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Abstract

Overcomplete representations are attracting interest in signal processing theory, particularly due
to their potential to generate sparse representations of signals. However, in general, the problem of
finding sparse representations must be unstable in the presence of noise. We prove the possibility of
stable recovery under a combination of sufficient sparsity and favorable structure of the overcomplete
system.

We consider the situation where an ideal underlying signal indeed has a sparse representation
but we can observe only a noisy version. We assume that the overcomplete system has a property
of mutual incoherence, and that the ideal underlying signal has a sufficiently sparse representation,
according to a sparsity threshold defined using the mutual coherence of the overcomplete system.
Under these conditions, we show that the optimally–sparse approximation to the noisy data, to
within the noise level, differs from the optimally–sparse decomposition of the ideal noiseless signal
by at most a constant multiple of the noise level.

In general, this optimal-sparsity method requires heavy computational effort (e.g. brute-force
combinatorial optimization). However, we show that stable reconstruction is also available by solving
a convex quadratic programming problem. In this approach, the sparsity objective is replaced by the
�1 objective; one finds the approximate representation whose coefficients have the minimal �1 norm
while fitting the data to within the noise level. This explains certain successes of Basis Pursuit in
signal processing and Lasso in statistical modeling. We also consider greedy stepwise least-squares
and show that, when stopped at the point where the size of the residual equals the noise level, this
has at least a local stability property. This explains certain successes of Matching Pursuit in signal
processing and Stepwise Regression in statistical modeling.

These methods can also be applied with an exaggerated noise tolerance. When done properly,
the resulting sparse approximation of the noisy data will actually contain only ’correct’ nonzeros, i.e.
only terms also appearing in the unique sparsest representation of the ideal noiseless sparse signal.
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1 Introduction

1.1 Overcomplete Representation

Researchers spanning a diverse range of viewpoints have recently advocated the use of overcomplete
signal representations [23, 26, 1, 5, 4, 30, 34, 32]. Generally speaking, they suppose we have a signal
vector y ∈ Rn, and a collection of vectors φi ∈ Rn, i = 1, ..., m, with m > n such vectors, so that the
collection forms ‘more than a basis’; since [23] such collections are usually called dictionaries, and their
elements are called atoms. We want a representation for our signal y =

∑
i αiφi as a linear combination

of atoms in this dictionary.
Such representations differ from the more traditional basis representation because they offer a wider

range of generating elements; potentially, this wider range allows more flexibility in signal representation,
and more effectiveness at tasks like signal extraction and data compression. Proposals for overcomplete
representations have included multiscale Gabor functions [23, 26], systems defined by algebraic codes
[30], amalgams of wavelets and sinusoids [3, 4, 14], libraries of windowed cosines with windows of a
range of different widths and locations [5, 40], multiscale windowed ridgelets [29], systems generated at
random [12], and amalgams of wavelets and linelike generating elements [19].

A number of interesting arguments, both heuristic and theoretical, have been advanced to support
the benefits of overcompleteness; in theoretical neuroscience it has been argued that overcomplete rep-
resentations are probably necessary for use in biological settings in the mammalian visual system [24];
in approximation theory, there are persuasive examples where approximation from overcomplete sys-
tems outperforms any known basis [2]; in signal processing, it has been reported that decomposition
into separate transforms gives improved compression [1, 9] and improved equalization [7]; and in im-
age processing, it has been shown that one can separate images into disjoint signal types using such
decompositions [28, 29, 19].

At the same time, there is an apparent obstacle to overcomplete representations, based on elementary
linear algebra. We can think of the atoms in our dictionary as columns in a matrix Φ, so that Φ is n
by m and m > n. A representation of y ∈ Rn can be thought of as a vector α ∈ Rm satisfying y = Φα.
However, linear algebra tells us that because m > n, the problem of representation is underdetermined.
Hence, as is widely taught in elementary courses, there is no unique solution to the representation
problem, and far more disturbingly, if the data are even slightly inaccurate, some familiar algorithms
will be staggeringly unstable. That this can be a real issue was shown by Wohlberg [41] who considered
a dictionary of sinusoids with frequencies spaced finer than the usual discrete Fourier frequencies, and
documented the extreme ill-posedness that can result.

In this article we consider the impact of sparsity constraints on this situation, and study algorithms
which can in certain circumstances generate sparse representations in an overcomplete dictionary. We
derive rigorous bounds showing that, when the dictionary Φ has a property of mutual incoherence
(defined below), and when it offers a sufficiently sparse representation for the ideal noiseless signal, the
algorithms are locally stable, i.e. under addition of small amounts of noise, the algorithms recover the
ideal sparse representation with an error that grows at most proportionally to the noise level. Some
of the algorithms are even globally stable, i.e. they recover the ideal noiseless reconstruction with an
error at worst proportional to noise level even under the addition of arbitrary amounts of noise. Under
sufficient sparsity the constants of proportionality are very reasonable.

In short we show that, although the problem of recovering the underlying overcomplete representation
is admittedly very ill-posed in general, when the underlying representation is sparse, and the dictionary
is incoherent, the ill-posedness can disappear.
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1.2 Sparse Representation

To fix ideas, consider the problem of finding the sparsest representation possible in an overcomplete
dictionary Φ. As a measure of sparsity of a vector α, we take the so-called �0 norm ‖α‖0, which is
simply the number of non-zero elements in α. The sparsest representation is then the solution to the
optimization problem

(P0) : min
α

‖α‖0 subject to y = Φα. (1.1)

As stated, this problem seems to be a general combinatorial optimization problem, requiring that
one enumerate all possible k-element collections of columns of Φ, for k = 1, 2, . . . , m, looking for the
smallest collection permitting representation of the signal. Such an algorithm would cost at least O(2m)
flops to carry out in general, and at least O(mk) even when a sparse k-element representation existed.
We therefore turn to approximations/relaxations of (P0).

Orthogonal Greedy Algorithm. One heuristic approach builds up k-element approximate representa-
tions a step at a time, adding to an existing (k − 1)-element approximation a new term chosen in a
greedy fashion to minimize the �2 error in the resulting augmented approximation among all possible
choices of the single additional term. When stopped after N � m stages, one gets a sparse approximate
representation. In more detail, the procedure starts from an initial residual r(0) = y and a current
decomposition ŷ0 = 0; then for k = 1, . . . , it augments the decomposition ŷ(k−1) → ŷ(k) and updates
the residual r̂(k−1) → r̂(k) stepwise, always maintaining y = ŷ(k) + r̂(k). In more detail, we suppose that
the dictionary has normalized atoms, so that each ‖φi‖2 = 1. At the k-th stage, the algorithm selects
an atom to be added to the decomposition based on correlation with the current residual

ik = argmax1≤i≤m|〈r(k−1), φi〉|;
it builds a decomposition consisting of the atoms selected through that stage

ŷ(k) =
k∑

l=1

ak
il
φil , (1.2)

where the coefficients (ak
il
) are fitted by least squares to minimize ‖y − ŷ(k)‖2; and it subtracts this

model from y, obtaining a new residual
r(k) = y − ŷk,

which can be input to the next stage of the algorithm. At that point, the basic iteration is repeated.
The algorithm stops when the residual norm is below some predetermined threshold, representing a
tolerated numerical inaccuracy.

In the setting of statistical modelling, greedy stepwise least-squares is called forward stepwise re-
gression, and has been widely practiced since the 1960’s [8, 18]. When used in the signal processing
setting this goes by the name of Matching Pursuit (MP) [23]; actually we have described a variant
called Orthonormal Matching Pursuit (OMP) [25]. Following [10], we call this the Orthogonal Greedy
Algorithm (OGA).

�1 Penalization. A more formal approach convexifies (P0) by replacing the �0-norm with an �1-norm:

(P1) : min
α

‖α‖1 subject to y = Φα. (1.3)

This can be cast as a Linear Programming (LP) problem, for which solutions are available even in
large-scale problems, owing to modern interior-point linear programming methods. This approach
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to overcomplete signal representation was called Basis-Pursuit (BP) in [4], which observed that it
sometimes gave highly sparse solutions to problems known to have such sparse solutions, and showed
that it could, in specific cases, outperform the greedy Matching Pursuit approach in generating sparse
solutions.

Formal Justification. The key point about both MP and BP is that they are much more practical than
direct solution of (P0). Perhaps surprisingly, these approaches can, in certain conditions, correctly solve
(P0). Thus, practical methods can solve problems that otherwise on the surface seem computationally
intractable. Previous work [13, 14, 12, 17] established that both the OGA and the BP approaches
can be successful for signals having sparse representations; under appropriate conditions on Φ and y,
these algorithms produce the globally optimal solution of (P0). The concept of mutual coherence of
the dictionary Φ plays a major role in these results. It is defined, assuming that the columns of Φ are
normalized to unit �2-norm, in terms of the Gram matrix G = ΦTΦ. With G(k, j) denoting entries of
this matrix, the mutual coherence is

M = M(Φ) = max
1≤k,j≤m, k �=j

|G(k, j)|. (1.4)

A dictionary is incoherent is M is small. There are overcomplete systems with m ≈ n2 and M ≈ 1/
√

n
[30]. The results in [13, 14, 12, 17] showed that, if there exists a representation y = Φα with sparsity
N = ‖α‖0, and N does not exceed a threshold (1 + M−1)/2 defined by M alone, then (a) this is the
unique sparsest representation, and (b) these algorithms would find it. If, for example, M = 1/

√
n this

result promises, for large n, an ideal form of atomic decomposition even of fairly complex objects. In such
cases, provided the object y is made from <

√
n/2 atoms in the dictionary, this sparse decomposition

can be uniquely recovered.

1.3 Presence of Noise

In most practical situations it is not sensible to assume that the available data y obey precise equality
y = Φα with a sparse representation α. A more plausible scenario assumes sparse approximate repre-
sentation: that there is an ideal noiseless signal x0 with a sparse representation, x0 = Φα0 with ‖α0‖0

small, but that we can observe only a noisy version y = x0 + z, where ‖z‖2 < ε.
Noise-Aware Variant of (P0). We can adapt to this noisy setting by modifying (P0) to include a noise

allowance:

(P0,δ) : min
α

‖α‖0 subject to ‖y − Φα‖2 ≤ δ. (1.5)

Note that (P0,0) ≡ (P0). Also, if we apply this with δ > ε = ‖y−x‖2, the problem has a sparse solution;
in fact the solution α̂ obeys ‖α̂‖0 ≤ ‖α0‖0, or more formally

val(P0,δ) ≤ val(P0), δ > ε. (1.6)

Noise-Aware Variant of OGA. Just as with (P0), (P0,δ) demands exorbitant computational efforts
in general, and so again we may resort to heuristics and relaxations. On the one hand, OGA can be
employed for approximating the solution of (1.5); the stepwise procedure can simply be stopped when
the representation error gets below δ.

Noise-Aware Variant of (P1). On the other hand, we can pursue a strategy of convexification,
replacing the �0-norm in (1.5) by an �1-norm,

(P1,δ) : min
α

‖α‖1 subject to ‖y − Φα‖2 ≤ δ. (1.7)
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This can be cast as a convex quadratic program which can be solved by many standard approaches,
including Iteratively-Reweighted Least Squares (IRLS) (Appendix B, [20]), interior-point algorithms
[4], and active-set methods. It is also closely related to Basis Pursuit Denoising (BPDN) [4] and to the
LASSO technique employed in machine learning to avoid over-fitting [31] when combining predictors;
both of those proposals amount to solving a corresponding convex optimization in Lagrangian form

(P1′,λ) : min
α

‖α‖1 + ‖y − Φα‖2
2/λ; (1.8)

for appropriate λ = λ(y, δ) the solutions of (P1,δ) and (P1′,λ(y,δ)) are the same.

1.4 Stability Properties

In this paper we develop several results exhibiting stable recovery of sparse representations in the
presence of noise. We now briefly sketch their statements.

First, we show that when sufficient sparsity is present, where ‘sufficient’ is defined relative to the
degree of mutual coherence, solving (P0,ε) enables stable recovery. We suppose that we have a possibly
overcomplete system Φ with mutual coherence M = M(Φ). Suppose that we have a noisy signal y
and that the ideal noiseless signal x0 has a sparse representation α0 with at most N nonzeros. Then if
N < (M−1 + 1)/2, it follows both that (a) α0 is the unique sparsest representation of x0, and (b) the
solution α̂0,ε of (P0,ε) obeys

‖α̂0,ε − α0‖2 ≤ Λ0(M, N) · ε; ∀ε > 0 (1.9)

here the stability coefficient Λ0(M, N)2 ≤ 4/(1−M(2N − 1)). The proportionality constant Λ0 (which
we also call the stability coefficient) can be quite moderate given sufficient sparsity. For example, if the
sparsity measure N ≤ 1/(4M), we get a stability coefficient ≤ 3. In words, provided the underlying
object is sparsely represented and the noise level is known, recovery by explicitly imposing sparsity
yields an approximation to the ideal sparse decomposition of the noiseless signal in which the error is
at worst proportional to the input noise level.

