K. If f is in K, we identify one of the ε balls which contains f and associate
to f the bitstream associated to this ball. In this way, each f is associated to a bitstream
containing at most �Hε(K)� bits. We can recover f to error at most ε from its bitstream
by taking the center of the ball with the same bitstream as that of f . Such an encoder is
optimal for K, although not very practical.

It is also useful to reverse the roles of Hε(K) and ε. Namely, given an integer N , we
can ask for the infimum of all ε for which we can cover K by at most 2N balls of radius ε:

εN (K) := εN (K, Lp) := inf{ε : Hε(K) ≤ N}. (3.8)
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The numbers εN (K), N = 1, 2, . . . , are called the entropy numbers for K. In other words,
εN (K) is the smallest error we can obtain using an encoder/decoder pair which uses at
most N bits for each f ∈ K.

Entropy numbers are also closely related to n-widths. The nonlinear Kolmogorov
(N, m)-width for a centrally symmetric compact set K in Banach space X is defined by

dm(K, X, N) := inf
�N ,#�N≤N

sup
f∈K

inf
L∈�N

inf
g∈L

‖f − g‖X , (3.9)

where �N is a set of at most N m-dimensional subspaces L. In the case N = 1,
dm(K, X, N) coincides with the classical Kolmogorov width dm(K, X). Let us mention
three inequalities which show the relation between n-widths and entropy numbers. Carl
[2] has proven that

max
1≤k≤n

krεk(K, X) ≤ C(r) max
1≤m≤n

mrdm−1(K, X). (3.10)

The following two inequalities (see [27]) are also useful in estimating σm(F0, B)X from
below. For any positive constant a we have

max
1≤k≤n

krεk(K, X) ≤ C(r, a) max
1≤m≤n

mrdm−1(K, X, (an/m)m). (3.11)

For any positive a and r we have

max
1≤k≤n

krε(a+r)k log2 k(K, X) ≤ C(r, a) max
1≤m≤n

mrdm−1(K, X, mam). (3.12)

We note, in particular, that Theorem 4.1 of the next section can be easily derived from
the last inequality.

Now let us turn to proving (3.6). Let B̄ = (b̄k) be an unconditional democratic basis
for which (1.10) holds and let α > ᾱ be arbitrary and let τ be defined by the relation
1/τ = α+1/p. From the definition of τ̄ , there is a function f ∈ F0 such that its coefficients
ak := ak(f) with respect to B̄, f =

∑
k akb̄k, are not in weak �τ . By rearranging the basis

elements in B̄, we can assume that the absolute values of the ak are nonincreasing. This
means that for infinitely many of n, we have

|an| ≥ c−1
0 n− 1

τ (3.13)

with c0 the constant of (1.10). In going further we shall only consider the set N of such
n. For each n ∈ N , we consider the compact set

Kn(α) := {g =
n∑

k=1

a′
k b̄k : |a′

k| ≤ n− 1
τ , k = 1, 2, . . . , n}.

Since f ∈ F0 and c−1
0 |a′

k| ≤ c−1
0 n− 1

τ ≤ |an| ≤ |ak|, k = 1, . . . , n, it follows from the fact
that F is aligned with respect to B̄ (see (1.10)) that

Kn(α) ⊂ F0, n ∈ N . (3.14)

The lemma that follows gives a lower bound for the entropy numbers of Kn(α).
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Lemma 3.2 For any α > ᾱ, and any of the sets Kn(α), n ∈ N , we have

εk(Kn(α)) ≥ cn−α, k = n log2(4/3)�, (3.15)

with c an absolute constant.

