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MULTIGRID ALGORITHMS FOR C0 INTERIOR PENALTY METHODS

SUSANNE C. BRENNER AND LI-YENG SUNG

Abstract. Multigrid algorithms for C0 interior penalty methods for fourth order elliptic
boundary value problems on polygonal domains are studied in this paper. It is shown that
V -cycle, F -cycle and W -cycle algorithms are contractions if the number of smoothing steps
is sufficiently large. The contraction numbers of these algorithms are bounded by Cm−α,
where m is the number of pre-smoothing (and post-smoothing) steps, α is the index of
elliptic regularity, and the positive constant C is mesh-independent. These estimates are
established for a smoothing scheme that uses a Poisson solve as a preconditioner, which can
be easily implemented because the C0 finite element spaces are standard spaces for second
order problems. Furthermore the variable V -cycle algorithm is also shown to be an optimal
preconditioner.

1. Introduction

C0 interior penalty methods [29, 24] are nonconforming finite element methods for fourth
order problems. Consider the following variational problem on a bounded polygonal domain
in R

2: Find u ∈ H2
0 (Ω) such that

(1.1) a(u, v) =

∫
Ω

fv dx ∀ v ∈ H2
0 (Ω)

where

(1.2) a(w, v) =
2∑

i,j=1

∫
Ω

∂2w

∂xi∂xj

∂2v

∂xi∂xj

dx+

∫
Ω

b(x)∇w · ∇v dx

and f ∈ L2(Ω). The function b(x) in (1.2) belongs to C1(Ω̄) and is nonnegative on Ω. Since
∂Ω is not smooth, the solution u of (1.1) does not belong to H4(Ω) even if f ∈ C∞(Ω̄)
[31, 37]. In general the shift theorem [27, 4] only holds for f belonging to the Sobolev space
H−2+α(Ω) for some α ∈ (1

2
, 1], i.e., u ∈ H2+α(Ω) whenever f ∈ H−2+α(Ω) and

(1.3) ‖u‖H2+α(Ω) ≤ CΩ‖f‖H−2+α(Ω).

(We follow the standard notation of Sobolev spaces [1, 26, 23] in this paper.)
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When b = 0, the variational problem defined by (1.1) corresponds to the biharmonic
problem. When b > 0, it is a scalar analog of the elliptic system that appears in strain-
gradient elasticity theory [30, 41, 44]. Within the framework of finite element methods,
it can be solved numerically by conforming C1 finite elements [8, 2], nonconforming finite
elements [36, 3, 40, 39] and mixed finite elements [25].

Let Th be either a simplicial triangulation or a convex quadrilateral triangulation of Ω.
In the C0 interior penalty method approach, the discrete space Vh is either a P� (� ≥ 2)
triangular Lagrange finite element space [26, 23] or a Q� (� ≥ 2) quadrilateral Lagrange
tensor product finite element space [26, 23] associated with Th. The discrete problem for
(1.1) is then given by: Find uh ∈ Vh such that

Ah(uh, v) =

∫
Ω

fv dx ∀ v ∈ Vh,(1.4)

where

Ah(w, v) =
∑
D∈Th

∫
D

( 2∑
i,j=1

∂2w

∂xi∂xj

∂2v

∂xi∂xj

+ b(x)∇w · ∇v
)
dx

+
∑
e∈Eh

∫
e

({{
∂2w

∂n2

}}[[
∂v

∂n

]]
+

{{
∂2v

∂n2

}}[[
∂w

∂n

]])
ds(1.5)

+
∑
e∈Eh

η

|e|

∫
e

[[
∂w

∂n

]] [[
∂v

∂n

]]
ds,

Eh is the set of all the edges of Th, |e| is the length of the edge e, and η > 0 is a penalty
parameter. The averages {{·}} and jumps [[·]] in (1.5) are defined as follows.

Let e be an interior edge of Th and ne be a unit vector normal to e. Then e is shared by
two elements D± ∈ Th, where ne is pointing from D− to D+, and we define on e

(1.6)

[[
∂v

∂n

]]
=
∂v+

∂ne
− ∂v−
∂ne

and

{{
∂2v

∂n2

}}
=

1

2

(
∂2v+

∂n2
e

+
∂2v−
∂n2

e

)
,

where v± = v
∣∣
D±

. For an edge e on ∂Ω, we take ne to be the outer unit normal vector and

define [[
∂v

∂n

]]
= − ∂v

∂ne
and

{{
∂2v

∂n2
e

}}
=
∂2v

∂n2
e

.

Note that the values of the averages and jumps are independent of the choice of ne in (1.6).
The C0 interior penalty method is consistent, and for η sufficiently large (which is assumed

to be the case) it is also stable. Therefore the error u− uh is quasi-optimal with respect to
appropriate norms [29, 24]. The C0 interior penalty approach has certain advantages over
other finite element methods: (i) It is much simpler than C1 finite element methods. (ii) The
lowest order C0 interior penalty methods (i.e., those based on the P2 or Q2 elements) are
as simple as the classical nonconforming finite element methods, but unlike such methods,
the C0 interior penalty methods come in a natural hierarchy of arbitrary orders. (iii) Unlike
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mixed finite element methods, it is straight-forward to construct C0 interior penalty methods
for more complicated elliptic systems. (iv) The fact that the finite element spaces in the C0

interior penalty approach are just standard finite element spaces for second order problems
can be exploited in the design of effective smoothers for multigrid algorithms.

In this paper we extend the multigrid theory for classical nonconforming finite elements
(cf. [19, 22] and the references therein) to the C0 interior penalty methods. We will prove
the convergence of V -cycle, F -cycle and W -cycle algorithms when the number of smoothing
steps is sufficiently large and also the optimality of the variable V -cycle algorithm as a
preconditioner. In all these multigrid algorithms we use a preconditioned relaxation scheme
that is much more effective than classical smoothers (such as the Richardson and the Gauss-
Seidel iterations) and at the same time can be easily implemented because the finite element
spaces of the C0 interior penalty methods are the standard spaces for second order problems.

The rest of the paper is organized as follows. We set the notation and state the multigrid
algorithms in Section 2, and then we introduce the mesh-dependent norms and establish
some basic estimates in Section 3. The analysis of W -cycle and variable V -cycle algorithms
is carried out in Section 4. The analysis of V -cycle and W -cycle algorithms relies on the
additive theory developed in [20, 22], which is recalled in Section 5. The convergence results
for V -cycle and F -cycle algorithms are then established in Section 6. In Section 7 we present
the results of numerical experiments. Appendix A contains some properties of multigrid
Poisson solves relevant for the convergence analysis.

For future reference we state here two elementary inequalities:

2ab ≤ θ2a2 + θ−2b2 for a, b ∈ R and θ ∈ (0, 1),(1.7)

(a+ b)2 ≤ (1 + θ2)a2 + (1 + θ−2)b2 for a, b ∈ R and θ ∈ (0, 1).(1.8)

2. Multigrid Algorithms

In this section we describe the multigrid algorithms. In view of their potential for 3D
problems, we will focus on C0 interior penalty methods that are based on quadrilateral
elements. Similar results can of course be obtained for triangular elements.

Let T0 be a triangulation of Ω by convex quadrilaterals and the triangulations of T1, T2, . . .
be obtained from T0 through uniform subdivisions. The mesh sizes hk = maxD∈Tk

diamD
thus satisfy the relation

(2.1) hk ≈ 2−kh0.

Remark 2.1. In order to avoid the proliferation of constants, we will use the notation A � B
(B � A) to represent the relation A ≤ constant × B, where the positive constant is mesh-
independent, i.e., it is independent of the mesh size hk and the grid level k. The notation
A ≈ B is equivalent to A � B and B � A.

Let Vk ⊂ H1
0 (Ω) be the Q� (� ≥ 2) finite element space associated with Tk and denote by

Ak the symmetric bilinear form on Vk corresponding to the variational form (1.5) of the C0

interior penalty method. The k-th level discrete problem for the C0 interior penalty method



4 SUSANNE C. BRENNER AND LI-YENG SUNG

is: Find uk ∈ Vk such that

(2.2) Ak(uk, v) =

∫
Ω

fv dx ∀ v ∈ Vk.