Next, we develop a parallel result for �1 minimization. Making parallel assumptions, tightened so
that the ideal noiseless signal x0 has a sparse representation α0 with N ≤ (M−1 + 1)/4, we show both
that (a) α0 is the unique sparsest representation of x0, and (b) the solution α̂1,ε of (P1,ε) obeys

‖α̂1,ε − α0‖2 ≤ Λ1(M, N) · ε, ∀ε > 0, (1.10)

where the stability coefficient Λ1(M, N)2 ≤ 4/(1 − M(4N − 1)). In words, �1-based reconstruction in
incoherent overcomplete systems has an error which is at worst proportional to the input noise level.
The sparsity requirement is twice as stringent for the �1-based result as for the �0-based result.

By comparison, OGA obeys a local stability result. Again suppose a possibly overcomplete system
with M = M(Φ), and an ideal noiseless signal x0 having a representation with at most N atoms.
Suppose that the smallest among the N nonzeros in the representation of x0 has amplitude A. Assume
that we know the noise level ε = ‖y − x0‖2 and run the OGA just until the representation error ≤ ε.
Call the result of this greedy algorithm α̂OGA,ε. Set ΛOGA(M, N) = (1 − M(N − 1))−1/2. Then if

ε ≤ ε0 = ε0(M, N, A) ≡ A/2(1 − M(2N − 1))1/2 (1.11)

the recovered representation α̂OGA,ε obeys

‖α̂OGA,ε − α0‖2 ≤ ΛOGA(M, N) · ε. (1.12)
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This is a local stability result because for large values of ε = ‖y−x0‖2 the condition (1.11) will necessarily
fail.

Note the parallel nature of the bounds and the conclusions. Three quite different algorithms all obey
stability results in which having N a fraction of M−1 is the key assumption.

1.5 Support Properties

A fundamental question about efforts to obtain sparse representation: do we actually recover the correct
sparsity pattern? (Our stability results do not address this question, since it is possible for a nonsparse
representation to be close to a sparse representation in an �2 sense.)

The question is fundamental and broadly significant. Throughout science and technology, it is ha-
bitual to fit sparse models to noisy data, and then simply assume that terms appearing in such fitted
models are dependable features.

In this paper, we are able to shed some light on this situation. Our results show that, under ap-
propriate conditions, the empirical representation α̂ is not only at least as sparse as the ideal sparse
representation but it only contains atoms also appearing in the ideal sparse representation. Since that
ideal sparse representation is, by our other results, unique and well-defined, these insights endow the
empirical support of α̂ with a, perhaps surprising, significance.

Our first result is obtained in the course of analyzing OGA; it shows that, under condition (1.11) and
N < M−1/2, the ideal noiseless representation is unique, and the support of α̂OGA is contained in the
support of α0.

Our second result concerns solution of (P1,δ) with δ = C · ε. Here C = C(M, N) > 1, and so we are
solving the �1 minimization problem using an exaggeration of the noise level. It shows, with M = M(Φ)
and ‖α0‖0 ≤ N , that the solution α̂1,δ has its support contained in the support of α0. Here C ≈ 3

√
N

if MN ≤ 1/2, so ordinarily it requires considerable overstatement of the noise level to achieve this level
of conservatism. However, it does provide the very interesting epistemological benefit that the atoms
appearing in the representation have more than incidental meaning.

1.6 Contents

The next three sections supply the analysis behind the stability bounds just quoted. Then comes a
discussion of support properties. Later sections extend our work in several ways:

• Variants of the Greedy Algorithm. We give local stability results for the non-orthogonal Pure
Greedy algorithm, and the Weak Orthogonal Greedy Algorithm.

• Numerical Results. We study the actual stability behavior of the �1 and OGA on synthetic
examples, finding typical behavior far more favorable than our theoretical bounds.

• Approximation Bounds. We also study the behavior of the Greedy algorithm and its variants in an
approximation setting, where we are trying to approximate y rather than represent x0, sharpening
and extending previously known results of Temlyakov [32, 33], Gilbert at al. [15] and Tropp [36].

• Superresolution. We situate our work with respect to the problem of superresolution, in which
astronomers, seismologists, spectroscopists and others attempt to ‘deblur’ sparse spike trains.

• Geometry. We develop a geometric viewpoint explaining why stability can sometimes be expected
for the �1 penalization scheme, under conditions of sufficient sparsity.

6



An Appendix develops ties with the literature on Greedy Approximation, gives alternate proofs of
results in Section 2, and proofs of several results stated in the body of the paper.

We have recently learned that in parallel to our efforts, J.A. Tropp has been working independently
on some of the same problems [38]. After some recent discussions and a careful study we find that his
methods and results have a rather different flavor, ensuring that both works are of interest in studying
sparse approximation under noise

2 Stability Using (P0,ε)

Suppose again the existence of an ideal noiseless signal x0 = Φα0 and noisy observations y = x0 + z
with ‖y − x0‖2 ≤ ε. Consider applying (P0,δ) with δ = ε to obtain a sparse approximation to y. The
following establishes the stability estimate mentioned in the introduction.

Theorem 2.1 Let the dictionary Φ have mutual coherence M = M(Φ). Suppose the noiseless signal
x0 = Φα0, where α0 satisfies

‖α0‖0 = N < (1/M + 1)/2. (2.1)

Then:

(a) α0 is the unique sparsest such representation of x0; and

(b) the reconstruction α̂0,ε from applying (P0,ε) to the noisy data y approximates α0:

‖α̂0,ε − α0‖2
2 ≤ 4ε2

1 − M(2N − 1)
, ∀ε > 0. (2.2)

2.1 Uniqueness of the Target

Our proof of Theorem 2.1 goes in two stages. The first stage considers Claim (a), that α0 is the
unique sparsest representation of x. This claim confers special status on α0 as a distinguished target for
reconstruction. This claim actually follows from known results in [13, 14, 12, 17], which we now sketch
because they provide a foundation for the second stage of the proof. (An alternate proof for Claim (a)
is provided in the Appendix, using a greedy algorithms approach).

Definition 2.2 [12] Given an n × m matrix A, let σ = Spark(A) be the largest σ ≤ n + 1 such that
every σ − 1 columns from A are linearly independent.

After [12] appeared, we learned that Kruskal [21] worked with a related notion in the context of
fitting trilinear arrays by simple models; this notion has later been called the Kruskal rank [42, 22]. We
stick with the new terminology in this paper, because we will extend it to a broader setting in Section
2.2.

Several properties of Spark were given in [12]. First, the mutual coherence M can control Spark:

Lemma 2.3 If the columns of A have unit �2 norm, then Spark(A) ≥ 1/M + 1, where M = M(A) is
the mutual coherence (1.4).

Second, Spark in turn controls the sparsity of solutions of linear equations:

7



Lemma 2.4 If u = Av1 and u = Av2, then ‖v1‖0 + ‖v2‖0 ≥ Spark(A).

Third, Spark gives a criterion for uniqueness of sparse solutions to linear equations:

Lemma 2.5 If u = Av0 and ‖v0‖0 < Spark(A)/2, then v0 is the unique sparsest possible solution to
the equation u = Av.

Combining these facts, the sparsity assumption (2.1) made in the statement of Theorem 2.1 implies
that ‖α0‖0 < Spark(Φ)/2, and hence α0 is the unique sparsest solution of the equations x = Φα. Hence
Claim (a) of Theorem 2.1 is proven.

2.2 Stability of the Reconstruction

We now turn to Claim (b) of Theorem 2.1. We know two proofs. One is given in Lemma A.2 of the
Appendix. The other, developed here, extends the notion of Spark.

Definition 2.6 Given a matrix A, let σ = Sparkη(A) be the largest σ ≤ n + 1 such that every σ − 1
columns from A form a matrix with smallest singular value > η.

For η = 0 we have Spark0 = Spark since having all singular values > 0 is equivalent to linear
independence of the columns. To our knowledge formalization of this concept may be new, however,
we are aware that there are other signal processing problems where related notions are useful, compare
[39].

We begin our discussion of Sparkη by recording the obvious:

Lemma 2.7 Sparkη(A) is monotone decreasing in η, and ∀ η ≥ 0, n+1 ≥ Spark(A) ≥ Sparkη(A) ≥ 1.

We now turn to a more fundamental observation:

Lemma 2.8 If A has normalized columns and Mutual Coherence M = M(A), Sparkη(A) ≥ (1 −
η2)/M + 1.

Proof. We need a simple observation about eigenvalues of diagonally-dominant matrices.

Lemma 2.9 Given an s-by-s symmetric matrix H with diagonal entries equal to one and off-diagonal
entries ≤ M in amplitude, the smallest eigenvalue of H is at least 1 − M(s − 1).

Indeed, if v is an eigenvector, suppose the largest absolute value in v is v∗, occurring at index i. Then
from (H − λI)v = 0 we get (1 − λ)vi = −∑

i�=j Hijvj ; using |Hij | ≤ M for i = j and |vj | ≤ v∗ we have

(1 − λ)v∗ ≤ M(s − 1)v∗.

It follows that λ ≥ 1 − M(s − 1). �

With A obeying the stated assumptions, every leading minor H in the Gram matrix G = AHA
has ones on the diagonal because the columns of A are normalized. Also, its off-diagonal entries are
bounded by M in absolute value, by definition of M = M(A). Lemma 2.9 gives a bound on the
minimum eigenvalue of every such H of size s by s, which implies that for s ≤ (1 − η2)/M + 1, the
minimum eigenvalue exceeds η2. �
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Lemma 2.10 If ‖Av‖2 ≤ η with ‖v‖2 = 1, then ‖v‖0 ≥ Sparkη(A).

Proof. Suppose σ = Sparkη(A) and assume that ‖v‖0 = σ − 1. The non-zero entries in v, pick out a
subset J of σ−1 columns in A. Let HJ denote the corresponding leading minor of the Gram matrix and
let vJ denote the corresponding vector just containing the nonzero entries in v. Then ‖Av‖2

2 = vH
J HJvJ .

As η2 ≥ ‖Av‖2
2 we conclude that HJ has an eigenvalue smaller than η2. This contradicts the assumption

that σ = Sparkη(A). �

We have the following η-analog of Lemma 2.4.

Lemma 2.11 If α1 and α2 satisfy ‖y − Φαi‖2 ≤ ε, i = 1, 2, then

‖α1‖0 + ‖α2‖0 ≥ Sparkη(Φ), η = (2ε)/‖α1 − α2‖2. (2.3)

Proof. The triangle inequality yields ‖Φ (α1 − α2) ‖2 ≤ 2ε. Put differently, we have ‖Φv‖2 ≤ η, where
v = (α1 − α2)/‖α1 − α2‖2. ¿From Lemma 2.10, we get ‖v‖0 ≥ Sparkη(Φ). But

‖α1‖0 + ‖α2‖0 ≥ ‖α1 − α2‖0 = ‖v‖0, (2.4)

which establishes (2.3). �

For an η-analog of Lemma 2.5, we obtain, not uniqueness, but localization to a single Euclidean ball.

Theorem 2.12 Given D and ε, set η = 2ε/D. Suppose there are two approximate representations αi,
i = 1, 2 both obeying

‖y − Φαi‖2 ≤ ε and ‖αi‖0 <
1
2
Sparkη(Φ). (2.5)

Then ‖α1 − α2‖2 ≤ D.

Proof. Suppose that α1 satisfies (2.5). Consider any α2 at least D-separated from α1. Set ν =
2ε/‖α1 − α2‖ and η = 2ε/D, so η ≥ ν. Due to Lemmas 2.10 and 2.11 we know that

‖α1‖0 + ‖α2‖0 ≥ Sparkν(Φ) ≥ Sparkη(Φ). (2.6)

Thus, if ‖α1‖0 < 1
2Sparkη(Φ), then ‖α2‖0 > 1

2Sparkη(Φ). Hence α2 cannot satisfy (2.5), and thus it
must necessarily be in the ball of radius D around α1. �

We are now in position to prove assertion (b) of Theorem 2.1. The solution to (P0,ε) is at least as
sparse as the ideal sparse representation α0, since by (1.6),

‖α̂0,ε‖0 = val(P0,ε) ≤ val(P0) = ‖α0‖0.