Proof: Let E denote the set of vertices of the unit cube in IRn. If e = (e1, . . . , en) is in
E, then the function

fe := n− 1
τ

n∑
k=1

ek b̄k (3.16)

is in Kn(α). We can choose (see Lemma 2.2, p. 489, [21]) a subset E0 ⊂ E consisting of
at least (4/3)n vectors in E such that any two elements e, e′ ∈ E0 differ in at least [n/8]
positions and therefore with an absolute constant c1, we have

‖fe − fe′‖Lp ≥ c1n
− 1

τ n
1
p = c1n

−α, (3.17)

where we have used condition (2.4) for the basis B̄. It follows that with any collection of
(4/3)n balls of radius cn−α, with c = c1/2, we cannot cover Kn(α). This gives (3.15) and
proves the lemma. �

Now, let us suppose that there is a greedy basis B ∈ B which satisfies

σm(F0, B)Lp ≤ C0m
−β , m = 1, 2, . . . , (3.18)

for some β > ᾱ and an absolute constant C0. For α := (ᾱ + β)/2, we will draw a
contradiction to (3.15).

We fix any of the special values of n ∈ N and we draw a contradiction to (3.15) as

follows. Each of the functions fk := n− 1
τ b̄k, k = 1, . . . , n, 1/τ = α + 1/p, is in F0 because

fk ∈ Kn(α) ⊂ F0. Hence, from (3.18)

σm(fk, B)Lp ≤ C0m
−β, m = 1, 2, . . . . (3.19)

We fix an integer r > 0 such that rβ > β + 1. We choose the sets Λ(fk), k = 1, . . . , n,
of at most nr indices of the largest coefficients µj,k := µj(fk) in absolute value in the
representation of fk with respect to the basis B. From (3.19) and the fact that B is a
greedy basis, we have

‖fk −
∑

j∈Λ(fk)

µj,kbj‖Lp ≤ Cn−rβ, k = 1, 2, . . . , n. (3.20)

If we reorder the basis elements of B we can assume that Λ(fk) ⊂ {1, . . . , nr+1} =: Λ∗,
k = 1, . . . , n.

Given any f ∈ Kn(α) ⊂ F0 and any integer m, the m-term greedy approximation
Gm(f) to f using the greedy basis B satisfies (see (3.18))

‖f − Gm(f)‖Lp ≤ Cm−β . (3.21)

11



We want next to observe that we can restrict the indices of the basis elements used
in Gm(f) to come from Λ∗. For any f ∈ Kn(α), we have f =

∑n
k=1 γkfk with |γk| ≤ 1.

Hence, from (3.20) and the fact that the basis B is unconditional,

‖f − PΛ∗f‖Lp ≤
n∑

k=1

‖fk − PΛ∗fk‖Lp ≤ Cn−rβ+1 ≤ Cn−β, (3.22)

where PΛ∗f :=
∑

k∈Λ∗
ak(f)bk. This means that

‖f − PΛ∗(Gm(f))‖Lp ≤ ‖f − PΛ∗f‖Lp + ‖PΛ∗(f − Gm(f))‖Lp (3.23)

≤ Cn−β + Cm−β ≤ Cm−β, m = 1, . . . , n,

where the first term was estimated by (3.22) and the second by (3.21), and we have used
the fact that the basis is unconditional.

We will now describe a rather brutal encoding of the elements of Kn(α) which will
violate the lower bound (3.15). Given f ∈ Kn(α), let ck := ck(f), be the coefficients of f
with respect to the basis B. From our assumption (3.18), we know that

A(F , B) ⊂ aUµ, µ = (β + 1/p)−1, (3.24)

for some a > 0. This means that the coefficients ck(f), f ∈ F0, are all uniformly bounded:

|ck(f)| ≤ 2A (3.25)

with A dependent only on F .
Let k ≥ 0 be any integer with 2k ≤ n and n ∈ N . We shall fix the value of k in a

moment. Given f ∈ Kn(α), we let Λk(f) ⊂ Λ∗ be such that Qk(f) :=
∑

j∈Λk(f) cj(f)bj is
the projection of the 2k-term greedy approximation to f onto Λ∗. We know from (3.23)
that

‖f − Qk(f)‖Lp ≤ C2−kβ (3.26)

with C an absolute constant. Let c̄j(f) be the quantization of cj(f) obtained by retaining
the first A + �k(β + 1)� terms of the binary expansion of cj(f) starting with 2A. Then

|cj(f) − c̄j(f)| ≤ 2−k(β+1). (3.27)