For η sufficiently large, the bilinear form Ak(·, ·) is positive definite on Vk and we can
define the discrete energy norm ‖ · ‖Ak

by

(2.3) ‖v‖Ak
=

√
Ak(v, v) ∀ v ∈ Vk.

Note that Ak(ζ1, ζ2) is well-defined for ζ1, ζ2 ∈ H2+α(Ω)∩H2
0 (Ω), and in fact, Ak(ζ1, ζ2) =

a(ζ1, ζ2) because [[∂ζj/∂n]] = 0. In particular, in view of (1.2) and the Poincaré-Friedrichs
inequality [38],

(2.4) Ak(ζ, ζ) = a(ζ, ζ) ≈ |ζ |2H2(Ω) ∀ ζ ∈ H2+α(Ω) ∩H2
0(Ω).

However, Ak(·, ·) is not positive definite on the space Vk + [H2+α(Ω) ∩H2
0 (Ω)]. Therefore it

is necessary to introduce the following norm ‖ · ‖k for functions in Vk + [H2+α(Ω) ∩H2
0(Ω)]:

‖w‖2
k =

∑
D∈Tk

(
|w|2H2(D) + |w|2H1(D)

)
(2.5)

+
∑
e∈Ek

(
|e| ‖{{∂2w/∂n2}}‖2

L2(e) + |e|−1‖[[∂w/∂n]]‖2
L2(e)

)
.

From (2.5) it is easy to see that

(2.6) |Ak(w1, w2)| � ‖w1‖k‖w2‖k ∀w1, w2 ∈ Vk + [H2+α(Ω) ∩H2
0 (Ω)].

Furthermore, on Vk itself, we have (cf. (4.18), (4.20) and (4.25) of [24])

(2.7) |v|H2(Ω,Tk) ≤ ‖v‖k ≈ ‖v‖Ak
� |v|H2(Ω,Tk) ∀ v ∈ Vk,

where

(2.8) |v|2H2(Ω,Tk) =
∑
D∈Tk

|v|2H2(D) +
∑
e∈Ek

|e|−1‖[[∂v/∂n]]‖2
L2(e).

We deduce immediately from (2.7) and (2.8) that

(2.9) ‖v‖Ak
� ‖v‖Ak−1

∀ v ∈ Vk−1(⊂ Vk).

Let the operator Ak : Vk −→ V ′
k be defined by

(2.10) 〈Akv1, v2〉 = Ak(v1, v2) ∀ v1, v2 ∈ Vk,

where 〈·, ·〉 is the canonical bilinear form between a vector space and its dual. We can then
rewrite the discrete problem (2.2) as

Akuk = φk,

where φk ∈ V ′
k is defined by

〈φk, v〉 =

∫
Ω

fv dx ∀ v ∈ Vk.
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Multigrid algorithms [32, 35, 10, 17, 43] are iterative methods for the solution of equations
of the form

(2.11) Akz = ψ,

where ψ ∈ V ′
k and z ∈ Vk. In the descriptions of the multigrid algorithms below we will

denote the natural injection from Vk−1 to Vk by Ik
k−1 and its transpose from V ′

k to V ′
k−1 by

Ik−1
k , i.e.,

(2.12) 〈φ, Ik
k−1v〉 = 〈Ik−1

k φ, v〉 ∀φ ∈ V ′
k and v ∈ Vk−1.

We also need an operator Bk : Vk −→ V ′
k in the preconditioned relaxation scheme used

in the smoothing steps of the multigrid algorithms (cf. (2.18) and (2.20) below). Let Lk :
Vk −→ V ′

k be the discrete Laplace operator, i.e.,

(2.13) 〈Lkv1, v2〉 =

∫
Ω

∇v1 · ∇v2 dx ∀ v1, v2 ∈ Vk.

Since Vk is a standard finite element space for second order problems, it is natural to consider
L−1

k as a preconditioner for the fourth order discrete differential operator Ak. In order to
maintain the optimal complexity of multigrid algorithms, we use instead an approximation
Bk of Lk with the following properties:

(i) Bk is symmetric positive definite, i.e.,

〈Bkv1, v2〉 = 〈Bkv2, v1〉 ∀ v1, v2 ∈ Vk,(2.14)

〈Bkv, v〉 > 0 ∀ v ∈ Vk \ {0}.(2.15)

(ii) Bk is spectrally equivalent to the discrete Laplace operator in the sense that

(2.16) 〈Lkv, v〉 ≤ 〈Bkv, v〉 � 〈Lkv, v〉 = ‖∇v‖2
L2(Ω) ∀ v ∈ Vk.

(iii) Bk approximates Lk in the sense that, for some β ∈ (0, 1/2),

(2.17) |v − B−1
k Lkv|H1(Ω) � hβ

k‖v‖H1+β(Ω) ∀ v ∈ Vk.

(iv) The cost for computing B−1
k v is of order O(nk), where nk is the dimension of Vk.

Remark 2.2. Let B−1
k : V ′

k −→ Vk be the Poisson solve obtained by a symmetric V -cycle
algorithm, a symmetric W -cycle algorithm or a symmetric variable V -cycle algorithm. Then
Bk satisfies the properties (i), (ii) and (iv). If B−1

k is the Poisson solve obtained by a sym-
metric W -cycle algorithm with a sufficiently large number of smoothing steps or a symmetric
variable V -cycle algorithm, then the operator Bk also satisfies the property (iii). Details can
be found in Appendix A.

Algorithm 2.3. (V -cycle Algorithm)

MGV (k, ψ, z0, m) is the approximate solution of (2.11) with initial guess z0 obtained as
follows. If k = 0, we use a direct solve to obtain A−1

0 ψ as the output of the V -cycle
algorithm. If k ≥ 1, we compute MGV (k, ψ, z0, m) recursively in three steps.
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Pre-smoothing For 1 ≤ j ≤ m, compute zj recursively by

(2.18) zj = zj−1 + γkB
−1
k (ψ − Akzj−1),

where γ−1
k dominates the spectral radius of the operator B−1

k Ak : Vk −→ Vk.

Coarse Grid Correction Compute

(2.19) zm+1 = zm + Ik
k−1MGV (k − 1, �k−1, 0, m),

where �k−1 = Ik−1
k (ψ − Akzm) is the transferred residual of zm.

Post-smoothing For m+ 2 ≤ j ≤ 2m+ 1, compute zj recursively by

(2.20) zj = zj−1 + γkB
−1
k (ψ − Akzj−1).

The final output of the V -cycle algorithm is

(2.21) MGV (k, ψ, z0, m) = z2m+1.

Algorithm 2.4. (W -cycle Algorithm)

If we replace the coarse grid correction step of Algorithm 2.3 by the following procedure, we
have the W -cycle algorithm whose output will be denoted by MGW (k, ψ, z0, m).

Coarse Grid Correction for the W -cycle Compute e1, e2 ∈ Vk−1 by

(2.22) ej = MGW (k − 1, �k−1, ej−1, m) for 1 ≤ j ≤ 2,

where e0 = 0, and set

(2.23) zm+1 = zm + Ik
k−1e2.

Algorithm 2.5. (F -cycle Algorithm)

If we replace the coarse grid correction step of Algorithm 2.3 by the following procedure, we
have the F -cycle algorithm whose output will be denoted by MGF (k, ψ, z0, m).

Coarse Grid Correction for the F -cycle Let e0 = 0 ∈ Vk−1. Compute e1, e2 ∈ Vk−1 by

e1 = MGF (k − 1, �k−1, e0, m),

e2 = MGV (k − 1, �k−1, e1, m),

and set zm+1 by (2.23).

Algorithm 2.6. (Variable V -cycle Algorithm)

If the numbers of smoothing steps in Algorithm 2.3 on different levels are allowed to be
different, we have a variable V -cycle algorithm.
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3. Mesh-Dependent Norms and Preliminary Estimates

In this section we introduce mesh-dependent norms and derive some preliminary estimates.
First of all, because of (2.14) and (2.15), we can introduce a discrete inner product [5] related
to the preconditioner in the smoothing steps:

(3.1) (v1, v2)k = 〈Bkv1, v2〉 ∀ v1, v2 ∈ Vk.