For fixed N = ‖α0‖0, and arbitrarily small δ > 0, let η = η(M, N, δ) satisfy

2N =
1 − η2

M
+ 1 + δ.

By Lemma 2.8, Sparkη(Φ) > 2N . We conclude that

‖α̂0,ε‖0 ≤ ‖α0‖0 <
1
2
Sparkη(Φ).
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At the same time, by definition of the noise level ε and the optimization problem (P0,ε),

‖y − Φα̂0,ε‖0 ≤ ε, ‖y − Φα0‖0 ≤ ε.

Adapt the argument behind Theorem 2.12 to conclude that ‖α̂0,ε − α0‖ ≤ D = D(η, ε) = 2ε/η.
Setting η = η(M, N, δ), and substituting Dη = 2ε, we get an inequality like (2.2), only with right-hand
side Λ(M, N, δ)2ε2 with coefficient

Λ(M, N, δ)2 = 4/(1 − M(2N − 1 − δ)).

Letting δ → 0, we get inequality (2.2), and Theorem 2.1 follows. �

3 Stability Using (P1,ε)

As in the introduction, we are given a signal y = Φα0 +z, where z is an additive noise, known to satisfy
‖z‖2 ≤ ε. We apply (P1,δ) to this signal (not necessarily with δ = ε); i.e. we solve (1.7) and obtain a
solution α̂1,δ,ε. We study its deviation from the ideal representation α0.

3.1 Stability Result

Theorem 3.1 Let the overcomplete system Φ have mutual coherence M(Φ). If some representation of
the noiseless signal x0 = Φα0 satisfies

N = ‖α0‖0 ≤ (1/M + 1)/4, (3.1)

then this is the unique sparsest representation of x0; moreover, the deviation of the (P1,δ) representation
from α0 can be bounded by

‖α̂1,δ,ε − α0‖2
2 ≤ (ε + δ)2

1 − M(4N − 1)
. (3.2)

Proof. First, the assertion that α0 is the unique sparsest representation follows from Theorem 2.1 and
the fact that 1+M

4M < 1+M
2M .

Second, the stability bound can be posed as the solution to an optimization problem of the form:

max
α0, z

‖α̂ − α0‖2
2 subject to

{
α̂ = arg minα ‖α‖1 subject to ‖Φα − y‖2 ≤ δ

y = Φα0 + z, ‖z‖2 < ε, ‖α0‖0 ≤ N.

}
. (3.3)

Put in words, we consider all representation vectors α0 of bounded support, and all possible realizations
of bounded noise, and we ask for the largest error between the ideal sparse decomposition and its
reconstruction from noisy data. Defining v = α − α0, and similarly w = α̂ − α0, we can rewrite the
above problem as

max
α0, z

‖w‖2
2 subject to

{
w = argminv ‖α0 + v‖1 subject to ‖Φv − z‖2 ≤ δ

‖z‖2 ≤ ε, ‖α0‖0 ≤ N.

}
. (3.4)

We develop an upper bound on val(3.4) in a sequence of relaxations, each one expanding the feasible
set and increasing the maximal value. To begin, note that if w is the minimizer of ‖α0 +v‖1 under these
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constraints, then relaxing the constraints to all w satisfying ‖α0 + w‖1 ≤ ‖α0‖ expands the feasible set.
Thus, we consider

{
w

∣∣∣∣ ‖α0 + w‖1 ≤ ‖α0‖1 & ‖Φw − z‖2 ≤ δ
‖z‖2 ≤ ε, ‖α0‖0 ≤ N

}
. (3.5)

We now expand this set by exploiting the relation

‖α0 + w‖1 − ‖α0‖ ≥ ‖w‖1 − 2
∑
k∈S

|w(k)|,

where S is the support of the nonzeros in α0 with complement Sc, and we used |a+b|−|a| ≥ |a|−|b|−|a| =
−|b|. Therefore, we get a further increase in value by replacing the feasible set in (3.5) with

{
w

∣∣∣∣ ‖w‖1 ≤ 2
∑

k∈S |w(k)| , ‖Φw − z‖2 ≤ δ
‖z‖2 ≤ ε, #S ≤ N

}
. (3.6)

Writing this out yields a new optimization problem with still larger value:

max
w, S, z

‖w‖2
2 subject to

{ ‖w‖1 ≤ 2
∑

k∈S |w(k)| , ‖Φw − z‖2 ≤ δ
‖z‖2 ≤ ε, #S ≤ N

}
. (3.7)

We next simplify our analysis by eliminating the noise vector z, using

{w | ‖Φw − z‖2 ≤ δ & ‖z‖2 < ε} ⊆ {w | ‖Φw‖2 ≤ ε + δ} . (3.8)

Expanding the feasible set of (3.7) using this observation gives

max
S, w

‖w‖2
2 subject to

{ ‖w‖1 < 2
∑

k∈S |w(k)| , ‖Φw‖2 ≤ ∆
#S ≤ N

}
. (3.9)

where we introduced ∆ = ε + δ.
The constraint ‖Φw‖2 ≤ ∆ is not posed in terms of the absolute values in the vector w, complicating

the analysis; we now relax this constraint using incoherence of Φ. Again the Gram matrix is G = ΦTΦ,
and the mutual coherence is the maximal off-diagonal amplitude: M = maxk �=j |G(k, j)|. For a vector
w, let |w| be vector containing absolute values from w; similarly for matrices. Also, let 1 be the the
m-by-m matrix of all ones, The constraint

‖Φw‖2 = wTGw ≤ ∆2

can be relaxed:

∆2 ≥ wTGw = ‖w‖2
2 + wT (G − I)w (3.10)

≥ ‖w‖2
2 − |w|T |G − I| |w|

≥ ‖w‖2
2 − M |w|T |1 − I| |w| = (1 + M)‖w‖2

2 − M‖w‖2
1.

Using this, val(3.9) is upper-bounded by the value

max
S, w

‖w‖2
2 subject to

⎧⎨
⎩

‖w‖1 < 2
∑

k∈S |w(k)|
(1 + M)‖w‖2

2 − M‖w‖2
1 ≤ ∆2

#S ≤ N

⎫⎬
⎭ . (3.11)
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This problem is invariant under permutations of the entries in w which preserve membership in S
and Sc. It is also invariant under relabelling of coordinates. So assume that all non-zeros in α0 are
concentrated in the initial slots of the vector, i.e. that S = {1, . . . , N}.

Putting w = (w0, w1) where w0 gives the first N entries in w, and w1 the remaining m − N entries
of w, we obviously have

‖w‖2
2 = ‖w0‖2

2 + ‖w1‖2
2 , ‖w‖1 = ‖w0‖1 + ‖w1‖1. (3.12)

The �1 norm on Rk dominates the �2 norm and is dominated by
√

k times the �2 norm. Thus

‖w0‖1 ≥ ‖w0‖2 ≥ ‖w0‖1√
N

, ‖w1‖1 ≥ ‖w1‖2 ≥ ‖w1‖1√
m − N

. (3.13)

We define

A = ‖w0‖1 B = ‖w1‖1 c0 =
(‖w0‖2

‖w0‖1

)2

c1 =
(‖w1‖2

‖w1‖1

)2

. (3.14)

Returning to the problem given in (3.11), and using our notations, we obtain a further reduction, from
an optimization problem on Rm to an optimization problem on (A, B, c0, c1) ∈ R4:

max c0A
2 + c1B

2 (3.15)

subject to

⎧⎨
⎩

A > B
(1 + M)(c0A

2 + c1B
2) − M(A + B)2 ≤ ∆2

A, B ≥ 0 , 1
N ≤ c0 ≤ 1 , 0 < c1 ≤ 1

⎫⎬
⎭ .

We further define B = ρA, where 0 ≤ ρ < 1 and rewrite (3.15) as

max (c0 + ρ2c1)A2 (3.16)

subject to
{

(1 + M)(c0 + ρ2c1)A2 − M(1 + ρ)2A2 ≤ ∆2

A ≥ 0 , 1
N ≤ c0 ≤ 1 , 0 < c1 ≤ 1 , 0 ≤ ρ < 1

}
.

Define µ = (1+ ρ)2/(c0 + ρ2c1). Then 1 ≤ µ ≤ 4N over the region (3.16). Setting V = A2(c0 + ρ2c1),
the first constraint defining that region takes the form

(1 + M)V − MµV ≤ ∆2. (3.17)

We now focus attention on the subset of the feasible region for (3.16) where

(1 + M) − Mµ > 0. (3.18)

Hence,

V ≤ ∆2

1 − M(µ − 1)
≤ ∆2

1 − M(4N − 1)
, (3.19)

as stated by (3.2) with the choice µ = 4N .
The requirement (3.18) puts a restriction on N and M , being free parameters of the problem. Using

µ = 4N leads to the sparsity requirement in (3.1), since (1 + M) − 4NM > 0. �
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3.2 Interpretation of the Stability Result

Theorem 3.1 prompts several remarks.

• Setting ε = δ = 0 puts us in the noiseless case (P1,0). In that setting, Theorem 3.1 tells us
that if N < (1 + M−1)/4, there will be zero error in finding the unique sparsest representation
– i.e. solving the l1 optimization problem (P1,0) solves the l0 problem (P0,0). As the l1 problem
is convex and the l0 problem combinatorial in general, this is by itself significant. The same
general phenomenon described has been observed before in [13, 14, 12, 17]. The sharpest results,
in [12, 17], established that this phenomenon occurs for any sparsity N smaller than (1+M−1)/2,
which means that the new result is slack by a factor of 2 in the ε = 0 case. Perhaps a tighter
inequality could be achieved with more care.

• If the signal is not noisy (i.e. ε = 0) but nevertheless (P1,δ) is employed with δ > 0, an approximate
solution is assured, with a bound on the deviation of the approximate representation from the
ideal noiseless representation. So in ‘needlessly’ going from (P1,0) to (P1,δ) we tolerate errors in
the decomposition, but the errors are controlled.

• Perhaps more surprisingly, if the signal is noisy – ε > 0 – and we set δ = 0 as if there were no
noise, a stability result is still obtained! This is initially confusing as it questions the need for
adapting to noise by introducing the whole concept of (P1,δ) in the first place. However, note that
our bound on the representation error is based on worst-case analysis, and will typically provide
a generous overestimate on the actual error, as we will see in Section 5 below.

4 Local Stability of the Greedy Algorithm

Observe that both (P0,ε) and (P1,ε) refer to global optimization problems, while the orthogonal greedy
algorithm (OGA) described in the introduction is based on greedy stagewise approximation. Paralleling
this distinction, the stability result we now develop for OGA is a local one, valid only for sufficiently
small ε < ε∗(α0).

For ease of exposition we shall hereafter assume that the order of the columns φ1, φ2, . . . in the
overcomplete system matrix Φ has been chosen so that in the ideal noiseless signal y = x0+z = Φα0+z,
the first N entries in α0 are the non-zero entries, and that these are ordered:

|α0(1)| ≥ |α0(2)| ≥ · · · ≥ |α0(N)|. (4.1)

Theorem 4.1 Suppose the ideal noiseless signal x0 has a representation x0 = Φα0 satisfying

N = ‖α0‖0 ≤ 1 + M

2M
− 1

M
· ε

|α0(N)| . (4.2)

Then α0 is the unique sparsest representation of x0. Denote by α̂OGA,ε the result of greedy stepwise
least-squares fitting which stops as soon as the representation error ≤ ε. Then

(a) α̂OGA,ε has the correct sparsity pattern:

supp(α̂OGA,ε) = supp(α0); (4.3)
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(b) α̂OGA,ε approximates the ideal noiseless representation:

‖α̂g,ε − α0‖2
2 ≤ ε2

1 − M(N − 1)
. (4.4)

We break the analysis in two stages, considering claims (4.3) and (4.4) in turn.

4.1 Getting The ‘Correct’ Sparsity Pattern

Lemma 4.2 Suppose that we have a signal y satisfying y = x0 + z where x0 admits sparse synthesis
x0 = Φα0 using at most N atoms, where

N <
1 + M

2M
− 1

M
· ε

‖α‖∞ , (4.5)

and where ‖z‖ < ε. Then the first step of the greedy algorithm selects an atom from among the ≤ N
nonzeros in α0.