We now encode f as follows. For each j ∈ Λk(f), we use �(r + 1) log2 n� bits to give the
value of j. This will use a total of at most 2k�(r + 1) log2 n� bits to specify the indices of
the elements in Λk(f). Next, for each j ∈ Λk(f), we use the A + �k(β + 1)� bits which
determine c̄j(f). This will use a total of at most 2k(A+ �k(β +1)�) bits. Hence the entire
bitstream will consist of at most

N = 2k(A + �k(β + 1)� + �(r + 1) log2 n�) (3.28)

bits in total. We can partially recover f from this bitstream by

Q̄k(f) :=
∑

k∈Λk(f)

c̄k(f)bk. (3.29)
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Because of (2.4) for the basis B, we get

‖f − Q̄k(f)‖Lp ≤ ‖f − Qk(f)‖Lp + ‖Qk(f) − Q̄k(f)‖Lp ≤ C2−kβ + C2−kβ−k2k/p ≤ C2−kβ.
(3.30)

In other words with an investment of N bits with N given in (3.28), we can encode f ∈
Kn(α) with accuracy C2−kβ. We now choose k as large as possible so that N ≤ n log2(4/3)�.
For example, if γ is sufficiently large (independent of n) then 2k ≥ n

(log2 n)γ . We can there-

fore deduce that with an investment of at most n log2(4/3)� bits, we obtain an encoding
error of at most

C(log2 n)γβn−β (3.31)

with C independent of f ∈ Kn(α). Since β > α, this contradicts Lemma 3.2 and completes
the proof of Theorem 3.1.

4 Finer results for best bases

In this section, we shall give refinements of the results of the previous section. The main
new feature will be that we widen the search for best basis from the collection of all greedy
bases to the collection of all unconditional bases. The techniques developed in this section
also allow us to replace the coarse order results with a finer analysis of approximation
orders in best basis selection. We shall also work in slightly more generality than the Lp

spaces.
Let X be a Banach space with norm ‖ · ‖X and let B = (bk) be a Schauder basis

for X normalized so that ‖bk‖X = 1. Each f ∈ X has a representation f =
∑

k ak(f)bk

where the ak are continuous linear functionals on X which are uniformly bounded. The
partial sums of this series converge to f in ‖ · ‖X . In other words, if we denote by
Pn(f) := Pn(f, B) =

∑n
k=1 ak(f)bk, then

‖f − Pn(f, B)‖X → 0, n → ∞. (4.1)

By the uniform boundedness principle, the operators Pn are uniformly bounded:

‖Pn‖X→X ≤ C0, n = 1, 2, . . . , (4.2)

with C0 > 0 an absolute constant.
Let us denote by En(f, B)X the error in approximating f by the elements in the finite

dimensional space Xn spanned by b1, . . . , bn:

En(f, B)X := inf
g∈Xn

‖f − g‖X. (4.3)

For a class K of functions, we define

En(K, B)X := sup
f∈K

En(f, B)X . (4.4)

It follows from (4.2) that

‖f − Pn(f)‖X ≤ (C0 + 1)En(f, B)X . (4.5)
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We begin with the following theorem in which the function Φ is a positive, monotone
decreasing function which satisfies Φ(x) ≤ C1Φ(2x) for an absolute constant C1 > 0 and
also satisfies Φ(x) ≥ c1x

−α, x ≥ 1, for absolute constants c1, α > 0.

Theorem 4.1 Suppose that K is a compact set in X and B is a basis for X such that

σm(K, B)X ≤ Φ(m), m = 1, 2, . . . (4.6)

and
Em(K, B)X ≤ C2m

−β, m = 1, 2, . . . , (4.7)

for some fixed constants C2, β > 0. Then, the entropy numbers of K satisfy

εN log2 N(K) ≤ CΦ(N), N = 1, 2, . . . . (4.8)

Proof: The proof will be similar to the results of the previous section. For each f ∈ X,
let Sm(f) denote a best m-term approximation to f using the basis elements B (when
such best approximations do not exist the following argument is modified trivially). We
shall consider the case N = 2n since the general case follows from this and the properties
of Φ.