It follows from (2.10) and (3.1) that the operator Ak = B−1
k Ak : Vk −→ Vk satisfies

(3.2) (Akv1, v2)k = Ak(v1, v2) ∀ v1, v2 ∈ Vk.

It is clear from (1.2) and (3.2) that Ak is symmetric positive definite with respect to the
inner product (·, ·)k. Furthermore, it follows from (2.3), (2.8), (2.7), (2.16) and standard
inverse estimates [26, 23] that the spectral radius ρ(Ak) of Ak satisfies

(3.3) ρ(Ak) � h−2
k .

Therefore we can take the parameter γk in (2.18) and (2.20) to be Ch2
k (≥ ρ(Ak)), where the

positive constant C is mesh-independent.

Remark 3.1. In terms of the inner product (·, ·)k the smoothing steps in (2.18) and (2.20)
are just Richardson relaxation steps.

Remark 3.2. Using (3.3) it is not difficult to show that the condition number of Ak (in the
energy norm) is of order O(h−2

k ). On the other hand the condition number of the fourth order
discrete differential operator Ak (with respect to the natural nodal basis) is of order O(h−4

k ).
The reduction in the order of the condition number of Ak greatly improves the performance
of the multigrid algorithms (cf. Remark 4.2, and Table 1 and Table 4 in Section 7).

For s ∈ R, we define the mesh-dependent norm ||| · |||s,k by

(3.4) |||v|||s,k = (As
kv, v)

1/2
k ∀ v ∈ Vk.

It is clear from (2.3), (2.16), (3.1), (3.2) and (3.4) that

|||v|||0,k =
√

(v, v)k =
√

〈Bkv, v〉 ≈ |v|H1(Ω) ∀ v ∈ Vk,(3.5)

|||v|||1,k = ‖v‖Ak
∀ v ∈ Vk.(3.6)

The following well-known properties [6] of mesh-dependent norms follow immediately from
(3.2)–(3.4) and the Cauchy-Schwarz inequality:

|||v|||s,k � ht−s
k |||v|||t,k ∀ v ∈ Vk and 0 ≤ t ≤ s ≤ 2,(3.7)

|||v|||1+s,k = sup
w∈Vk\0

Ak(v, w)

|||w|||1−s,k
∀ v ∈ Vk and s ∈ R.(3.8)

Our convergence analysis in subsequent sections relies on the elliptic regularity estimate
(1.3). Therefore a relation between the Sobolev norms and the mesh-dependent norms is
crucial. For conforming methods such a relation is easy to derive. However, since Vk ⊂
H2

0 (Ω), additional work is required here.
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Figure 1. Q2 Lagrange C0 element and Q4 Bogner-Fox-Schmit C1 element

The key ingredient for building a link between Sobolev norms and mesh-dependent norms
is the existence [24] of a C1 finite element which is a relative [18, 19] of the Q� element in
the sense that (i) the shape functions of the Q� element are also shape functions of the C1

element and (ii) the nodal variables (degrees of freedom) of the Q� element are also nodal
variables of the C1 element.

Remark 3.3. For example a conforming relative (cf. Figure 1) for the rectangularQ2 Lagrange
element is the Q4 element in the Bogner-Fox-Schmit family [8] whose nodal variables (degrees
of freedom) are (i) the evaluations of the shape functions (denoted by the dot •) at the nine
nodes of the Q2 Lagrange element, (ii) the evaluations of the normal derivatives of the shape
functions (denoted by the arrow ↑) at the midpoints of the four edges, (iii) the evaluations
of the gradients (denoted by the circle �) at the four corners, and (iv) the evaluations of
the mixed derivatives (denoted by the tilted double arrow ) at the four corners.

Let Ṽk ⊂ H2
0(Ω) be the finite element space defined by the C1 element. Then we can

construct a linear map Ek : Vk −→ Ṽk by averaging such that the following properties hold:

ΠkEkv = v ∀ v ∈ Vk,(3.9)

‖Ekv‖H2(Ω) � ‖v‖Ak
∀ v ∈ Vk,(3.10)

‖Ekv‖H1+s(Ω) ≈ ‖v‖H1+s(Ω) ∀ v ∈ Vk, 0 ≤ s <
1

2
,(3.11)

where Πk : C0(Ω̄) −→ Vk is the nodal interpolation operator.

Remark 3.4. The relation (3.9) and the estimate (3.10) can be found in [24] ((3.30) and
Lemma 3). The estimate (3.11) can be proved by the arguments in Lemma 9 of [24], where
the special case s = 1 − α is established.

Note also that the following estimates (cf. (3.16) and (3.18) of [24]) hold for Πk:

‖Πkζ‖Ak
� ‖ζ‖H2(Ω) ∀ ζ ∈ H2

0 (Ω),(3.12)

|ζ − Πkζ |H1(Ω) � hk‖ζ‖H2(Ω) ∀ v ∈ H2
0 (Ω),(3.13)

‖ζ − Πkζ‖k � hα
k‖ζ‖H2+α(Ω) ∀ζ ∈ H2+α(Ω),(3.14)
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where ‖ · ‖k is the norm defined in (2.5). Furthermore, because the finite elements are
relatives, the following discrete estimate is a consequence of the equivalence of norms on
finite dimensional vector spaces:

(3.15) |Πkṽ|H1(Ω) � |ṽ|H1(Ω) ∀ v ∈ Ṽk.

The following lemma gives useful two-level estimates for the nodal interpolation operator.

Lemma 3.5. The following estimates hold for the nodal interpolation operator :

‖Πkζ − Πk−1ζ‖Ak
� hα

k‖ζ‖H2+α(Ω) ∀ ζ ∈ H2+α(Ω),(3.16)

|ζ − Πk−1Πkζ |H2(Ω,Tk−1) � hα
k‖ζ‖H2+α(Ω) ∀ ζ ∈ H2+α(Ω),(3.17)

‖Πk−1v‖Ak−1
� ‖v‖Ak

∀ v ∈ Vk,(3.18)

|v − Πk−1v|H1(Ω) � hk‖v‖Ak
∀ v ∈ Vk,(3.19)

‖v − Πk−1v‖H2−α(Ω) � hα
k‖v‖Ak

∀ v ∈ Vk.(3.20)

Proof. We obtain from (2.7), (2.8) and scaling

(3.21) ‖Πkζ − Πk−1ζ‖2
Ak

�
∑
D∈Tk

(
|Πkζ − Πk−1ζ |2H2(D) + (diamD)−2|Πkζ − Πk−1ζ |2H1(D)

)
.

Since (Πk − Πk−1)p = 0 on D for any quadratic polynomial p defined on the subdomain
of Tk−1 that contains D ∈ Tk, the estimate (3.16) follows from (3.21), the Bramble-Hilbert
lemma [11, 28] and the standard estimate [26, 23]

|Πkζ |H2(D) � |ζ |H2(D) ∀ ζ ∈ H2
0 (Ω), D ∈ Tk.