Proof. The greedy algorithm operates by projecting y onto each atom φk in turn, selecting an atom
where the projection magnitude is largest. The Lemma will follow from

max
1≤k≤N

|〈y, φk〉| > max
k>N

|〈y, φk〉|. (4.6)

We now develop a lower bound on the left side and an upper bound on the right side which guarantees
this. Assuming that the largest amplitude entry in α0 occurs in slot 1, the left-hand side of (4.6) is
lower-bounded by

|〈y, φ1〉| = |〈x + z, φ1〉|

≥ |〈
N∑
1

α(j)φj , φ1〉| − |〈z, φ1〉|

≥ |α0(1)| −
N∑

j=2

|α0(j)| · |〈φj , φ1〉| − ε

≥ |α0(1)| − |α0(1)| · (N − 1)M − ε. (4.7)

We used: ‖φj‖2
2 = 1 for all j; |〈φj , φ1〉| ≤ M for j = 1; ‖z‖2 ≤ ε; and the ordering of the |α(k)|. The

right-hand side of (4.6) can be upper-bounded by the same approach, leading to, for k > N

|〈y, φk〉| = |〈x + z, φk〉|

≤
N∑

j=1

|α0(j)| · |〈φj , φk〉| + |〈z, φk〉|

≤ |α0(1)| · NM + ε. (4.8)

Imposing (4.5) and using the two bounds (4.7)-(4.8), we see that

|α0(1)| − |α0(1)| · (N − 1)M − ε > |α0(1)| · NM + ε. (4.9)

Relation (4.6) follows; the greedy algorithm therefore chooses at Stage 1 one of the nonzeros in the ideal
representation of the noiseless signal. �

To continue to later stages, we need
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Lemma 4.3 Let x0 =
∑N

i=1 α0(i)φi, and y = x0 + z with ‖z‖ ≤ ε. Let Sk be a set of k indices in
{1, . . . , m}. Let ak be a vector of m coefficients with k nonzeros located at the indices in Sk. Define a
new signal yk by subtracting k atoms with nonzero coefficients in ak:

yk = y −
∑
i∈Sk

ak(i)φi.

Similarly, define
xk = x0 −

∑
i∈Sk

ak(i)φi.

Then

• If Sk ⊂ {1, . . . , N} where N < (1 + M−1)/2, xk has a unique sparsest representation xk = Φαk

made of at most N atoms; these are all atoms originally appearing in the representation of x0.

• The new signal yk can be viewed as a superposition of xk and noise zk, with noise level εk =
‖zk‖ ≤ ε.

Proof. Define the vector

αk(i) =
{

α0(i) − ak(i) i ∈ Sk

α0(i) i ∈ Sk

Then clearly xk = Φαk. Also, supp(αk) ⊆ supp(α). Since then

‖αk‖0 ≤ ‖α0‖0 ≤ N < (1 + M−1)/2,

we conclude that αk is the unique sparsest representation of xk. Moreover,

εk = ‖yk − xk‖
= ‖

(
y −

∑
ak(i)φi

)
−

(
x0 −

∑
ak(i)φi

)
‖2

= ‖y − x0‖2 = ‖z‖2 ≤ ε.

Hence we have established the two claims. �

The impact of the preceding two Lemmas is that selection of a term, followed by the formation of the
residual signal, leads us to a situation like before, where the ideal noiseless signal has no more atoms
than before, and the noise level is the same.

We wish to repeatedly apply these Lemmas. Starting with α = α0, we will get an α1 and an i1; we
then hope to apply the observations again, getting α2 and i2, etc. If we are allowed to continue invoking
these Lemmas for N steps, we produce in this way series α0, . . . , αN , and i1,...,iN . Naturally, the sets
Sk = {i1, ..., ik} are nested.

Note, however, that a series of conditions must be satisfied for the repeated use of the first Lemma.
At the k-th iteration we need the following analog of (4.5):

N ≤ 1 + M

2M
− 1

M
· ε

‖αk−1‖∞ . (4.10)

This will follow from our original assumption (4.2) and
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Lemma 4.4 Let αk differ from α0 in at most k places, and let α0 be ordered as in (4.1). Then

‖αk‖∞ ≥ |α0(k + 1)|.

Proof. Indeed, the largest element in αk is at least as big as the largest untouched element in α0, which
is at least as big as the k-th from largest element in α0. �

Lemma 4.4 and the ordering assumption on the coefficients in α0 show that ‖αk‖∞ ≥ |α0(N)| for
1 ≤ k ≤ N , and so the sequence of conditions (4.10) is implied by the final one at i = N , which is
equivalent to (4.2). Hence, assumption (4.2) allows us to repeatedly apply Lemmas 4.2-4.3, and conclude
that atoms selected at stages 1 ≤ k ≤ N obey 1 ≤ ik ≤ N : only correct atoms are selected.

In fact we can say much more. The coefficient sequence ak generated at stage k solves the least-squares
problem

min
a

‖y −
∑
i∈Sk

a(i)φi‖2. (4.11)

This ensures that the signal yk is actually orthogonal to each atom selected at stages 1,...k. Hence,
OGA is forced to select from among the atoms in {1, ..., N} always one of the previously unselected
ones. It therefore by stage N selects all N atoms in {1, ..., N}. Now by assumption, the residual at that
stage has �2 norm ≤ ε. Hence the stopping criterion must be reached by stage N . At the same time,
by inspecting (4.9) we see that at stages k < N , each selected term |α0(ik)| > ε. This implies that the
stopping criterion cannot be met before stage N , as ‖yk‖2

2 −‖yk−1‖2
2 ≥ |α0(ik)|2. Thus we have proved:

Lemma 4.5 OGA stops after precisely N steps.

This, in turn, proves Claim (a) of the Theorem, (4.3) �

Note that the argument assumes the noise level ε is known, to enable the stopping rule in the
algorithm. This parallels the assumption δ = ε we made in Theorems 2.1 and 3.1.

The general idea – that the support properties of α0 and α̂OGA,ε are the same, seems worthy of its
own study. In the appendix below, we call this the Trapping property, and develop it further.

4.2 Stability Result

Now we turn to claim (b) of Theorem 4.1. We may partition Φ = [ΨΩ], where Ψ denotes the first N
columns in Φ and Ω the remainder. The OGA solves (4.11) with SN = {1, . . . , N}, or

α̂OGA,ε = arg min
α

‖Ψα − y‖2
2 = Ψ+y. (4.12)

Recall that the signal has a representation y = Φα0 + z with ‖z‖2 ≤ ε. Thus, using the LS formula
above we have

α̂OGA,ε = Ψ+y = Ψ+ ([Ψ, Ω]α0 + z) , (4.13)

where Ψ+ denotes the (spectral) generalized inverse of Ψ. We may partition α0 = [β 0] where β contains
the first N entries of α, and similarly α̂OGA,ε = [β̂ 0]. We obtain

β̂ = β + Ψ+z. (4.14)
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The vector Ψ+z represents reconstruction error, and we have the error bound

‖α̂OGA,ε − α0‖2
2 ≤ ‖Ψ+z‖2

2 ≤ ‖Ψ+‖2
2 · ‖z‖2

2 ≤ ε2

σ2
min{Ψ} . (4.15)

We can lower-bound the minimal singular value of Ψ using Lemma 2.8.

σ2
min{Ψ} ≥ η2 such that Sparkη(Φ) ≥ #Columns(Ψ). (4.16)

This gives σ2
min{Ψ} ≥ 1 − M(N − 1). Hence

‖α̂OGA,ε − α0‖2
2 ≤ ε2

σ2
min{Ψ} ≤ ε2

1 − M(N − 1)
, (4.17)

as claimed. �

4.3 Extensions

Our analysis of the support properties of OGA used rather general properties of the greedy algorithm
which are satisfied by other algorithms as well. We briefly consider two variants on OGA and stability
results for those variants.

4.3.1 Pure Greedy Algorithm

The Pure Greedy algorithm (PGA) is similar to OGA, only without successive orthogonalization. Like
the OGA, it builds up a k-element approximate representation a step at a time, adding to an existing
k − 1-element model a new term chosen in a greedy fashion to minimize the �2 error in the resulting
approximation at that stage. Paralleling the OGA, it defines an initial residual r(0) = y and a current
model ŷ0 = 0; then for k = 1, . . . , it augments the model ŷ(k−1) → ŷ(k) and updates the residual
r̂(k−1) → r̂(k) stepwise, always maintaining y = ŷ(k) + r̂(k). However, the update rule is different than
the one for the OGA discussed so far: it is even greedier.

At the k-th stage, PGA selects an atom to be added to the model which offers the highest correlation
with the current residual

ik = argmax1≤i≤m|〈r(k−1), φi〉|; (4.18)

it builds a model consisting of the previous model together with the newly selected atom:

ŷ(k) = ŷ(k−1) + aikφik , (4.19)

where the coefficient aik = 〈r(k−1), φik〉 is fitted by least squares; and it updates the residual correspond-
ingly:

r(k) = r(k−1) − aikφik ,

which can be input to the next stage of the algorithm.
This differs from the orthogonal greedy algorithm OGA discussed so far in that, in the PGA, the

model at stage k is obtained without any re-adjustment of the coefficients of terms obtained at earlier
stages, while OGA readjusts all coefficients of terms associated with indices {i1, . . . , ik−1}; compare
the discussion of (4.19) with that for (1.2). This variant of the greedy algorithm is the same as the
original proposal for Matching Pursuit (MP) in [23]; it has also been applied in statistics under the name
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stagewise regression [18], and has been used in Projection Pursuit Regression [18], and in approximation
theory [32, 33], where the name Pure Greedy Algorithm was used. Further discussion of greedy-type
algorithms is available in the survey [35].

We now point out that with the right stopping rule, there is a local stability result for PGA. We
prove the following in the Appendix.

Theorem 4.6 Suppose the ideal noiseless signal x0 has a representation x0 = Φα0 satisfying (4.2).
Let M = M(Φ), and set

η ≡ ε · 3 − M

1 − M(2N − 1)
.

Denote by α̂PGA,η the result of pure greedy fitting which stops immediately when the prospective next
term has coefficient not exceeding η. That is, it stops at the smallest m = m(η, y) such that |aim+1 | ≤ η.
Let δ = ‖rm‖.
(a) α̂PGA,η has at least part of the correct sparsity pattern:

supp(α̂PGA,η) ⊆ supp(α0); (4.20)

(b) α̂PGA,η approximates the ideal noiseless representation:

‖α̂PGA,η − α0‖2
2 ≤ (ε + δ)2

1 − M(N − 1)
. (4.21)

4.3.2 Weak Greedy Optimization

The Weak Orthogonal Greedy Algorithm (WOGA) [33] does not presume to be able to solve the
maximization problem (4.18) underlying both OGA and PGA, but instead merely delivers an index ik
giving a near-maximum. For a constant ρ ∈ (0, 1), it guarantees that each ik obeys merely:

|〈r(k−1), φik〉| ≥ ρ · max
1≤i≤m

|〈r(k−1), φi〉|. (4.22)

Otherwise, the algorithm is the same as OGA. The point is that for certain multiscale dictionaries [23],
it can be very much faster to locate an approximate maximizer than a genuine maximizer.

Theorem 4.7 Let K = 1 + ρ−1. Suppose the ideal noiseless signal x0 has a representation x0 = Φα0

satisfying

N = ‖α0‖0 < (1 + M−1)/K (4.23)

and that the noise level obeys
Λρε ≤ |α0(N)|, (4.24)

where
Λρ ≡ K/ρ

1 − M(KN − 1)

Then (as usual) α0 is the unique sparsest representation of x0. Denote by α̂WOGA,ε the result of weak
orthogonal greedy fitting which stops as soon as the representation error ≤ ε. Then
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(a) α̂WOGA,ε has the correct sparsity pattern:

supp(α̂WOGA,ε) ≡ supp(α0); (4.25)

(b) α̂WOGA,ε approximates the ideal noiseless representation:

‖α̂WOGA,ε − α0‖2
2 ≤ ε2

1 − M(N − 1)
. (4.26)

This result imposes a requirement for sparsity which is more stringent than before, according as ρ is
smaller than 1. The proof is in the Appendix.

5 Excessive Pessimism?

The conditions for stability developed here are unduly restrictive. We used worst-case reasoning exclu-
sively, deriving conditions which must apply to every dictionary, every sparse representation and every
bounded noise vector. The bounds we have proven are consequently very loose and do not describe
typical behavior; the sparsity conditions we have posed are much too strict. To illustrate this, we
conducted numerous experiments to study the stability of various algorithms in concrete cases.