Let α > 0 be from the properties of Φ and let a > α/β be an integer. We consider the
set Λ := {1, 2, . . . , M}, where M := Na. For each f ∈ K, we have

‖f −PM(SN(f))‖X ≤ ‖f −PM(f)‖X + ‖PM(f −SN(f))‖X ≤ CM−β + CΦ(N) ≤ CΦ(N)
(4.9)

where we have used (4.5) and (4.7) on the first term, (4.2) and (4.6) on the second term
and the definition of M and the properties of Φ in the last inequality.

The function PM(SN(f)) is a linear combination of at most N terms from B with
indices in Λ. We denote this set of indices by Λ(f) and the coefficients in this linear
combination by cj(f). We have

|cj(f)| ≤ ‖Pj − Pj−1‖‖SN(f)‖X ≤ C‖f‖X ≤ C3, f ∈ K, (4.10)

with C3 an absolute constant (because K is a bounded set in X). We let A be an integer
such that C3 ≤ 2A. We define c̄k(f) to be the approximation to ck(f) given by the first
�(α + 1)n� + A terms of the binary expansion of ck(f). Then

|ck(f) − c̄k(f)| ≤ N−α−1. (4.11)

Thus if S̄(f) :=
∑

k∈Λ(f) c̄k(f)bk, then

‖PM(SN(f)) − S̄(f)‖X ≤ N−α ≤ CΦ(N). (4.12)

It follows that

‖f − S̄(f)‖X ≤ ‖f − PM(SN(f))‖X + ‖PM(SN(f)) − S̄(f)‖X ≤ CΦ(N). (4.13)

We now show we can encode each of the S̄(f), f ∈ K, with at most CN log2 N bits.
We can identify each of the integers k ∈ Λ with its binary expansion which has at most
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�log2 M� bits. We use N�log2 M� ≤ CN log2 N bits to identify the N indices in Λ(f)
and then in natural order we use A + �(α + 1) log2 N� bits to identify each of the c̄k(f).
This latter step uses ≤ CN log2 N bits in all. Hence with at most CN log2 N bits we can
identify S̄(f). In view of (4.13), this shows that εCN log2 N(K) ≤ CΦ(N). �

The next theorem gives a refinement of Theorem 3.1 in that it shows that a greedy
aligned basis B is not only best in the sense of the coarse order α but also up to logarithmic
factors. Also, it allows the larger competition over all unconditional bases. We also
formulate the theorem for more general Banach spaces X than Lp.

Theorem 4.2 Let B be a normalized unconditional basis for X with the property

‖
∑
j∈Λ

bj‖X 
 (#Λ)µ, (4.14)

for some µ > 0. Assume that the function class F is aligned with B and for some α > 0,
γ ∈ IR, we have

lim sup
m→∞

mα(log2 m)γσm(F0, B)X > 0. (4.15)

Then for any unconditional basis B ′ we have

lim sup
m→∞

mα(log2 m)α+γσm(F0, B
′)X > 0. (4.16)

Proof: The proof is quite similar to that of Theorem 3.1. We shall first construct a
compact set K ⊂ F for which

ε2n(K) ≥ c2−nαn−γ (4.17)

holds for infinitely many values of n with an absolute constant c > 0.
For each f ∈ X, we let f =

∑
k ak(f)bk denote its expansion in the basis B. We denote

by λn(f) the 2n-th largest of the |ak(f)|. Given f ∈ X, we have f =
∑∞

k=0[Sk(f) − Sk−1(f)],
S−1(f) := 0, where Sk =

∑
j∈Λk(f) aj(f)bj and Λk(f) is the set of indices of the 2k largest

coefficients of f in absolute value (ties in the size of coefficients can be handled in an
arbitrary way). Since by our assumption the basis B is unconditional, it follows from
(4.14) that