The proof of (3.17) is similar.
In view of (2.7) and (2.8), the estimate (3.19) is a consequence of

(3.22) |v − Πk−1v|2H1(D) � (diamD)2
( ∑

D′∈Tk
D′⊂D

|v|2H2(D′) +
∑
e⊂Ek
e⊂D

|e|−1‖[[∂v/∂n]]‖2
L2(e)

)

for all v ∈ Vk and D ∈ Tk−1. Since the quadrilaterals in Tk for k ≥ 0 are shape regular, we

can establish (3.22) by proving the following estimate on the reference square D̂:

(3.23) |v̂ − v̂I|2
H1(D̂)

�
4∑

j=1

|v̂|2
H2(D̂j)

+
4∑

j=1

‖[[∂v̂/∂n]]‖2
L2(êj)

∀ v ∈ V̂ ,

where V̂ ⊂ H1(D̂) is the (finite dimensional) space of continuous functions whose members

belong to the polynomial space Q�(D̂j) for each of the four sub-squares D̂j (cf. Figure 2),

v̂I ∈ Q�(D̂) agrees with v̂ at the nodes of the Q� element on D̂, and êj for 1 ≤ j ≤ 4 are
interfaces of the sub-squares. Now the estimate (3.23) follows from the observation that the

square root of the right-hand side of (3.23) defines a norm on the quotient space V̂ /P1(D̂)

while the square root of the left-hand side defines a semi-norm on V̂ /P1(D̂).
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2D

e

1
1D

e

e
3D4D

4

3

2

e

Figure 2. A subdivided referenced square D̂

The estimate (3.20) follows from (3.19) and the inverse estimate [7]

(3.24) |v|H1+s(Ω) � h−s
k |v|H1(Ω) ∀ v ∈ Vk,

where 0 < s < 1/2.
Finally we derive (3.18) using (2.7), (2.8), (3.22), a trace theorem (with scaling) and a

standard inverse estimate:

‖Πk−1v‖2
Ak−1

�
∑

D∈Tk−1

|Πk−1v|2H2(D) +
∑
e∈Ek

|e|−1‖[[∂(Πk−1v)/∂n]]‖2
L2(e)

�
∑
D∈Tk

|v − Πk−1v|2H2(D) +
∑
D∈Tk

|v|2H2(D) +
∑
e∈Ek

|e|−1‖[[∂(v − Πk−1v)/∂n]]‖2
L2(e)

+
∑
e∈Ek

|e|−1‖[[∂v/∂n]]‖2
L2(e)

�
∑
D∈Tk

(diamD)−2|v − Πk−1v|2H1(D) + ‖v‖2
Ak

� ‖v‖2
Ak

∀ v ∈ Vk.

�
In the other direction we can also construct a map from the Sobolev spaces into Vk.

Lemma 3.6. There exists a linear map Jk : L2(Ω) −→ Vk with the following properties:

JkEkv = v ∀ v ∈ Vk,(3.25)

‖Jkv‖Ak
� ‖v‖H2(Ω) ∀ v ∈ H2

0 (Ω),(3.26)

|Jkv|H1(Ω) � |v|H1(Ω) ∀ v ∈ H1
0 (Ω).(3.27)

Proof. We define Jk by

(3.28) Jkv = ΠkQkv ∀ v ∈ L2(Ω),

where Qk : L2(Ω) −→ Ṽk is the L2 orthogonal projection operator. The relation (3.25) is an
obvious consequence of (3.9).

Regarding Qk we have the estimates [16]

‖Qkv‖H2(Ω) � ‖v‖H2(Ω) ∀ v ∈ H2
0(Ω),(3.29)
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‖Qkv‖H1(Ω) � ‖v‖H1(Ω) ∀ v ∈ H1
0(Ω).(3.30)

The estimates (3.26) and (3.27) follow immediately from (3.12), (3.15) and (3.28)–(3.30). �
Lemma 3.7. It holds that

(3.31) |||v|||s,k ≈ ‖Ekv‖H1+s(Ω) ∀ v ∈ Vk

provided 0 ≤ s ≤ 1 and s = 1/2.

Proof. From (3.5), (3.6), (3.10) and (3.11) we have

‖Ekv‖H2(Ω) � |||v|||1,k ∀ v ∈ Vk,

‖Ekv‖H1(Ω) � |||v|||0,k ∀ v ∈ Vk,

which implies, by operator interpolation theory for Hilbert scales [42, 33, 10],

(3.32) ‖Ekv‖H1+s(Ω) � |||v|||s,k ∀ v ∈ Vk.

On the other hand, from (3.5), (3.6), (3.26), (3.27) and interpolation, we have

(3.33) |||Jkv|||s,k � ‖v‖H1+s(Ω) ∀ v ∈ H1+s
0 (Ω),

which together with (3.25) implies

(3.34) |||v|||s,k = |||JkEkv|||1+s,k � ‖Ekv‖H1+s(Ω) ∀ v ∈ Vk.

�
Remark 3.8. The norm equivalence (3.31) is also valid for s = 1/2 provided the norm on the
right-hand side is replaced by the norm ‖ · ‖H1+s

00 (Ω) (cf. [34, 42]).

From (3.11) and (3.31) we immediately obtain the following corollary which provides the
link between mesh-dependent norms and Sobolev norms.

Corollary 3.9. It holds that

(3.35) |||v|||s,k ≈ ‖v‖H1+s(Ω) ∀ v ∈ Vk,

provided 0 ≤ s < 1/2.

Let J∗
k be the adjoint of Jk with respect to the bilinear form a(·, ·) for the continuous

problem and the bilinear form Ak(·, ·) for the discrete problem, i.e., J∗
k : Vk −→ H2

0 (Ω)
satisfies

(3.36) a(J∗
kv, w) = Ak(v, Jkw) ∀ v ∈ Vk, w ∈ H2

0 (Ω).

The following lemma on J∗
k will be useful in the convergence analysis of V -cycle and F -cycle

algorithms.

Lemma 3.10. Let ζk ∈ Vk and

(3.37) φ(v) = Ak(ζk, Jkv) ∀ v ∈ H2
0 (Ω).

Then φ ∈ H−2+α(Ω),

‖φ‖H−2+α(Ω) � |||ζk|||1+α,k,(3.38)
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and

Ak(ζk, v) = φ(Ekv) ∀ v ∈ Vk.(3.39)

Furthermore, ζ = J∗
kζk ∈ H2+α(Ω) ∩H2

0 (Ω),

a(ζ, w) = φ(w) ∀w ∈ H2
0 (Ω),(3.40)

‖ζ‖H2+α(Ω) � |||ζk|||1+α,k,(3.41)

and the following estimates hold :

‖ζ − ζk‖k � hα
k |||ζk|||1+α,k,(3.42)

‖ζ − ζk‖H2−α(Ω) � h2α
k |||ζ |||1+α,k.(3.43)

Proof. From (3.8), (3.33) and (3.37) we have

(3.44) φ(v) ≤ |||ζk|||1+α,k|||Jkv|||1−α,k � |||ζk|||1+α,k‖v‖H2−α(Ω),

which means that φ ∈ H−2+α(Ω) and (3.38) is valid.
Equation (3.40) follows immediately from (3.36) and (3.37). Then J∗

kζk ∈ H2+α(Ω) by
elliptic regularity and (3.41) follows from (1.3) and (3.38).

Finally (3.25) and (3.37) imply (3.39). Therefore ζk is the solution of a modified C0 interior
penalty method for (3.40) studied in [24] and the error estimates (3.42) and (3.43) follow
from Theorem 4 and Theorem 6 of [24]. �

4. Results for W -Cycle and Variable V -Cycle Algorithms

In this section we establish the results for W -cycle and V -cycle algorithms. There are two
ingredients in the analysis: the smoothing property and the approximation property.

The effect of one smoothing step in (2.18) and (2.20) is measured by the operator

(4.1) Rk = Idk − γkAk,

where Idk is the identity operator on Vk. The proof of the following result which controls
the effect of the smoothing steps can be found for example in [32, 23].

Lemma 4.1. It holds that

|||Rm
k v|||s,k � ht−s

k m(t−s)/2|||v|||t,k ∀ v ∈ Vk and 0 ≤ t ≤ s ≤ 2.

Remark 4.2. Without the preconditioner B−1
k , the smoothing property becomes (for appro-

priately defined mesh-dependent norms)

|||Rm
k v|||s,k � ht−s

k m(t−s)/4|||v|||t,k.
In other words, the effect of m smoothing steps without preconditioning is equivalent to
the smoothing effect of

√
m many smoothing steps with preconditioning. Therefore the

preconditioner greatly enhances the performance of the multigrid algorithms (cf. Table 1
and Table 4 in Section 7).
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To control the effect of coarse grid correction, we first recall the following well-known
relation between the exact solution of the coarse grid residual equation Ak−1êk−1 = �k−1 and
the error z − zm:

êk−1 = P k−1
k (z − zm),

where the operator P k−1
k : Vk −→ Vk−1 defined by

(4.2) Ak−1(P
k−1
k v, w) = Ak(v, I

k
k−1w) ∀ v ∈ Vk−1, w ∈ Vk.