5.1 Experiments with �1 penalization

We first consider the phenomenon described in Theorem 3.1. We work with a dictionary Φ = [I, H]
obtained by concatenating two orthonormal bases – the standard and Hadamard bases for signals of
length n = 128 each, yielding M = 1/

√
128. We used randomly-generated ideal representations α0

satisfying the conditions of Theorem 3.1; since (1 + M−1)/4 < 3.07, we use ‖α0‖0 = N = 1, 2, 3.
The non-zero entries of α0 were located in uniform random positions, and the values of those entries
were drawn from a normal distribution with zero mean and unit variance. The ideal noiseless signal
x0 = Φα0 was contaminated with zero-mean white Gaussian noise z rescaled to enforce a specified noise
level ε = ‖z‖, obtaining y = Φα0 + z. We numerically solved (P1,δ) for either δ = 0 or δ = ε and
calculated the error measure ‖α0 − α̂1,δ‖2

2.
Our first experiment considered δ = 0, which leads to (P1,0), and which we solved by linear program-

ming. Figure 1 compares the upper bound from Theorem 3.1 with empirical results. The noise level
was chosen at several levels ε ∈ [0, 1], and the number N of nonzeros ranged through {1, 2, 3}. The
three slanted lines in the figure display our theoretical stability bounds, which increase as N grows. The
experiments (20 runs per each N, ε combination) show much smaller errors than allowed by the bounds.
The empirical representation error does grow linearly with the noise level. However, the empirical errors
show no apparent dependency on N , with all the simulation results exhibiting the same slope, which
suggests that our upper bound’s dependency on N is a severe overstatement of generic behavior.

Figure 2 refers again to the case δ = 0. With a fixed noise level ε2 = 0.5, we considered a wide range
of choices of N . This figure displays the resulting representation error, averaged across 20 experiments
at each level of N . As can be seen, stability is obtained far beyond the limit (1 + M−1)/4 needed for
applicability of Theorem 3.1, and again, the error does not seem to depend markedly on the sparsity
level in the direct way seen in our upper bound. “Explosion” of the representation error eventually
appears as sparsity abates, but only gradually and only well beyond N = 30, while our Theorem seems
to suggest that we ought to be concerned starting as soon as N > 3.
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Figure 1: �1 method, δ = 0: Representation error ‖α0 − α̂1,0‖2 as a function of noise level ε.
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Figure 2: �1 method, δ = 0: Representation error ‖α0 − α̂1,0‖2 as a function of N = ‖α0‖0, assuming
ε2 = 0.5.
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We also considered δ = ε (i.e., the noise power is known and imposed in the recovery process). We
solved (P1,ε) by Iteratively Reweighted Least-Squares (IRLS). We repeated the experimental setup used
for Figure 1; the results appear in Figure 3. Our bounds in this case permit twice the previous error,
as now δ = ε. However, as can be seen, the empirical results suggest the contrary – much smaller errors
are seen in the recovered representation than were seen before. This is intuitively appealing - it seems
clear that (P1,ε) should be more noise-cognizant than (P1,0).
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Figure 3: �1 method, δ = ε: Representation error ‖α0 − α̂1,ε‖2 as a function of the noise level ε. Note
the substantially smaller error level than in the δ = 0 case.

5.2 Experiments with Greedy Optimization

We now compare the reconstruction errors for OGA versus the bounds in Theorem 4.1. Paralleling
the experiment for �1, we display theoretical bounds and empirical errors in Figure 4. Evidently,
OGA behaves stably with results comparable to those obtained by the �1 penalization. Moreover, the
upper bounds provided in Theorem 4.1 are seen to be exactly that – dramatic overestimates of the
reconstruction error. Note that in this experiment we have used N = 1, 2, 3, totally disregarding the
condition as posed in (4.2), tying the allowed sparsity to the coefficients’ amplitude. Yet, the results
show stability and controlled amount of error.
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Figure 4: OGA representation error ‖α0 − α̂OGA‖2 as a function of the noise level ε.
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5.3 Geometric Heuristics

As indicated above, our very general reasoning is to blame for the looseness of our theoretical bounds;
by developing bounds valid for a wide range of dictionaries and a wide range of sparsely-represented
signals, we are forced to consider the behavior fat the worst-possible combination of dictionary, signal,
and noise.

We might get tighter results, by developing tools adapted to each specific (Φ, α0) combination. Unfor-
tunately, the closer we get to case-by-case analysis, the more difficult it becomes to get an intellectually-
digestible overview of the situation. At least for �1 minimization, it seems clear to the authors that,
even at values N far greater than those covered in Theorem 3.1 it will generally be true that:

• A sparse vector α0 generating x0 = Φα0 will be the unique solution of (P1,0); and

• The solution of (P1,ε) based on noisy data y = x0 + z with noise level ε will stably recover α0.

It is less clear to us that we can expect the solution to the �1 problem to agree with the solution to the
�0 problem with the same degree of generality.

Some insight may be gleaned by considering the geometry of minimal �1 decomposition; see Figure
5 below. The minimal �1 decomposition in an overcomplete system is the point in the subspace Ax0 =
{α : x0 = Φα} having the smallest �1 norm. Denote this norm by R0 = val(P1,0). Alternatively, if we
consider the collection of balls B1(R) = {α : ‖α‖1 ≤ R} in Rm, it is the ‘first point in Ax0 ’ to ‘meet’
the family of balls as R grows from 0 to R0. When this meeting occurs, if it is in a unique point, then
the �1 decomposition is unique. Now note that if α0 has few nonzeros, then it sits in a low-dimensional
face of B1(R0). Denote by Fα0 the smallest-dimensional face of B1(R0) containing α0 in its interior.

Figure 5: Geometry favorable to unique �1 decomposition. Intersection of Ax0 with B1(R0) in a unique
point. This point is the unique solution α̂1,0

Figure 5 shows clearly a situation where Fα0 is transversal to Ax0 – the two subspaces meet nicely
in a single point. More than this: all the faces of B1(R0) touching Fα0 intersect Ax0 tranversally. Now
the cleanness of these intersections imply that α0 is the unique �1 minimizer in Ax0 .

A key observation is that the faces of the ball B1(R0) run through a finite list of specific orientations.
If we take a generic Φ, there would never be a fortuitous alignment of any subspace Ax0 with any of the
low-dimensional faces of B1(R0); hence transversal intersections should be generic, and we can expect
to have unique �1 minimizers except when ‖α0‖0 and dimAx0 demand non-uniqueness.
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Figure 6: Geometry favorable to stable �1 decomposition. Intersection of Ax0,2ε with B1(R0) in a tubular
wedge. α̂1,ε must lie in wedge. Small size of the wedge indicates stability.

What about stability? A geometric explanation of stability for α̂1,ε is illustrated in Figure 6. Because
of

‖α̂1,ε‖1 ≤ ‖α0‖1

α̂1,ε must belong to the cone C1,α0 with vertex at α0 consisting of all points α such that for some t > 0

‖(1 − t)α + tα0‖1 ≤ ‖α0‖1.

On the other hand, because of
‖x0 − Φα̂1,ε‖2 ≤ 2ε,

α̂1,ε must belong to the cylinder Ax0,2ε consisting of all vectors α obeying

‖x0 − Φα‖2 ≤ 2ε.

In short, for a Cone C1,α0 and a cylinder Ax0,2ε, we have

α̂1,ε ∈ C1,α0 ∩ Ax0,2ε.

Roughly speaking, the size of this intersection is controlled by the angle between Ax0 and C1,α0 . That
this angle can be positive we know already; because that is the content of the transversality we have
already discussed.

There is an analytical framework to quantify the above heuristic notions. There is a stability estimate
adapted to a specific (Φ, α0) pair:

‖α̂1,ε − α0‖ ≤ Λ1(Φ, α0) · 2ε, ε > 0;

where
Λ1(Φ, α0) = sup{ ‖γ − α0‖

‖Φ(γ − α0)‖ : ‖γ‖1 ≤ ‖α0‖1}.

Equivalently,

Λ1(Φ, α0) = sup{ ‖v‖
‖Φv‖ : v ∈ Ċ},
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where Ċ denotes the tangent cone to C1,α0 at α0, i.e. the collection of vectors v such that α0+tv ∈ C1,α0

for all sufficiently small t > 0.
This last display makes the point that we are trying to optimize a ratio of quadratic forms subject

to membership in a cone. This makes us say that Λ1 is akin to the secant of the angle between Ax0 and
C1,α0 . Unfortunately, to our knowledge, the problem of finding the angle between a cone and a subspace
does not have a convenient computational solution. Hence, although the bound depends intimately on
Φ and α0, we know of no way to easily compute this dependence at the moment.

6 Getting the ‘Correct’ Support with �1

Our results on local stability of the Greedy Algorithm all use the fact that, under appropriate conditions,
the support of the approximate representation for noisy data is a subset of the support of the underlying
ideal sparse representation. Now we develop a parallel result for (P1,δ) which is nonlocal, i.e. it it true
not merely for small noise level ε.

In our formulation, we run (P1,δ) with a specially chosen δ � ε.

Theorem 6.1 Suppose that y = x0 + z where x0 = Φα0, ‖α0‖0 ≤ N and ‖z‖ ≤ ε. Let M = M(Φ) and
suppose β ≡ MN < 1/2. Set

γ =
√

1 − β

1 − 2β
.

Solve (P1,δ) with exaggerated noise level δ = C · ε, where C = C(M, N) = γ
√

N . Then supp(α̂1,δ) ⊂
supp(α0).

As an example, if β = 1/4, then γ =
√

3; so exaggerating the noise level by a factor
√

3N leads to
getting at least part of the support correctly. While this is rather a severe exaggeration of the noise
level, it seems quite surprising that any result of this kind is possible. The

√
N dependence is intrinsic

to the problem. Even in the case where Φ is orthogonal, so M(Φ) = 0, the requirement to have a result
of this form is that δ =

√
1 + N · ε.

Proof. Let S be the support of the ideal noiseless representation α0, and consider the support-
constrained optimization problem (P1,δ,S) where feasible vectors α must be supported in S. Let α1 be a
solution of this problem. We claim that, in fact, α1 is actually the solution of the unconstrained problem
(P1,δ), i.e. α1 = α̂1,δ.

To do this, we consider perturbations u of α1 i.e. representations of the form α1 + t · u, for t > 0
small. We will show that a perturbation which does not increase the �1 objective, definitely violates the
constraint. Formally

‖α1 + tu‖1 ≤ ‖α1‖1 for small t > 0, (6.1)

implies
‖y − Φ(α1 + tu)‖2 > δ for small t > 0. (6.2)

By convexity, this local condition implies global optimality. To formalize the local optimality condition,
we need two initial observations.

Lemma 6.2 If #S = N where N < (M−1 + 1)/2 then the solution to (P1,δ,S) is unique.

Proof. We know that for an appropriate λ > 0 every constrained solution of (P1,δ,S) is a minimizer
of the form

Qλ(α) = ‖y − Φα‖2 + λ
∑
j∈S

|α(j)|.
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Consider Qλ in the vicinity of α1:

Qλ(α1 + tu) = ‖r‖2 − 2t〈r,Φu〉 + t2‖Φu‖2 + λ
∑
j∈S0

|α1(j) + tu(j)| + t · λ
∑

j∈S\S0

|u(j)|

where r ≡ y − Φα and S0 = supp(α1) ⊂ S. Then for small t > 0:

Qλ(α1 + tu) − Qλ(α1) = −2t〈r,Φu〉 + t2‖Φu‖2 + t · λ
∑
j∈S0

σ(j)u(j) + t · λ
∑

j∈S\S0

|u(j)|,

where σ(j) = sign(α1(j)) for j ∈ S0, and 0 otherwise. In order to be a minimizer of Qλ, we must have
that for all vectors u supported in S0,

0 = −2t〈r,Φu〉 + t · λ
∑
j∈S0

σ(j)u(j),

which implies that
(ΦT r) = (λ/2)σ(j), j ∈ S0.

It follows that for small enough t > 0,

Qλ(α1 + tu) − Qλ(α1) = t2‖Φu‖2 + t · λ
∑

j∈S\S0

|u(j)|.

We now invoke Lemma 6.3 below, with Ω = S and β = t−1, to conclude that for every nonzero u
supported in S,

Qλ(α1 + tu) − Qλ(α1) > 0 for small t > 0.