σ2m(f, B)X ≤ C
∑
k>m

‖Sk(f) − Sk−1(f)‖X ≤ C
∑
k≥m

λk(f)2kµ. (4.18)

It follows from (4.18) and our assumption (4.15) that there is a constant c2 > 0 and a set
N of infinitely many values of n such that for each n ∈ N there is a function fn ∈ F0

such that
λn(fn) ≥ c22

−n(α+µ)n−γ. (4.19)

In going further, we shall use the abbreviated notation Λn := Λn(fn) and δn :=
c22

−n(α+µ)n−γ with c2 from (4.19). For each n ∈ N , we define

Kn := {f : f =
∑

j∈Λn

aj(f)bj , |aj(f)| ≤ δn}. (4.20)
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The alignment property of F gives that Kn ⊂ aF0 for an absolute constant a > 0
(independent of n). The same proof as in Lemma 3.2 shows that

εk(Kn) ≥ c2−nαn−γ, k = 2n log2(4/3)�. (4.21)

We define K = ∪n∈NKn, so that K ⊂ aF0. The decay of 2nµδn to zero guarantees that
K is compact. We also have

εk(K) ≥ εk(Kn) ≥ c2−nαn−γ , k = 2n log2(4/3)�, n ∈ N . (4.22)

Now let B′ be any unconditional basis for X and assume that

σm(F0, B
′)X = o(m−α(log2 m)−α−γ), m → ∞. (4.23)

We will find a rearrangement B∗ of B′ which satisfies (4.7) for a value of β > 0 which will
be specified below. From the fact that Kn ⊂ aF0, we have that for each j ∈ Λn, we have
δnbj ∈ aF0, and therefore from (4.23)

σ2m(bj , B
′)X ≤ Cδ−1

n 2−mαm−α−γ , m = 1, 2, . . . . (4.24)

Let us denote by Λ∗
m(bj) any set of 2m indices such that a linear combination of the

basis functions b′k ∈ B′, k ∈ Λ∗
m(bj), yields a 2m-term approximation whose error in

approximating bj is bounded by the right side of (4.24).
We shall define the rearranged basis B∗ inductively as the limit of finite ordered sets

B∗
s , i.e. B∗ = ∪∞

s=1B
∗
s . The set B∗

1 consists of the one element b′1. Assuming that B∗
s−1

has been defined for some s, we construct B∗
s by adjoining the following basis elements

which are to follow in order the elements of B∗
s−1. The first element we add is b′s if it does

not already appear in B∗
s−1. Let n ∈ N with n ≤ s. For all j ∈ Λn, we add all elements

b′k for which k ∈ Λ∗
ms

(bj) with ms := (1 + 1/α)�s. These elements can be added in any
order but they must follow the elements in B∗

s−1 in their order. If one of these elements
already is in B∗

s−1 then of course we do not add it again. Thus, to form B∗
s from B∗

s−1, we
have added at most

1 + s2s2ms (4.25)

new basis elements. This gives the bound

Ns := #B∗
s ≤ Cs2s2ms ≤ 22s+ms (4.26)

for the number of elements in B∗
s .

It is now easy to check (4.7). If f ∈ K, we shall bound EN (f, B∗)X for N = Ns and
s ∈ {1, 2, . . .}. If f ∈ Kn, n ≤ s, then f is a linear combination of 2n basis functions bj

with coefficients ≤ δn. In view of our construction (see (4.24)) of B∗
s , each of these basis

functions satisfy

EN (bj , B
∗)X ≤ σ2ms (bj , B

′)X ≤ Cδ−1
n 2−msαm−α−γ

s . (4.27)

It follows that

EN (f, B∗)X ≤ C2n2−msαm−α−γ
s ≤ C2s2−msαm−α−γ

s ≤ C2−αs/2. (4.28)
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On the other hand, when f ∈ Kn, with n > s, we have from (4.20) and (4.14) that