The approximation property in the following result then controls the effect of coarse grid
correction.

Lemma 4.3. It holds that

(4.3) |||(Idk − Ik
k−1P

k−1
k )v|||1−α,k � h2α

k |||v|||1+α,k ∀ v ∈ Vk,

where α is the index of elliptic regularity in (1.3).

Proof. Let v ∈ Vk be arbitrary. We will establish (4.3) by a duality argument. Using the
norm equivalence in Corollary 3.9 (with s = 1 − α) and duality, we find

|||(Idk − Ik
k−1P

k−1
k )v|||1−α,k ≈ ‖(Idk − Ik

k−1P
k−1
k )v‖H2−α(Ω)(4.4)

= sup
φ∈H−2+α(Ω)\{0}

φ((Idk − Ik
k−1P

k−1
k )v)

‖φ‖H−2+α(Ω)

.

Let φ ∈ H−2+α(Ω) be arbitrary and define ζ ∈ H2
0(Ω), ζk ∈ Vk and ζk−1 ∈ Vk−1 by

a(ζ, v) = φ(v) ∀ v ∈ H2
0 (Ω),(4.5)

Ak(ζk, v) = φ(v) ∀ v ∈ Vk,(4.6)

Ak−1(ζk−1, v) = φ(v) ∀ v ∈ Vk−1.(4.7)

In other words, ζk and ζk−1 are the approximations of ζ obtained by the C0 interior penalty
method, and the following error estimates (cf. Theorem 5 of [24]) are valid:

‖ζ − ζk‖H2−α(Ω) � h2α
k ‖φ‖H−2+α(Ω),(4.8)

‖ζ − ζk−1‖H2−α(Ω) � h2α
k−1‖φ‖H−2+α(Ω).(4.9)

From (4.6) and (4.7) we have

Ak−1(ζk−1, v) = Ak(ζk, I
k
k−1v) ∀ v ∈ Vk−1,

which implies (cf. (4.2))

(4.10) ζk−1 = P k−1
k ζk.

We can now estimate the numerator in (4.4) by (2.1), (3.8), (4.2), (4.6) and (4.8)–(4.10)
as follows:

φ((Idk − Ik
k−1P

k−1
k )v) = Ak(ζk, v) −Ak(ζk, I

k
k−1P

k−1
k v)

= Ak(ζk, v) −Ak−1(P
k−1
k ζk, P

k−1
k v)
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= Ak(ζk, v) −Ak−1(ζk−1, P
k−1
k v)

= Ak(ζk − Ik
k−1ζk−1, v)(4.11)

≤ |||ζk − ζk−1|||1−α,k|||v|||1+α,k

� ‖ζk − ζk−1‖H2−α(Ω)|||v|||1+α,k

≤
(
‖ζk − ζ‖H2−α(Ω) + ‖ζ − ζk−1‖H2−α(Ω)

)
|||v|||1+α,k

� h2α
k ‖φ‖H−2+α(Ω)|||v|||1+α,k.

The estimate (4.3) follows from (4.4) and (4.11). �

The following corollary is immediate from (3.7) and (4.3).

Corollary 4.4. It holds that

(4.12) |||(Idk − Ik
k−1P

k−1
k )v|||1−α,k � hα

k |||v|||1,k ∀ v ∈ Vk.

We can now apply the theory developed in [19] (Theorem 4.3, Theorem 4.4, Lemma 4.7
and Theorem 4.8, where the results in [15] for the variable V -cycle is used) to derive the
following results for W -cycle and V -cycle algorithms.

Theorem 4.5. The output MGW (k, ψ, z0, m) of the W -cycle algorithm (Algorithm 2.4 )
applied to (2.11) satisfies the following estimate :

‖z −MGW (k, ψ, z0, m)‖Ak
≤ C

mα
‖z − z0‖Ak

,

where the positive constant C is mesh-independent, provided that the number of smoothing
steps m is greater than a positive integer m∗ that is also mesh-independent.

Theorem 4.6. The variable V -cycle algorithm (Algorithm 2.6 ) is an optimal preconditioner
provided the following relation is satisfied by mk (the number of smoothing steps on level k) :

(4.13) β0mk ≤ mk−1 ≤ β1mk,

where 1 < β0 ≤ β1.

Remark 4.7. Theorems 4.5 and 4.6 have been obtained for preconditioners that satisfy (2.14)–
(2.16). Therefore they are valid for B−1

k obtained by a symmetric V -cycle algorithm, a sym-
metric W -cycle algorithm or a variable V -cycle algorithm (cf. Remark 2.2 and Appendix A).

Finally we note that (3.7), Corollary 3.9 and Corollary 4.4 imply

|||P k−1
k v|||1−α,k ≈ ‖P k−1

k v‖H2−α(Ω)

≤ ‖v‖H2−α(Ω) + ‖v − P k−1
k v‖H2−α(Ω)(4.14)

� |||v|||1−α,k + hα
k |||v|||1,k � |||v|||1−α,k ∀ v ∈ Vk.

The estimate (4.14) will be used in the convergence analysis of V -cycle and F -cycle algo-
rithms.
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5. Additive Multigrid Theory

In this section we briefly review the additive multigrid theory [20, 22] which will be used
in the convergence analysis of V -cycle and F -cycle algorithms in Section 6.

Let Ek,m : Vk −→ Vk be the error propagation operator for the k-th level V -cycle algorithm,
i.e., z −MGV (k, ψ, z0, m) = Ek,m(z − z0), where MGV (k, ψ, z0, m) is the approximate solu-
tion of (2.11) obtained by the V -cycle algorithm. The operators Ek satisfy the well-known
recurrence relation [32, 35]

(5.1) Ek,m = Rm
k (Idk − Ik

k−1P
k−1
k + Ik

k−1Ek−1,mP
k−1
k )Rm

k

and the initial condition Ek = 0. Iterating (5.1) leads to the following additive expression
[20, 22] for Ek:

(5.2) Ek,m =

k∑
j=2

Tk,j,mR
m
j (Idj − Ij

j−1P
j−1
j )Rm

j Tj,k,m,

where (for j < k) Tk,j,m is the multilevel operator Rm
k I

k
k−1 · · ·Rm

j+1I
j+1
j from Vj into Vk,

Tj,k,m = P j
j+1R

m
j · · ·P k−1

k Rm
k is the adjoint operator of Tk,j,m with respect to Ak(·, ·), and

Tk,k,m = Idk.
A convergence theory for the V -cycle algorithm was developed in [20, 21] for second

order problems. It yields the asymptotic behavior of the contraction numbers, which when
combined with the results from the multiplicative theory [14, 45, 12, 13] provides a complete
generalization of the classical result of Braess and Hackbusch [9] to the case of less than full
elliptic regularity. This additive theory was extended to V -cycle and F -cycle algorithms for
classical nonconforming finite elements in [22, 46, 47].

Note the operator Rm
j (Idj−Ij

j−1P
j−1
j )Rm

j that appears in (5.2) is already controlled by the
smoothing property (Lemma 4.1) and the approximation property (Lemma 4.3). Therefore
the key in the additive approach is to control the multilevel operators Tk,j,m and Tj,k,m. This
in turn requires a careful comparison of the mesh-dependent norms on consecutive levels. In
this regard the following assumptions of the additive theory [20, 22] need to be verified:

|||Ik
k−1v|||21,k ≤ (1 + θ2)|||v|||21,k−1 + C1θ

−2h2µ
k |||v|||21+µ,k−1 ∀ v ∈ Vk−1,(5.3)

|||Ik
k−1v|||21−τ,k ≤ (1 + θ2)|||v|||21−τ,k−1 + C2θ

−2h2τ
k |||v|||21,k−1 ∀ v ∈ Vk−1,(5.4)

|||P k−1
k v|||21−τ,k ≤ (1 + θ2)|||v|||21−τ,k + C3θ

−2h2τ
k |||v|||21,k ∀ v ∈ Vk,(5.5)

where θ ∈ (0, 1) is arbitrary, µ and τ are two parameters strictly between 0 and 1, and the
positive constants C1, C2 and C3 are independent of the meshes and θ.