It follows from convexity of Qλ that α1 is the unique global optimizer of Q1. �

Lemma 6.3 Let Ω ⊂ {1, . . . m}. Let S0 ⊂ Ω. Let u be a nonzero vector supported in Ω, and β > 0.
Then if M = M(Φ) and N = #S0 < (M−1 + 1)/2,

0 < ‖Φu‖2 + β ·
∑

j∈Ω\S0

|u(j)|.

Proof. If the support of u ∈ Rm intersects Ω\S0, then 0 < β
∑

j∈Ω\S0
|u(j)|. On the other hand, if

u ∈ Rm has support ⊂ S0 then ‖Φu‖2
2 > 0 whenever u = 0. Indeed, the N columns of Φ corresponding

to nonzeros in u will be linearly independent. �

We now show that α1 is the unique global optimum of (P1,δ) – i.e. the original problem, without
the support constraint. We introduce the notation [, ] for inner product in Rm, [, ]0 for inner product
restricted to coordinates in S0, and [, ]1 for inner product restricted to coordinates in Sc

0. We introduce
the notation ‖‖1,0 for the �1 norm restricted to S, etc. We recall the notation r, σ and Qλ introduced
in the proof of Lemma 6.2. Our aim is now to show that for everynonzero u without regard to support,

Qλ(α1 + tu) − Qλ(α1) > 0 for small t > 0. (6.3)
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This is an expansion of our claim from Lemma 6.2, which applied only to u supported in S. Using
arguments similar to those above, we have that for small t > 0,

Qλ(α1 + tu) − Qλ(α1) = t2‖Φu‖2 + t · 2〈r,Φu〉1 + t · λ‖u‖1,1.

We wish to show that, for some η > 0,

2〈r,Φu〉1 + λ‖u‖1,1 ≥ η · ‖u‖1,1. (6.4)

It will then follow that

Qλ(α1 + tu) − Qλ(α1) ≥ t2‖Φu‖2 + t · η · ‖u‖1,1.

applying Lemma 6.3 with Ω = {1, . . . , m} and β = ηt−1. (6.3) follows.
To establish (6.4), we note that

〈r,Φu〉 = [ΦT r, u]0 + [ΦT r, u]1

we write r = r0 + r1, where r1 is the component of r not in the span of (φj : j ∈ S0), which has norm
≤ ε while r0 is the component of r in the span of the (φj : j ∈ S0),with norm ≤ δ. Hence

[ΦT r, u]1 = [ΦT r0, u]1 + [ΦT r1, u]1

[ΦT r1, u]1 ≤ ‖u‖1,1

(
max
j∈Sc

0

|(ΦT r1)j |
)

= ‖u‖1,1ε

[ΦT r0, u]1 = 〈Φ0v,Φ1u〉 =
∑

i∈S0,j∈Sc
0

Gijv(i)u(j) ≤ M
√

N‖u‖1,1‖v‖2

where Φ0v = r0, and Φ0 is the matrix with columns from S only. We calculate from Lemma A.1 in the
Appendix that

‖v‖2(1 − M(N − 1))1/2 ≤ ‖r0‖2

and so
[ΦT r0, u]1 ≤ δ · |M

√
N |/(1 − M(N − 1))1/2‖u‖1,1

and so
|[ΦT r, u]1| ≤ ε‖u‖1,1(1 + C|M

√
N |/(1 − M(N − 1))1/2).

At the same time, we note that by the optimality of α1 for (P1,δ,S), there is a Lagrange multiplier
λ > 0 with

[ΦT r, u]0 = −λ[σ, u]0, ∀u ∈ Rm.

Now by inspection
λ = ‖ΦT r‖2,0/

√
N.

Using ‖r‖2 = δ, and norm equivalence (eg. as in Lemma A.1 or else (3.10)),

‖ΦT r‖2,0 ≥ δ · (1 − M(N − 1))1/2.

We conclude that (6.4) holds provided A > B, where A = δ(1 − M(N − 1))1/2/
√

N while B =
ε(1 + C|M√

N |/(1 − M(N − 1))1/2). Dividing by ε and setting MN = β and C = γ
√

N we get
A > B when γ is defined as in the statement of the Theorem. (n.b. γ is defined precisely to make
A > B). (6.4) follows, implying (6.3). �
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7 Comparison to Other Work

We now sketch relationships between ideas presented here and other work. The main relationship is
to the great deal of ongoing work where image and signal processing tasks are being carried out in
overcomplete systems. Much of that work is motivated by the idea that there are sparse representations
of the images/signals in the overcomplete representation. What we demonstrate here is that the sparsity
heuristic actually can lead rigorously to methods which are stable against the presence of noise. In that
sense, those heuristic methods now have an intellectual basis, or at least the beginnings of one. There
are two other relations we would like to discuss.

7.1 N-Term Approximation

There has recently been a great deal of interest in the greedy algorithm as a method to generate near-best
N -term approximations. Relevant literature includes [32, 33, 15, 36, 35].

The questions asked in this literature concern the quality of N -term approximations xN = ΦαN ,
where ‖αN‖0 = N , to approximate a general object x. More specifically, let xN,OGA be the N -term
approximation to a vector x by the orthogonal greedy algorithm run through N steps, and xN,0 be the
optimal N -term approximation, obtained by

xN,0 = argmin{‖x − ΦαN‖2 : ‖αN‖0 ≤ N}.

The central question is to compare the approximation errors of the two approaches:

εN,0 ≡ ‖x − xN,0‖ ≈ εN,OGA ≡ ‖x − xN,OGA‖.

In this direction, the first result was provided by Gilbert et al. [15]

εN,OGA ≤ 8
√

NεN,0, N < 1/(8M).

This was then improved by Tropp to [36]

εN,OGA ≤ (1 + 6
√

N)1/2 · εN,0, N < 1/(8M). (7.1)

These results show that, at least in its initial stages, the greedy algorithm performs quite well compared
to the optimal algorithm.

The results of Section 4 have only indirect connection to this problem. Note that all our estimates in
the rest of this paper concern errors such as ‖α0 − α̂OGA‖ on the representation scale, and the errors of
interest in this subsection, such as ‖x0−xOGA‖, are measured on the reconstruction scale. Nevertheless,
in an incoherent dictionary, the two are connected for small N . In the appendix we prove:

Lemma 7.1 Let MN < 1 and let ‖α0‖0, ‖α1‖0 ≤ N . Then

(1 − M(2N − 1))1/2 · ‖α1 − α0‖2 ≤ ‖Φ(α0 − α1)‖2 ≤ (1 + M(2N − 1))1/2 · ‖α1 − α0‖2.

In [38] a similar result was obtained for a variant of the OGA discussed here. If, say, N ≤ 1/(4M),
the coefficients in these inequalities are bracketed below by 1/

√
2 and above by

√
3/2, respectively.

Hence for such N there is a reasonably tight connection between the representation norm and the
approximation norm. It follows that the ideas in this paper are very similar to ideas underlying the
N -term approximation results cited above. Pursuing this thread leads to results like the following.
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Theorem 7.2 Let εN,WOGA denote the orthogonal greedy algorithm with weakly-optimal term selection,
as discussed above, using parameter ρ. Set K = 1 + ρ−1. Then

εN,WOGA ≤ Λρ ·
√

N · εN,0,

where now

Λρ ≡ 1 +
K · (1 + M(N − 1))1/2

1 − M(KN − 1)
.

Comparing with Tropp’s result (7.1) – in a case where both apply – say N = 1/3M and ρ = 1, gives

a coefficient Λρ ≤ 1 + 2·
√

4/3

2/3 = 1 + 2/
√

3, which is somewhat better than the coefficent
√

6 in (7.1);
moreover the new result extends to weak term selection rules. See the Appendix.

Moreover, it is possible to extend the analysis to show that the order N1/2 growth in the above
analysis can be substantially reduced. In a triangular array setting, where we consider a sequence of
n-dimensional approximation problems, suppose that M = Mn → 0. We can exhibit a sequence of
improved bounds, far outdistancing the

√
N formulations of e.g. (7.1).

Theorem 7.3 Consider a sequence of n-dimensional problems with dictionaries Φn obeying M =
M(Φn) → 0. For each η ∈ (0, 1/2), there exist constants ci,η, i = 1, . . . , 3 so that for N ≤ (1/M)c1,η ,

εc2,ηN,OGA ≤ c3,η · Nη · εN,0.

See the Appendix.

7.2 Domain of Applicability

An apparent application of the results of this paper concerns the problem of resolving a spectrum at
a resolution finer than the usual Rayleigh spacing. As a simple model we could consider the complex-
valued dictionary with atoms

φi(k) ∝ exp{√−1
2π

νn
i(k − 1)}, k = 1, . . . , n, i = 1, . . . , νn.

Here ν, an integer > 1 is the superresolution factor, and the implicit constant of proportionality is
chosen to enforce the normalization ‖φi‖2 = 1. In this overcomplete system, the frequencies are spaced
2π
νn apart, which is ν times as closely as the usual spacing 2π

n of the Fourier frequencies, hence the term
superresolution. If we simply chose ν = 1, we’d have an orthogonal dictionary. If we choose ν = 2, we
get an overcomplete system with m = 2n. It would be very attractive to be able to solve this problem,
getting finer frequency resolution out of a given signal length. However, Wohlberg [41] showed that in
general this problem will lead to extreme ill-posedness, even under sparsity constraints.

We remark that, while superresolution is an attractive and important problem, this is not the setting
we envisioned for applying our results. In the superresolving case, with ν = 2, the dictionary has
mutual coherence M = Mn = 1

n sin(π/n) , which tends to π−1 as n increases. This is quite large, and
the dictionary is coherent rather than incoherent. It yields the sparsity threshold (1 + M−1)/2 ≈ 2.07
which allows to disentangle at most two atoms, at any n!

The kind of situation we have in mind for applying our results is quite different; we are interested
in cases where the mutual coherence is comparable, for large n, to some power n−β, so that, at least
for large n, there is the potential to disentangle fairly complex superpositions of many atoms. Previous
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work has given several examples of this type of situation: random dictionaries [12], Grassmannian frames
[30], and dictionaries for 3 − D voxel data made of digital points, lines, and planes [12].

For those interested in supperresolution, we remark that, in our opinion, the analysis in [41] adopts
a framework which is unduly pessimistic. The careful theoretical work on superresolution [11] explains
that stable superresolution is possible using sparsity; however, the notion of sparsity needs to be adapted
to the setting. Specifically, it becomes important to define sparsity in terms of ‘number of nonzeros
per Rayleigh interval’ rather than simply ‘number of nonzeros’. When this definitional convention is
adopted, it is possible to prove that sufficient sparsity again enables superresolution, in accord with a
considerable body of empirical work, also cited in [11].

Appendix: Proofs

The Greedy Algorithm

Our earlier description of the greedy algorithm is informal, so we revert here to standard notations for
discussion of greedy algorithms in approximation theory [32, 33]. We let H be a Hilbert space containing
our signals, and let now g,f , etc. denote elements of this space. In terms of earlier usage, H = Rn,
f = y, etc., but the reasoning is more general.

Let Φ be a dictionary for the Hilbert space H; this is a finite, countable or continuous collection
of elements {ϕ} normalized so that ‖ϕ‖ = 1 and having closed span H. We consider the maximal
correlation between f and any member of the dictionary:

χ(f) = sup
φ∈Φ

|〈f, φ〉|,

and let ϕ(f) ∈ Φ be an element from Φ which maximizes he correlation |〈f, ϕ〉|. For simplicity, suppose
that a unique maximizer exists; if not, obvious modifications can be supplied. (See also the remark
below) We start from the simplest notion of Greedy Algorithm. We define

G(f,Φ) ≡ 〈f, ϕ(f)〉ϕ(f)

and
R(f,Φ) ≡ f − G(f,Φ).

Pure Greedy Algorithm (PGA)We define R0(f,Φ) ≡ f and G0(f,Φ) ≡ 0. Then, for each m ≥ 1,
we inductively define

Gm(f,Φ) ≡ Gm−1(f,Φ) + G(Rm−1(f,Φ),Φ)

Rm(f,Φ) ≡ f − Gm(f,Φ) = R(Rm−1(f,Φ),Φ).

We next turn to the orthogonal greedy algorithm. If H0 is a finite-dimensional subspace of H, we let
PH0 be the orthogonal projector from H onto H0. That is, PH0(f) is the best approximation to f from
H0.