EN (f, B∗)X ≤ ‖f‖X ≤ Cδn2nµ = C2−nαn−γ ≤ C2−αs/2. (4.29)

In view of (4.26), the right sides of (4.28) and (4.29) can both be bounded by CN−β with
β := α

6+2/α
. This establishes (4.7) for this value of β and for N = Ns, s = 1, 2, . . .. For

other values of N this follows from the monotonicity of EN .
We have shown for the rearranged basis B∗ that condition (4.7) of Theorem 4.1 is

satisfied. We also have from (4.23) that

σm(K, B∗)X = o(m−α(log2 m)−α−γ), (4.30)

because K ⊂ aF0. We can apply Theorem 4.1 with Φ(m) = o(m−α(log2 m)−α−γ) and
obtain

εN(K) = o(N−α(log2 N)−γ), N = 1, 2, . . . . (4.31)

This is a contradiction to (4.22). Thus, we can never have (4.23) and therefore we have
(4.16). �

Let us close this section by making some remarks about the special case when X = H
is a Hilbert space and all bases under consideration are orthonormal bases. In this case,
the above results can be improved by removing the (log2 m)α factor that appeared in
(4.16). This rests on a deeper analysis of m-term approximation given by Kashin [18].

Lemma 4.3 Let Φ := {ϕj}N
j=1 be an orthonormal system in H, and define

KN(Φ) := {f : f =
N∑

j=1

ajϕj , |aj| ≤ 1, j = 1, . . . , N}.

Then, there exists an absolute constant c0 > 0 such that for any orthonormal basis B we
have

σm(KN(Φ), B)H ≥ 3

4
N1/2, for m ≤ c0N. (4.32)

From this result, one can easily derive

Corollary 4.4 Let Φ be an orthonormal basis for H and F be a function class aligned
with Φ such that for some α > 0, γ ∈ IR, we have

lim sup
m→∞

mα(log2 m)γσm(F0, Φ)H > 0. (4.33)

Then, for any orthonormal basis B we have

lim sup
m→∞

mα(log2 m)γσm(F0, B)H > 0. (4.34)

Proof: The proof follows the same lines as the proof of Theorem 4.2 with µ = 1/2.
From the assumption (4.33), one finds for infinitely many n a function fn ∈ F0 with
cn(fn) ≥ cn−α−1/2(log2 n)−γ , for some c > 0, independent on n. From this, one derives
that the cube

Kn := {f : f =
n∑

j=1

ajϕj, |aj| ≤ cn−α−1/2(log2 n)−γ , j = 1, . . . , n}

is contained in aF0. An application of Lemma 4.3 then gives (4.34). �
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5 n-term approximation with varying bases.

In this section, we shall consider variants of the best basis problem considered above. Up
until this point, we have analyzed the problem where the basis B is chosen and then fixed
for approximating the function class F . It is not allowed to vary with m. In this section,
we shall consider the more general problem in which the basis B can be chosen from a
library of bases B and B is allowed to vary for each value of m and each f . For a given
function class F and a given library of bases B, we define

σm(F0,B)X := sup
f∈F0

inf
B∈B

σm(f, B)X . (5.1)

To obtain meaningful results, it is necessary to restrict the size of B since otherwise,
we could have that each f ∈ F0 is in one of the bases B, in which case the right side of
(5.1) is zero. Such restrictions are also necessary for any numerical algorithm. We shall
show that if the library B is not too large and satisfies certain other minimal conditions
then we can bound σm(F0,B)X from below by the entropy numbers of F0.

Let a function class F ⊂ X be given. For constants β > 0, c1, c2 > 0, we denote by
B(F , β, c1, c2) the set of all bases B for X that satisfy the following two conditions

En(F0, B)X ≤ C1n
−β , n = 1, 2, . . . , (5.2)

‖Pn(f, B)‖X ≤ C2‖f‖X , f ∈ X, n = 1, 2, . . . , (5.3)

where as before Pn(·, B) is the projector from X onto the span of the first n elements of
B. Note that condition (5.2) implies that F0 is a compact subset of X.