Furthermore, we also need the following approximation property which is particular to
nonconforming methods where the energy norm is not preserved by the coarse-to-fine inter-
grid transfer operator Ik

k−1:

(5.6) |||(Idk−1 − P k−1
k Ik

k−1)v|||1−µ,k−1 � hµ
k |||v|||1,k−1 ∀ v ∈ Vk−1.
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Remark 5.1. The estimates (5.3) and (5.6) together imply that (cf. Lemma 4.2 of [22]), for
j ≤ k,

(5.7) |||Tk,j,mv|||1,k � |||v|||1,j ∀ v ∈ Vj,

provided that m is sufficiently large. We can then use (5.4), (5.5) and (5.7) to derive (cf.
Lemmas 4.4–4.6 of [22]), for j ≤ k, the following crucial estimate in the additive theory:

(5.8) |||Tj,k,mTk,j,mv|||1−τ,j � |||v|||1−τ,j ∀ v ∈ Vj,

provided m is sufficiently large. The convergence of V -cycle algorithm for sufficiently large m
follows from (5.8) and an argument based on a strengthened Cauchy-Schwarz inequality. The
convergence of the F -cycle algorithm can then be established by a perturbation argument.

Therefore the heart of our convergence analysis of V -cycle and F -cycle algorithms is
the derivation of the estimates (5.3)–(5.6), where there is a lot of freedom in choosing the
parameters µ and τ .

We will prove the estimate (5.6) for µ = α (the index of elliptic regularity in (1.3)) in this
section and take up the estimates (5.3)–(5.5) in Section 6. The following lemma is a stronger
version of (5.6).

Lemma 5.2. It holds that

(5.9) |||(Idk−1 − P k−1
k Ik

k−1)v|||1−α,k−1 � h2α
k |||v|||1+α,k−1 ∀ v ∈ Vk−1.

Proof. Let v ∈ Vk−1 be arbitrary and define φ ∈ H2
0 (Ω) by

(5.10) φ(w) = Ak−1(v, Jk−1w) ∀w ∈ H2
0 (Ω),

where Jk−1 : H2
0 (Ω) −→ Vk−1 is the map in Lemma 3.6. From Lemma 3.10 we have φ ∈

H−2+α(Ω) and

(5.11) ‖φ‖H−2+α(Ω) � |||v|||1+α,k−1.

Let ζ = J∗
k−1v. Again, from Lemma 3.10 we have ζ ∈ H2+α(Ω) ∩H2

0 (Ω), and

(5.12) ‖ζ − v‖H2−α(Ω) � h2α
k−1|||v|||1+α,k−1.

Finally we define ζk ∈ Vk to be the solution of the following variational problem:

(5.13) Ak(ζk, w) = φ(w) ∀w ∈ Vk,

i.e., ζk is the solution of the C0 interior penalty method for (4.5). Therefore we have the
following error estimate (cf. Theorem 5 of [24]):

(5.14) ‖ζ − ζk‖H2−α(Ω) � h2α
k ‖φ‖H−2+α(Ω).

Moreover, from Corollary 3.9, (5.11) and (5.13) we have

Ak(ζk, w) ≤ ‖φ‖H−2+α(Ω)‖w‖H2−α(Ω) � |||v|||1+α,k−1|||w|||1−α,k ∀w ∈ Vk,

which together with (3.8) implies that

(5.15) |||ζk|||1+α,k � |||v|||1+α,k−1.



MULTIGRID FOR C0 INTERIOR PENALTY METHODS 17

We can now use (2.1), Corollary 3.9, (4.3), (4.14), (5.11), (5.12), (5.14) and (5.15) to
complete the proof of the lemma as follows:

|||(Idk−1 − P k−1
k Ik

k−1)v|||1−α,k−1 ≤ |||v − P k−1
k ζk|||1−α,k−1 + |||P k−1

k (ζk − v)|||1−α,k−1

� ‖v − P k−1
k ζk‖H2−α(Ω) + |||ζk − v|||1−α,k

� ‖v − ζk‖H2−α(Ω) + ‖ζk − P k−1
k ζk‖H2−α(Ω)

� ‖v − ζ‖H2−α(Ω) + ‖ζ − ζk‖H2−α(Ω) + |||(Idk − Ik
k−1P

k−1
k )ζk|||1−α,k

� h2α
k |||v|||1+α,k−1 + h2α

k |||ζk|||1+α,k � h2α
k |||v|||1+α,k−1.

�

The following corollary is an immediate consequence of (3.7) and (5.9).

Corollary 5.3. The estimate (5.6) holds for µ = α.

Finally we prove a useful relation between the mesh-dependent norm |||·|||0,k and the Sobolev
norm | · |H1(Ω) that will be used in the derivation of (5.3)–(5.5). We will use C in the proof of
the following lemma (and others in Section 6) to denote a generic mesh-independent positive
constant that can take different values at different occurrences.

Lemma 5.4. It holds that

(5.16) |||v|||20,k ≤ (1 + θ2)|v|2H1(Ω) + C4θ
−2h2β

k |||v|||2β,k ∀ v ∈ Vk, 0 < θ < 1,

where β is the number in (2.17) and the positive constant C4 is mesh-independent.

Proof. Let θ ∈ (0, 1) and v ∈ Vk be arbitrary. From (1.7), (2.13), (2.17), (3.5) and Corol-
lary 3.9 we have

|||v|||20,k = 〈Bkv, v〉
= 〈Lkv, v〉 + 〈Bk(Idk −B−1

k Lk)v, v〉
≤ |v|2H1(Ω) + |||(Idk −B−1

k Lk)v|||0,k|||v|||0,k

≤ |v|2H1(Ω) + θ2|||v|||20,k + Cθ−2h2β
k ‖v‖2

H1+β(Ω)

≤ (1 + Cθ2)|v|2H1(Ω) + Cθ−2h2β
k |||v|||2β,k,

which is equivalent to (5.16) because θ is arbitrary. �

6. Results for V -Cycle and F -Cycle Algorithms

In this section we will complete the convergence analysis of V -cycle and F -cycle algorithms
by deriving the estimates (5.3)–(5.5). We shall take the parameter µ in (5.3) to be α and
the parameter τ in (5.4)–(5.5) to be the number β that appears in (2.17).
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Lemma 6.1. The estimate (5.3) holds for µ = α.

Proof. Let v ∈ Vk−1 and θ ∈ (0, 1) be arbitrary, and ζ = J∗
k−1v. It follows from (2.1) and

Lemma 3.10 that ζ ∈ H2+α(Ω) ∩H2
0 (Ω),

(6.1) ‖ζ‖H2+α(Ω) � |||v|||1+α,k−1,

and

(6.2) ‖ζ − v‖k−1 � hα
k |||v|||1+α,k−1.

Let Πkζ ∈ Vk and Πk−1ζ ∈ Vk−1 be the nodal interpolants of ζ . From (2.7), (3.14), (3.16),
(6.1) and (6.2), we have

‖v − Πk−1ζ‖Ak−1
≤ ‖v − ζ‖k−1 + ‖ζ − Πk−1ζ‖k−1 � hα

k |||v|||1+α,k−1,(6.3)

‖Πkζ − Πk−1ζ‖Ak
� hα

k |||v|||1+α,k−1.(6.4)

Using (1.8), (2.9), (3.6), (6.3) and (6.4) we find

|||Ik
k−1v|||21,k = ‖v‖2

Ak

≤
(
‖Πk−1ζ‖Ak

+ ‖v − Πk−1ζ‖Ak

)2

≤ (1 + θ2)‖Πk−1ζ‖2
Ak

+ Cθ−2‖v − Πk−1ζ‖2
Ak−1

(6.5)

≤ (1 + θ2)
(
‖Πkζ‖Ak

+ ‖Πkζ − Πk−1ζ‖Ak

)2
+ Cθ−2h2α

k |||v|||21+α,k−1

≤ (1 + θ2)2‖Πkζ‖2
Ak

+ Cθ−2h2α
k |||v|||21+α,k−1.