Orthogonal Greedy Algorithm (OGA) We define Ro
0(f) ≡ Ro

0(f,Φ) ≡ f and Go
0(f) ≡ Go

0(f,Φ) ≡
0. Then for each k ≥ 1, we inductively define

Hk ≡ Hk(f) ≡ span{ϕ(Ro
0(f)), . . . , ϕ(Ro

k−1(f))}
Go

k(f) ≡ Go
k(f,Φ) ≡ PHk

(f)
Ro

k(f) ≡ Ro
k(f,Φ) ≡ f − Go

k(f).
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(A − 1)

Following [33] we define the Weak Orthogonal Greedy Algorithm (WOGA). Let ρ ∈ (0, 1] be
given, and set fo,ρ

0 ≡ f . Then for each m ≥ 1 define:

1. ϕo,ρ
m ∈ Φ is any element satisfying

|〈fo,ρ
m−1, ϕ

o,ρ
m 〉| ≥ ρ · sup

φ∈Φ
|〈fo,ρ

m−1, φ〉|; (A-2)

2.
Go,ρ

m (f) ≡ Go,ρ
m (f,Φ) ≡ PHρ

m
(f), where Hρ

m ≡ span(ϕo,ρ
1 , . . . , ϕo,ρ

m );

3.
fo,ρ

m ≡ f − Go,ρ
m (f,Φ).

In a finite-dimensional space H the WOGA terminates after m = dimH steps and Go,ρ
m (f) = f .

Remark: All variants of the GA fail to specify a unique sequence of approximants, since ties are
possible in the definition of ϕ(f). However, this nonuniqueness can be easily eliminated in the case of a
countable dictionary Φ. Then we can give the elements of the dictionary and ordering Φ = {φi}∞i=1, and
modify the definition of ϕ(f) to specify the element φi appearing earliest in the ordering and satisfying

|〈f, φi〉| = χ(f).

Comparable modifications of (A-2) can be imposed as well.

Norm Equivalence

Lemma 6.1 can be restated in the following useful form.

Lemma A.1 Let Φ have mutual incoherence M . Then, for any N distinct φj ∈ Φ, and for any aj,
j = 1, . . . , N we have

(
N∑

j=1

a2
j )(1 − M(N − 1)) ≤ ‖

N∑
j=1

ajφj‖2
2 ≤ (

N∑
j=1

a2
j )(1 + M(N − 1)).

Proof. We have

‖
N∑

j=1

ajφj‖2
2 =

N∑
j=1

a2
j +

∑
i�=j

aiaj〈φi, φj〉. (A-3)

Next,

|
∑
i�=j

aiaj〈φi, φj〉| ≤ M
∑
i�=j

|aiaj | = M(
∑
i,j

|aiaj | −
N∑

i=1

a2
i )

= M((
N∑

i=1

|ai|)2 −
N∑

i=1

a2
i ) ≤ (

N∑
i=1

a2
i )(N − 1)M.
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Using this inequality to both upper and lower bound
∑

i�=j aiaj〈φi, φj〉 in the identity (A-3) gives the
desired conclusion. �

This has an immediate application, valuable below.

Lemma A.2 Let M be the mutual incoherence of Φ. Assume that f has a representation

f =
N∑

i=1

aiψi + z, ψi ∈ Φ, i = 1, . . . , N, N <
1

2M
+

1
2

with ‖z‖ ≤ ε. Let g =
∑N

j=1 bjϕj, ϕj ∈ Φ, j = 1, . . . , N with the property

‖f − g‖ ≤ δ,

we have ∑
i:ψi �=ϕj ,j=1,...,N

a2
i +

∑
i:ψi=ϕj

(ai − bj)2 +
∑

j:ϕj �=ψi,i=1,...,N

b2
j ≤ (ε + δ)2

1 − M(2N − 1)
. (A-4)

Proof. Writing f = f0 + z, where f0 =
∑N

i=1 aiψi, we have ‖f0 − g‖ ≤ ‖f − g‖ + ‖z‖ ≤ δ + ε. But
f0 − g can be written as a sum of at most 2N terms from Φ,

∑2N
l=1 cφ, φ ∈ Φ. Applying Lemma A.1

to this sum gives the result. �

We note that this lemma gives an alternate proof of the stability estimate (2.2) in Theorem 2.1. For
indeed we let f ↔ y and g ↔ x̂ = Φα̂0,ε, and we apply the lemma with ε = δ.

Trapping Dictionaries

The behavior of the OGA developed in Section 4.1 can be described more vividly as follows: when f is
a sparse sum, then greedy term selection only selects from among the terms appearing in the definition
of f : it is ‘trapped’. This phenomenon holds under broader conditions than just the incoherence of the
dictionary. To discuss this clearly, we isolate the phenomenon with a definition.

Definition A.3 (F -trapping dictionary) Let F be an increasing function on [1, Ω). The dictionary Φ
is F -trapping (for OGA) if, for any N ∈ [1, Ω) and any f of the form

f =
N∑

i=1

aiϕi, (A-5)

where ϕi are N distinct elements of Φ, there exist φ1, . . . , φm ∈ Φ with m ≤ F (N) such that for all
k = 0, 1, . . . we have

fo
k ∈ span(φ1, . . . , φm).

Note that when F (u) = u for 1 ≤ u ≤ 1/2M , we are simply saying what earlier in the paper would
have been formulated as: the OGA preserves support properties. As an example of the potential need
for generality beyond the F (u) = u case emphasized here, we note that, from results in [31], it follows
that the dictionary {ϕJ = |J |−1/21J , J ⊂ [0, 1]}, consisting of normalized indicator functions 1J(x),
is F -trapping with F (u) = 2u + 1 and [1, Ω) = [1,∞). Note that the dictionary is uncountable.
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For an F -trapping dictionary, and any f of the form (A-5) with N ∈ [1, Ω), the OGA perfectly
reconstructs f after F (N) steps:

Go
F (N)(f) = f.

As already said, incoherent dictionaries are F -trapping with F (u) = u. Formally:

Theorem A.4 Let M = M(Φ). Then Φ is F -trapping with F (u) = u and Ω = 1
2M + 1

2 .

This can be obtained immediately from the following repackaging of arguments in Section 4.1.

Observation A.5 Assume Φ has mutual incoherence M . Let N < 1
2M + 1

2 . For any f of the form

f =
N∑

i=1

aiφi,

where the φi are distinct elements of Φ, we have that ϕ(f) ∈ {φi : 1 ≤ i ≤ N}.

The F -trapping property can be proved without using incoherence.

Theorem A.6 Let N be given and suppose that for this N , the dictionary Φ has the property: for any
distinct φ0, φ1, . . . , φN ∈ Φ we have

∑N
i=1 |〈φ0, φi〉| < 1/2. Then for any f of the form

f =
k∑

i=1

aiφi, k ≤ N,

where φi are distinct elements of Φ, we have that ϕ(f) ∈ {φi : 1 ≤ i ≤ N}.

The idea to replace coherence conditions (i.e. on M(Φ)) by conditions on N -term sums of entries in
individual rows of the Gram matrix (〈ϕi, ϕj〉)m

i,j=1 originated in [12, 36].
The trapping approach allows a proof of Claim (a) in Theorem 2.1.

Theorem A.7 Assume Φ has mutual incoherence M . Then if f has a representation

f =
N∑

i=1

aiψi,

where the ai are nonzero and the ψi are distinct elements of Φ and N < 1
2M + 1

2 then it is the unique
such representation.

Proof. We first remark that (ψi)N
i=1 must be linearly independent; for example using arguments from

Section 2 and N < (1 + M−1)/2. Hence there can’t be two distinct representation using that specific
collection of N atoms.

Now suppose there were 2 distinct expansions, each using ≤ N atoms, but different collections of
≤ N atoms We could then also write f =

∑m
j=1 bjφj with nonzero coefficients (bj), where m ≤ N ,

and {φj} contains at least one atom not belonging to {ψi}. Incoherence allows to apply the trapping
principle, which guarantees that ϕ(fo

k ) ∈ {ψi} for k = 0, . . . , N − 1, while it would also guarantee that
ϕ(fo

k ) ∈ {φj} for k = 0, . . . , m − 1. Thus we must have that the first m selections lie in both {ψi} and
{φj}. The OGA will never select the same atom twice. Thus the first m selections are distinct, and so
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exhaust {φj}. But m = #{φj} ≤ N = #{ψi} and so we conclude that {φj} ⊂ {ψi}, contradicting the
existence of a ’distinct’ atoms being used. �

The upper bound for N in Theorem A.7 is sharp. We cannot replace the condition N < 1
2M + 1

2
by N ≤ 1

2M + 1
2 in the theorem. Here is the corresponding example. We set Φ = {φi}4

i=1 ⊂ R
3 with

φ1 = 3−1/2(1, 1, 1), φ2 = 3−1/2(1,−1,−1), φ3 = 3−1/2(1, 1,−1), φ4 = 3−1/2(1,−1, 1). Then M = 1/3
and we have nonuniqueness for S = 2: φ1 + φ2 = φ3 + φ4.

Proof of Theorem 4.6

We restate the Theorem so that y is replaced by f , etc. We first show that at initial stages, where
PGA extracts terms with coefficient exceeding η, the trapping property holds. Formally, if φj ∈ Φ,
j = 1, . . . , N and f is such that

‖f −
N∑

i=1

aiφi‖ ≤ ε and |〈f, ϕ(f)〉| > η,

then ϕ(f) ∈ {φj : 1 ≤ j ≤ N}. Indeed, denote

A ≡ max
1≤i≤N

|ai| = |aq|; B ≡ |〈f, ϕ(f)〉|;

then
A(1 − M(N − 1)) − ε ≤ B ≤ A(1 + M(N − 1)) + ε.

Our assumption B > η implies that

A(1 − M(2N − 1)) > 2ε.

Therefore,
max

1≤j≤N
|〈f, φj〉| ≥ |〈f, φq〉| ≥ A(1 − M(N − 1)) − ε > ANM + ε ≥ |〈f, φ〉|

for φ ∈ Φ different from φj , j = 1, . . . , N . Hence ϕ(f) belongs to {φj : 1 ≤ j ≤ N}.
Let then m = m(η, f) be the stopping stage for the PGA; we may check that m ≤ N . Because of

the trapping property, we may write Gm(f) =
∑N

j=1 bjφj for coefficients (bj) of which at most m are
nonzero. Invoking Lemma A.2 with f as above and g = Gm(f) we complete the proof. �

Proof of Theorem 4.7

For given ε > 0 and ρ ∈ (0, 1] we denote by m(ε, ρ) the smallest m such that there exists a realization
Go,ρ

m (f) with the property

‖f − Go,ρ
m−1(f)‖ > ε and ‖f − Go,ρ

m (f)‖ ≤ ε.

We restate Theorem 4.7.

Theorem A.8 Let ρ ∈ (0, 1] and M = M(Φ). Let N ∈ N fulfill ρ − M((1 + ρ)N − ρ) > 0. Suppose
that

f =
S∑

j=1

ajφj + z, φj ∈ Φ, j = 1, . . . , S
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satisfies the conditions
S ≤ N ; ε ≡ ‖z‖.

Suppose also that this is the smallest S for which we can write such a decomposition with ‖z‖ ≤ ε, and
that

ε <
ρ − M((1 + ρ)N − ρ)

1 + ρ
· min

j
|aj |. (A-6)

Then m(ε, ρ) = S,

Go,ρ
S (y) =

S∑
j=1

bjϕj , (A-7)

and
S∑

j=1

(aj − bj)2 ≤ ε2

1 − M(N − 1)
.

Proof. We first show that at initial stages of WOGA the trapping property holds. Put A ≡
maxj |aj | = |ap|, and suppose

ε <
ρ − M((1 + ρ)N − ρ)

1 + ρ
· A. (A-8)

Then we have
|〈f, ϕp〉| ≥ A(1 − M(S − 1)) − ε

and for any φ different from ϕ1, . . . , ϕS

|〈f, φ〉| ≤ AMS + ε.

By (A-8) we have
AMS + ε < ρ(A(1 − M(S − 1) − ε). (A-9)

Hence ϕo,ρ
1 of the WOGA coincides with one of the ϕ1, . . . , ϕS , say, ϕo,ρ

1 = ϕi1 - i.e. we have trapping.
We now argue as in Section 4.1 that the WOGA, in passing from step 1 to step 2 to . . . to step S lands

us each time back in the same situation, of studying f1, f2, . . . which have the same structure at each
iteration as a superposition fk =

∑N
j=1 b

(k)
j φj , with possibly different coefficients b(k). The condition

(A-6) guarantees that at each step until step S, A = maxj |b(k)
j | obeys (A-8) and hence (A-9) follows;

trapping happens at all steps 1, . . . , S.
Writing f = f0 + z with f0 ∈ H = span{φj , j = 1, . . . , S}, we have Go,ρ

S (f) ∈ H as well. Hence,
‖f − Go,ρ

S (f)‖ = ‖(f0 + z) − PH(f0 + z))‖ ≤ ‖(I − PH)(z)‖ ≤ ε. Therefore, m(ε, ρ) ≤ S. However, by
hypothesis, S is minimal for the ability to write f as a superposition of S terms from Φ with an error
of size ≤ ε. Hence m(ε, ρ) = S. We now invoke Lemma A.2 with g = Go,ρ

S (f). �

Proof of Theorem 7.2

We reformulate Theorem 7.2 to simplify the proof.