Theorem 5.1 Let F be a function class in X such that for some α > 0, γ ∈ IR, we have

lim sup
m→∞

mα(log2 m)γεm(F0) > 0. (5.4)

Then for every fixed a > 0 and any subset BMm of B(F , β, c1, c2) of cardinality Mm ≤ mam

we have
lim sup

m→∞
mα(log2 m)α+γσm(F ,BMm)X > 0. (5.5)

Proof: The proof (which we only sketch) is very similar to that of Theorem 4.2. One
assumes that (5.5) does not hold and uses a generalization of Theorem 4.1 in which the
single basis is replaced by the family BMm . In the encoder used to obtain the analogue
of (4.8) it is necessary to encode the basis selection from BMm . However, this will use at
most C log2 Mm = Cm log2 m bits. �

Our next theorem will give a lower bound for the approximation of certain function
classes from a library of bases consisting of orthonormal bases. In the proof of this
theorem, we shall need certain results on finite dimensional geometry which we now
develop.

Let
VN := {z = (z1, . . . , zN) : |zj | = 1, j = 1, . . . , N} (5.6)

be the set of vertices in the boundary of the unit cube [−1, 1]N in IRN . The following
theorem has been proved by Kashin [18].
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Theorem 5.2 There is an absolute constant C0 > 0 such that for every sequence (xi)
∞
i=1 ⊂

IRN satisfying the conditions
∞∑
i=1

‖xi‖2
�2(IR

N ) = 1, (5.7)

max
i

‖xi‖�2(IRN ) ≤ ρ, (5.8)

the following inequality holds for all nρ2 ≤ 1 and y ≥ 0,

#{z ∈ VN : sup
#Ω=n

∑
i∈Ω

|〈z, xi〉|2 ≥ yn1/2ρ} ≤ C02
N(nρ2)−1 exp (−y2/8). (5.9)

Remark: The statement in [18] of the above theorem has the condition maxi ‖xi‖�2(IR
N ) =

ρ in place of (5.8) but the same proof gives the above statement.
We use Theorem 5.2 to prove the following result.

Lemma 5.3 There is an absolute constant C1 > 0 with the following property. For any
M sequences x� := (x�

i)
∞
i=1 ⊂ IRN , � = 1, . . . , M , satisfying the conditions

∞∑
i=1

‖x�
i‖2

�2(IR
N ) = 1, � = 1, . . . , M, (5.10)

max
1≤�≤M

max
i

‖x�
i‖�2(IR

N ) ≤ ρ, (5.11)

and for every m satisfying

mρ2 ≤ C1

1 + log2 M
, (5.12)

we have
min
z∈VN

max
1≤�≤M

sup
#Ω=m

∑
i∈Ω

|〈z, x�
i〉|2 ≤ 1/4. (5.13)

Proof: It is enough to consider the case m =  C1

(1+log2 M)ρ2 �. We apply Theorem 5.2 with

y = 1
4ρ

√
m

and obtain for each 1 ≤ � ≤ M ,

#V �
N := #{z ∈ VN : sup

#Ω=m

∑
i∈Ω

|〈z, x�
i〉|2 > 1/4} ≤ C02

N(mρ2)−1e−(128mρ2)−1

(5.14)

≤ C02
NC2

1 + log2 M

C1

e
− 1+log2 M

128C1 ,

with C2 an absolute constant. Here and later, we use the fact that xe−x is decreasing for
x ≥ 1. The right side of (5.14) is less than 2N−1/M if C1 is sufficiently small. For this
C1, it follows that VN \ ∪M

�=1V
�
N is nonempty and therefore (5.13) holds. �

We shall now use these results to study approximation from a library of bases in a
Hilbert space H. Let ΦN := {φ1, . . . , φN} be an orthonormal system in H and let, as
before,

KN(ΦN ) := {
N∑

j=1

ajφj : |aj | ≤ 1, j = 1, . . . , N} (5.15)

be the N -dimensional cube associated to ΦN . We have the following lemma.
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Lemma 5.4 If B� = (b�
i)

∞
i=1, � = 1, . . . , M , are orthonormal bases for H, and B :=

{B�}M
�=1 then we have

σm(KN(ΦN ),B)H ≥
√

3
√

N

2
, (5.16)

for m ≤ C1N
1+log2 M

with C1 the constant of Lemma 5.3.