On the other hand, from (1.7), (2.3), (2.4), (2.6), (2.7), (3.6), (3.12), (3.14), (6.1), we have

‖Πkζ‖2
Ak

= Ak(Πkζ,Πkζ)

= Ak(ζ, ζ)−Ak(Πkζ − ζ,Πkζ − ζ) + 2Ak(Πkζ − ζ,Πkζ)

≤ Ak(ζ, ζ) + C‖Πkζ − ζ‖2
k + C‖Πkζ − ζ‖k‖Πkζ‖Ak

(6.6)

≤ (1 + θ2)Ak(ζ, ζ) + Cθ−2‖Πkζ − ζ‖2
k

≤ (1 + θ2)Ak−1(ζ, ζ) + Cθ−2h2α
k |||v|||21+α,k−1,

and similarly,

Ak−1(ζ, ζ) = Ak−1(v, v) + Ak−1(ζ − v, ζ − v) + 2Ak−1(ζ − v, v)

≤ Ak−1(v, v) + C‖ζ − v‖2
k + C‖ζ − v‖k‖v‖Ak

(6.7)

≤ (1 + θ2)Ak−1(v, v) + Cθ−2‖ζ − v‖2
k

≤ (1 + θ2)|||v|||21,k−1 + Cθ−2h2α
k |||v|||21+α,k−1.

Combining (6.5)–(6.7) we find

|||Ik
k−1v|||21,k ≤ (1 + θ2)4‖v‖2

Ak−1
+ Cθ−2h2α

k |||v|||21+α,k−1,

which implies (5.3) because θ ∈ (0, 1) is arbitrary. �
Since 0 < β < 1/2 < α, the estimates (3.7) and (5.3) imply the following corollary.
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Corollary 6.2. It holds that

(6.8) |||Ik
k−1v|||21,k ≤ (1 + θ2)|||v|||21,k−1 + C ′

1θ
−2h2β

k |||v|||21+β,k−1 ∀ v ∈ Vk−1,

where the positive constant C ′
1 is mesh-independent.

Lemma 6.3. The estimate (5.4) holds for τ = β.

Proof. Let θ ∈ (0, 1) be arbitrary. From (2.16) and (5.16) we have

(6.9) |||Ik
k−1v|||20,k ≤ (1 + θ2)|||v|||20,k−1 + C4θ

−2h2β
k |||v|||2β,k−1 ∀ v ∈ Vk−1.

Let the inner product ((·, ·))k−1,θ on Vk−1 be defined by

(6.10) ((v1, v2))k−1,θ = (1 + θ2)(v1, v2)k−1 + C2θ
−2h2β

k (Aβ
k−1v1, v2)k−1 ∀ v1, v2 ∈ Vk−1,

where C2 = max(C ′
1, C4) is the maximum of the mesh-independent constants in (6.8) and

(6.9). Note that Ak−1 is symmetric positive definite with respect to the inner product
((·, ·))k−1,θ.

In view of (3.4) and (6.10), the estimates (6.8) and (6.9) imply

|||Ik
k−1v|||20,k ≤ ((A0

kv, v))k−1,θ ∀ v ∈ Vk−1,(6.11)

|||Ik
k−1v|||21,k ≤ ((A1

kv, v))k−1,θ ∀ v ∈ Vk−1.(6.12)

It follows from (3.4), (6.10)–(6.12) and interpolation between Hilbert scales that

|||Ik
k−1v|||21−β,k ≤ ((A1−β

k v, v))2
k−1,θ ≤ (1 + θ2)|||v|||21−β,k + C2θ

−2h2β
k |||v|||21,k−1 ∀ v ∈ Vk−1.

�
We now turn to the estimate (5.5). First we have to establish certain two-level estimates

for the nodal interpolation operator with respect to the mesh-dependent norms.

Lemma 6.4. The following estimate holds:

(6.13) |||Πk−1v|||21,k−1 ≤ (1 + θ2)|||v|||21,k + C�h
2α
k |||v|||21+α,k ∀ v ∈ Vk, θ ∈ (0, 1),

where the constant C� is mesh-independent.

Proof. Let v ∈ Vk and θ ∈ (0, 1) be arbitrary. Then ζ = J∗
kv ∈ H2+α(Ω) ∩ H2

0 (Ω) by
Lemma 3.10, and

‖ζ‖H2+α(Ω) � |||v|||1+α,k,(6.14)

‖ζ − v‖k � hα
k |||v|||1+α,k.(6.15)

We see from (1.8), (2.7), (3.14), (3.18), (6.14) and (6.15) that

|||Πk−1v|||21,k−1 ≤
(
‖Πk−1Πkζ‖Ak−1

+ ‖Πk−1(v − Πkζ)‖Ak−1

)2

≤ (1 + θ2)‖Πk−1Πkζ‖2
Ak−1

+ Cθ−2
(
‖v − ζ‖k + ‖ζ − Πkζ‖k

)2
(6.16)

≤ (1 + θ2)‖Πk−1Πkζ‖2
Ak−1

+ Cθ−2h2α
k |||v|||21+α,k.
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We also have, from (1.7), (2.3), (2.4), (2.6), (2.7), (3.18) and (3.12),

‖Πk−1Πkζ‖2
Ak−1

= Ak−1(Πk−1Πkζ,Πk−1Πkζ)

= Ak−1(ζ, ζ)−Ak−1(Πk−1Πkζ − ζ,Πk−1Πkζ − ζ)

+ 2Ak−1(Πk−1Πkζ − ζ,Πk−1Πkζ)(6.17)

≤ Ak−1(ζ, ζ) + C‖Πk−1Πkζ − ζ‖2
k−1

+ C‖Πk−1Πkζ − ζ‖k−1‖Πk−1Πkζ‖Ak−1

≤ (1 + θ2)Ak−1(ζ, ζ) + Cθ−2‖Πk−1Πkζ − ζ‖2
k−1,

and from (2.7), (3.14) and (3.17),

‖Πk−1Πkζ − ζ‖k−1 ≤ ‖Πk−1Πkζ − Πk−1ζ‖k−1 + ‖Πk−1ζ − ζ‖k−1

� |Πk−1Πkζ − Πk−1ζ |H2(Ω,Tk−1) + ‖Πk−1ζ − ζ‖k−1(6.18)

� |Πk−1Πkζ − ζ |H2(Ω,Tk−1) + ‖Πk−1ζ − ζ‖k−1 � hα
k |||v|||1+α,k.

Furthermore, the estimates (1.7), (2.6), (2.7), (6.15) and the relations (2.4) and (3.6) imply

Ak−1(ζ, ζ) = Ak(ζ, ζ)

= Ak(v, v) + Ak(ζ − v, ζ − v) + 2Ak(ζ − v, v)

≤ Ak(v, v) + C‖ζ − v‖2
k + C‖ζ − v‖k‖v‖Ak

(6.19)

≤ (1 + θ2)Ak(v, v) + Cθ−2‖ζ − v‖2
k

≤ (1 + θ2)|||v|||21,k + Cθ−2h2α
k |||v|||21+α,k.

Combining (6.16)–(6.19) we arrive at

|||Πk−1v|||21,k−1 ≤ (1 + θ2)3|||v|||21,k + Cθ−2h2α
k |||v|||21+α,k,

which is equivalent to (6.13) because θ ∈ (0, 1) is arbitrary. �
Again, since 0 < β < 1/2 < α, the estimates (3.7) and (6.13) imply the following corollary.

Corollary 6.5. It holds that

(6.20) |||Πk−1v|||21,k−1 ≤ (1 + θ2)|||v|||21,k + C ′
�h

2β
k |||v|||21+β,k ∀ v ∈ Vk, θ ∈ (0, 1),

where the positive constant C ′
� is mesh-independent.

Lemma 6.6. The following estimate holds:

(6.21) |||Πk−1v|||20,k−1 ≤ (1 + θ2)|||v|||20,k + C�h
2β
k |||v|||2β,k ∀ v ∈ Vk, θ ∈ (0, 1),

where the positive constant C� is mesh-independent.