Theorem A.9 Let ρ ∈ (0, 1] and M = M(Φ). Let N ∈ N fulfill ρ − M((1 + ρ)N − ρ) > 0. Then for
any signal

f =
S∑

j=1

ajϕj + z, ϕj ∈ Φ, j = 1, . . . , S
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satisfying the following conditions
S ≤ N ; ‖z‖ ≤ ε

we have

‖f − Go,ρ
S (f)‖ ≤ εS1/2(1 +

(1 + ρ)(1 + M(S − 1))1/2

ρ − M((1 + ρ)N − ρ)
).

Proof. We start with a central observation. Denote

δ ≡ ε(1 + ρ)
ρ − M((1 + ρ)N − ρ)

.

Let g be a function which can be written in a fashion similar to f , g =
∑

j bjϕj + z as a superposition
of the same elements, with possibly different coefficients. Suppose {bj} are small: |bj | ≤ δ, j = 1, . . . , S.
By Lemma A.1 we get

‖g‖ ≤ ‖
S∑

j=1

bjϕj‖ + ‖z‖ ≤ δS1/2(1 + M(S − 1))1/2 + ε (A-10)

= εS1/2(1 +
(1 + ρ)(1 + M(S − 1))1/2

ρ − M((1 + ρ)N − ρ)
).

We now apply WOGA term selection to f =
∑

j ajϕj . Put A ≡ maxj |aj | = |ap| say. Suppose A > δ.
Using the same arguments as in the proof of Theorem 4.7, we find that ϕo,ρ

1 of the WOGA coincides
with one of the ϕ1, . . . , ϕS , say, ϕo,ρ

1 = ϕi1 - i.e. we have trapping.
Denote Λ1 ≡ {i1} and H1 ≡ span{ϕi1}. Consider now

f1 ≡ fo,ρ
1 = f − Go,ρ

1 (f) = f − PH1(f).

It is clear that
f1 =

∑
b
(1)
j ϕj + z1, ‖z1‖ ≤ ε.

In applying WOGA term selection to f1, we get a new value of A = A1 ≡ maxj |b(1)
j |; but supposing

that A1 > δ, trapping continues. Hence the next iteration of WOGA will have its term selection among
ϕ1, . . . , ϕS .

We now argue (recalling Section 4.1) that in studying f1, f2, . . . , fk, as long as A = Ak ≡ maxj |b(k)
j | >

δ continues to hold in successive steps, the trapping continues, and we repeatedly see the same structure
at each iteration: a superposition fk =

∑N
j=1 b

(k)
j φj , with possibly different coefficients b(k).

So suppose that we reach Ak < δ at stage k < S. then the estimate (A-10) already applies at that
early stage (with the more favorable value of k in place of S). As the algorithm continues through S
steps, the error at stage S will not be larger than the error at stage k, and so the estimate (A-10) applies
and gives the desired conclusion.

Suppose we do not reach Ak < δ at any stage up to and including the S-th stage. Then, with
H = span{ϕ1, . . . , ϕS}, we have Go,ρ

S (f) = PH(f), and by the hypothesis ‖z‖ ≤ ε

‖f − Go,ρ
S (f)‖ ≤ ε.

which is even better than we claimed. �
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Proof of Theorem 7.3

We begin with a simple technical lemma.

Theorem A.10 Suppose that φ1, . . . , φN are such that ‖φi‖ = 1, i = 1, . . . , N ; |〈φi, φj〉| ≤ M , 1 ≤ i =
j ≤ N . Let HN ≡ span(φ1, . . . , φN ). Then for any f we have

N∑
i=1

|〈f, φi〉|2 ≥ (
N∑

i=1

c2
i )((1 + M)2 − (2M + M2)N),

where {ci} are coefficients from least-squares projection:

PHN
(f) =

N∑
i=1

ciφi.

Proof. We have 〈f − PHN
(f), φi〉 = 0, i = 1, . . . , N and therefore

|〈f, φi〉| = |〈PHN
(f), φi〉| = |

N∑
j=1

cj〈φj , φi〉| ≥ |ci|(1 + M) − M
N∑

j=1

|cj |.

Next, denoting σ ≡ ∑N
j=1 |cj | we get

N∑
i=1

|〈f, φi〉|2 ≥
N∑

i=1

(|ci|(1 + M) − Mσ)2 = (1 + M)2
N∑

i=1

c2
i − 2(1 + M)Mσ2 + M2σ2.

Using the inequality σ2 ≤ N
∑N

j=1 c2
j we continue

≥ (
N∑

i=1

c2
i )(1 − (2M + M2)(N − 1)).

�

Theorem 7.3 also depends on this intermediate result.

Theorem A.11 Let M = M(Φ). Then for any S ≤ 1/(4M) we have the following inequalities

‖fo
S‖2 ≤ 2‖f‖(σS(f) + 6MS‖f‖),

‖fS‖2 ≤ 2‖f‖(σS(f) + 7MS‖f‖).

Proof. As earlier, denote
χ(f) ≡ sup

φ∈Φ
|〈f, φ〉|. (A-11)

For simplicity we assume that the maximizer in (A-11) exists. Then

‖fm‖2 = ‖fm−1‖2 − χ(fm−1)2 and ‖fo
m‖2 ≤ ‖fo

m−1‖2 − χ(fo
m−1)

2.
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Denote by φ1, . . . , φS ⊂ Φ the elements that have the biggest inner products with f :

|〈f, φ1〉| ≥ |〈f, φ2〉| ≥ . . . ≥ |〈f, φS〉| ≥ sup
φ∈Φ,φ�=φi,i=1,...,S

|〈f, φ〉|.

We carry out the proof for the OGA and later point out the necessary changes for the PGA. Let m ≤ S
and

fo
m = f − PHm(f), Hm = span(ϕ1, . . . , ϕm), ϕj ∈ Φ.

There exists an index i ∈ [1, m + 1] such that φi = ϕj , j = 1, . . . , m. For this i we estimate

〈fo
m, φi〉 = 〈f, φi〉 − 〈PHm(f), φi〉. (A-12)

Let

PHm(f) =
m∑

j=1

cjϕj .

Clearly, ‖PHm(f)‖ ≤ ‖f‖. Then by Lemma A.1

(
m∑

j=1

c2
j )

1/2 ≤ ‖f‖(1 − M(m − 1))−1/2.

We continue

|〈PHm(f), φi〉| ≤ M

m∑
j=1

|cj | ≤ Mm1/2(
m∑

j=1

c2
j )

1/2 ≤ MS1/2‖f‖(1 − MS)−1/2. (A-13)

Thus we get from (A-12) and (A-13) that

χ(fo
m) ≥ |〈fo

m, φi〉| ≥ |〈f, φi〉| − MS1/2‖f‖(1 − MS)−1/2.

Therefore

(
S−1∑
v=0

χ(fv)2)1/2 ≥ (
S∑

i=1

|〈f, φi〉|2)1/2 − MS‖f‖(1 − MS)−1/2. (A-14)

Next, let

σS(f) = ‖f − PH(S)(f)‖, PH(S)(f) =
S∑

j=1

bjψj .

Then
‖PH(S)(f)‖ ≥ ‖f‖ − σS(f)

and by Lemma A.1
S∑

j=1

b2
j ≥ (‖f‖ − σS(f))2(1 + MS)−1. (A-15)

By Theorem A.10
S∑

j=1

|〈f, ψj〉|2 ≥ (
S∑

j=1

b2
j )(1 − 3MS). (A-16)
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We get from (A-15) and (A-16)

S∑
i=1

|〈f, φi〉|2 ≥
S∑

j=1

|〈f, ψj〉|2 ≥ (‖f‖ − σS(f))2(1 + MS)−1(1 − 3MS).

Finally, by (A-14) we get from here

(
S−1∑
v=0

χ(fo
v )2)1/2 ≥ (‖f‖ − σS(f))(

1 − 3MS

1 + MS
)1/2 − MS‖f‖(1 − MS)−1/2

and

‖fo
S‖2 ≤ ‖f‖2 −

S−1∑
v=0

χ(fv)2 ≤ 2‖f‖(‖f‖ − (
S−1∑
v=0

χ(fv)2)1/2)

≤ 2‖f‖(σS(f) + 6MS‖f‖).
This completes the proof of Theorem A.11 for the OGA. A few changes adapt the proof to the PGA

setting. As above we write

fm = f − Gm(f); Gm(f) =
m∑

j=1

bjψj , ψj ∈ Φ

and estimate |〈fm, φi〉| with i ∈ [1, m+1] such that φi = ψj , j = 1, . . . , m. Using instead of ‖PHm(f)‖ ≤
‖f‖ the inequality

‖Gm(f)‖ ≤ ‖f‖ + ‖fm‖ ≤ 2‖f‖
we obtain the following analog of (A-13)

|〈Gm(f), φi〉| ≤ 2MS1/2‖f‖(1 − MS)−1/2. (A-17)

The rest of the proof is the same with (A-13) replaced by (A-17). �

We now show how to combine the inequalities from Theorems A.10 and A.11 to get Theorem 7.3.
Write these inequalities in the form (S ≤ N)

‖fo
S‖2 ≤ C1SσS(f)2, (A-18)

‖fo
S‖2 ≤ 2‖f‖(σS(f) + C2MS‖f‖). (A-19)

We take m such that 3m ≤ N and apply (A-19) with f = fo
m, S = 2m. We get

‖fo
3m‖2 ≤ 2‖fo

m‖(σ2m(fo
m) + C2M(2m)‖fo

m‖).
Next we use a trivial estimate σ2m(fo

m) ≤ σm(f) and (A-18)

‖fo
3m‖2 ≤ 2(C1m)1/2σm(f)2(1 + C3Mm3/2).

Therefore for small m (Mm3/2 ≤ 1) we get

‖fo
3m‖ ≤ C4m

1/4σm(f) (A-20)

which is better then (A-18).
We can repeat the above argument with (A-18) replaced by (A-20). Continuing in this way, we obtain

Theorem 7.3. �
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Appendix B - Iteratively Reweighted Least-Squares

In simulating the Basis Pursuit Denoising, we need to solve the optimization problem

(P1,δ) : min
α

‖α‖1 subject to ‖y − Φα‖2 ≤ δ. (B-1)

It is easier to treat the constraint as an additional penalty and form the alternative problem

(P̃1,λ) : min
α

‖α‖1 + λ‖y − Φα‖2, (B-2)

but then we need to search for the proper value of λ so as to satisfy the constraint ‖y − Φα‖2 ≤ δ.
Thus, we are facing two difficulties: (i) For a given λ solve (B-2); and (ii) Find the value of λ to satisfy
the constraint.

The problem posed in (B-2) can be cast in a Quadratic Programming form, and solved as such. How-
ever, we chose a different way that was found to be more efficient in the low dimensions we experiment
with. The penalty function in (B-2) can be written alternatively as

(P̃1,λ) : min
α

αHW(α)α + λ‖y − Φα‖2, (B-3)

where W(α) is a diagonal weight matrix with 1/|αk| as its main diagonal entries (assume that for αk = 0
the weight is chosen to be some finite high value in order to avoid infinity). Formed as such, we can use
simple Least-Squares to solve (P̃1,λ) with W(α) assumed to be fixed. This solution is obtained as

α̂opt =
(
W(α) + λΦHΦ

)−1
ΦHy. (B-4)

The basic idea of the Iterative Reweighted Least-Squares is an initialization by some α̂0, computing the
weights as described above, and then update the solution using (B-4). Relaxation of this process could
be proposed where the new solution at the nth iteration is computed as

α̂n = β · (W(α̂n−1) + λΦHΦ
)−1

ΦHy + (1 − β)α̂n−1. (B-5)

β can be chosen in the range [0, 1] trading stability with speed. Analysis of this algorithm and its
convergence properties can be found in [20].

As to the search for λ, our implementation applies a line search process, exploiting the fact that the
function we are optimizing with respect to is unimodal.
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