Proof: Let ξ�
i = N−1/2PNb�

i , where PN is the orthogonal projector onto span{φ1, . . . , φN},
� = 1, . . . , M , and i = 1, 2, . . .. Then, (5.10) and (5.11) of Lemma 5.3 are satisfied for
x�

i = ξ�
i with ρ = N−1/2. Applying this lemma, we see that there is an f0 =

∑N
j=1 ajφj

with |aj| = 1, j = 1, . . . , N , such that for all 1 ≤ � ≤ M , we have

sup
#Ω=m

∑
i∈Ω

〈f0, ξ
�
i 〉2 ≤ 1/4, m ≤ C1N

1 + log2 M
. (5.17)

Since 〈f0, ξ
�
i 〉 = 〈N−1/2f0, b

�
i〉, for all i, this implies that for each � = 1, . . . , M ,

σm(N−1/2f0, B
�)2

H = ‖N−1/2f0‖2
H − sup

#Ω=m

∑
i∈Ω

〈f0, ξ
�
i 〉2 ≥ 3/4, (5.18)

where the last inequality follows from (5.17). Since f0 ∈ KN (ΦN) we have proved the
lemma. �

We now give an example of how this last lemma can be utilized. For the Hilbert space
H and the orthonormal system Φ, let Hr(Φ) be the class of functions f ∈ H such that

f =
∞∑

j=1

aj(f)φj,
2s−1∑

j=2s−1

aj(f)2 ≤ 2−2rs, s = 1, 2, . . . . (5.19)

Theorem 5.5 Let Φ be an orthonormal basis and let B := {B�}M
�=1 be a collection of any

M orthonormal bases in H. Then

σm(Hr(Φ),B)H ≥ c(r)(m(1 + log2 M))−r. (5.20)

Proof: Given m, let N = 2s with s the smallest integer such that m ≤ C1N
1+log2 M

with

C1 the constant of Lemma 5.3. We apply Lemma 5.4 and obtain coefficients aj , j =

2s, . . . , 2s+1 − 1 with |aj| = 1, for all j, such that the function fs :=
∑2s+1−1

j=2s ajφj satisfies

min
1≤�≤M

σm(fs, B
�)H ≥

√
3
√

N

2
. (5.21)

The function gs := N−r−1/2fs is in Hr(Φ) and satisfies

min
1≤�≤M

σm(gs, B
�)H ≥

√
3

2
N−r (5.22)

and (5.20) follows. �

As an example of this theorem consider the case that H = L2(IT ) where IT is the
unit circle and let Φ be the Fourier basis for H. Then the class Hr(Φ) is identical (after
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renormalization) with the unit ball of the Besov space Br
∞(L2(IT )). It is well known and

easy to see that the basis consisting of the first m terms of the Fourier basis provides
approximation of order m−r for functions in this unit ball. Hence the gain in this order
of approximation by allowing m-term approximation using M bases is at most the factor
(log2 M)−r.

In the case of function spaces one can prove a generalization of Kashin’s result (M = 1)
for Hölder classes Hr

∞:

inf
{B�}

sup
f∈Hr∞

min
1≤�≤M

σm(f, B�)L2 ≥ C(r)(m(1 + log2 M))−r. (5.23)

We note that the log2 M factor in (5.23) can not be replaced by slower growing function
of M . Indeed, for m = 1, M = 2n one has

inf
{B�}

sup
f∈Hr∞

min
1≤�≤M

σ1(f, B�)L2 ≤ εn(Hr
∞, L2) � n−r.

References
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