Proof. Let θ ∈ (0, 1) and v ∈ Vk be arbitrary. First we observe that, by (2.1), (3.6), (3.7),
(3.19), (3.24) and Corollary 3.9,

|||Πk−1v|||β,k−1 � ‖v‖H1+β(Ω) + ‖v − Πk−1v‖H1+β(Ω)
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� |||v|||β,k + h−β
k |v − Πk−1v|H1(Ω)(6.22)

� |||v|||β,k + h1−β
k |||v|||1,k � |||v|||β,k.

The estimate (6.21) follows from (1.8), (2.1), (2.13), (2.16), (3.5), (3.7), (3.19) (5.16) and
(6.22):

|||Πk−1v|||20,k−1 ≤ (1 + θ2)|Πk−1v|2H1(Ω) + Cθ−2h2β
k−1|||Πk−1v|||2β,k−1

≤ (1 + θ2)
(
|v|H1(Ω) + |Πk−1v − v|H1(Ω)

)2
+ Cθ−2h2β

k |||v|||2β,k

≤ (1 + θ2)2|v|2H1(Ω) + Cθ−2h2
k‖v‖2

Ak
+ Cθ−2h2β

k |||v|||2β,k

≤ (1 + θ2)2|||v|||20,k + Cθ−2h2
k|||v|||21,k + Cθ−2h2β

k |||v|||2β,k

≤ (1 + θ2)2|||v|||20,k + Cθ−2h2β
k |||v|||2β,k,

which is equivalent to (6.21) because θ ∈ (0, 1) is arbitrary. �
Corollary 6.7. The following estimate holds:

(6.23) |||Πk−1v|||21−β,k−1 ≤ (1 + θ2)|||v|||21−β,k + C	h
2β
k |||v|||21,k ∀ v ∈ Vk, θ ∈ (0, 1),

where the constant C	 is mesh-independent.

Proof. We use the technique in the proof of Lemma 6.3. For any θ ∈ (0, 1), we define the
inner product ((·, ·))k,θ on Vk by

(6.24) ((v1, v2))
2
k,θ = (v1, v2)

2
k + C	θ

−2h2β
k (Aβ

kv1, v2)k ∀ v1, v2 ∈ Vk,

where C	 = max(C ′
�, C�). Then Ak is symmetric positive definite with respect to ((·, ·))k,θ.

In view of (3.4), (6.20), (6.24) and (6.21), we have

|||Πk−1v|||20,k−1 ≤ ((A0
kv, v))

2
k,θ ∀ v ∈ Vk,(6.25)

|||Πk−1v|||21,k−1 ≤ ((A1
kv, v))

2
k,θ ∀ v ∈ Vk.(6.26)

The estimate (6.23) follows from (6.25), (6.26) and interpolation between Hilbert scales. �
We are now ready to verify (5.5).

Lemma 6.8. The estimate (5.5) holds for τ = β.

Proof. Let v ∈ Vk and θ ∈ (0, 1) be arbitrary. From (1.8), (3.7), (3.20), Corollary 3.9, (4.12)
and (6.23) we have

|||P k−1
k v|||21−β,k−1 ≤

(
|||Πk−1v|||1−β,k−1 + |||P k−1

k v − Πk−1v|||1−β,k−1

)2

≤ (1 + θ2)|||Πk−1v|||21−β,k−1 + Cθ−2h
2(β−α)
k |||P k−1

k v − Πk−1v|||21−α,k−1

≤ (1 + θ2)|||Πk−1v|||21−β,k−1 + Cθ−2h
2(β−α)
k ‖P k−1

k v − Πk−1v‖2
H2−α(Ω)

≤ (1 + θ2)2|||v|||21−β,k + Cθ−2h2β
k |||v|||21,k

+ Cθ−2h
2(β−α)
k

(
‖P k−1

k v − v‖H2−α(Ω) + ‖v − Πk−1v‖H2−α(Ω)

)2
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≤ (1 + θ2)2|||v|||21−β,k + Cθ−2h2β
k |||v|||21,k,

which is equivalent to (5.5) because θ ∈ (0, 1) is arbitrary. �

We have verified the assumptions (5.3)–(5.6) for the additive theory. Therefore we can
apply the results in [22] to obtain the following convergence theorems for the V -cycle and
F -cycle algorithms.

Theorem 6.9. The output MGV (k, ψ, z0, m) of the V -cycle algorithm (Algorithm 2.3 ) ap-
plied to (2.11) satisfies the following estimate :

‖z −MGV (k, ψ, z0, m)‖Ak
≤ C

mα
‖z − z0‖Ak

,

where the positive constant C is mesh-independent, provided that the number of smoothing
steps m is greater than a positive integer m∗ that is also mesh-independent.

Theorem 6.10. The output MGF (k, ψ, z0, m) of the F -cycle algorithm (Algorithm 2.5 )
applied to (2.11) satisfies the following estimate :

‖z −MGF (k, ψ, z0, m)‖Ak
≤ C

mα
‖z − z0‖Ak

,

where the positive constant C is mesh-independent, provided that the number of smoothing
steps m is greater than a positive integer m∗ that is also mesh-independent.

Remark 6.11. Theorems 6.9 and 6.10 have been obtained for preconditioners that satisfy
(2.14)–(2.17). Therefore they are valid for a Poisson solve B−1

k obtained by a symmetric
W -cycle algorithm with a sufficiently large number of smoothing steps or a variable V -cycle
algorithm (cf. Remark 2.2 and Appendix A). However, in practice these algorithms behave
equally well when the preconditioner is a symmetric V -cycle algorithm with a few smoothing
steps (cf. Section 7).

7. Numerical Experiments

In this section we report the results of some numerical experiments for the biharmonic
problem. The finite element we use is the Q2 rectangular element and the penalty parameter
η is taken to be 5.

The first set of experiments involve the biharmonic problem on the unit square. We take
T0 to be the triangulation with one element and we compute the contraction numbers of
the V -cycle, F -cycle and W -cycle algorithms on the k-th level (1 ≤ k ≤ 7) with m pre-
smoothing and m post-smoothing steps. We use the symmetric V -cycle algorithm for the
Poisson problem with three pre-smoothing and three post-smoothing Richardson relaxation
steps as the preconditioner in (2.18) and (2.20). The results are recorded in Tables 1–3.
Convergence for the V -cycle, F -cycle and W -cycle algorithms is observed for m = 4, m = 2
and m = 1 respectively. We also observe that the performance of the F -cycle algorithm and
the W -cycle algorithm are almost identical for m ≥ 6.
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Numerical experiments show that for moderate grid levels (k ≤ 7) there is practically
no difference in the performance of the multigrid algorithms whether we use a symmetric
V -cycle or a symmetric W -cycle Poisson solve as the preconditioner in (2.18) and (2.20).
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Table 1. Contraction numbers for the V -cycle algorithm on the unit square

0.240.260.280.310.340.370.42

0.180.190.220.240.270.300.34

0.00170.00320.0060

0.50 0.35 0.27 0.22 0.18 0.15 0.13 0.11 0.09

0.52 0.40

0.22

0.53

0.53

0.230.250.270.29

0.32

0.320.350.380.460.54

0.230.25

0.53 0.43 0.37 0.34 0.31 0.29 0.27 0.25 0.23

0.44 0.38 0.34 0.29 0.27

0.010.020.040.080.150.28

1098765432k
m

1

2

3

4

5

6

7

Table 2. Contraction numbers for the F -cycle algorithm on the unit square
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Table 3. Contraction numbers for the W -cycle algorithm on the unit square
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Table 4. Contraction numbers for the V -cycle algorithm on the unit square
without a preconditioner in the smoothing steps
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For comparison we also report in Table 4 the contraction numbers of the V -cycle algo-
rithm using the Richardson relaxation scheme without a preconditioner as the smoother.
Convergence is observed only for m ≥ 75.
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Table 5. Contraction numbers for the V -cycle algorithm on the L-shaped domain
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Table 6. Contraction numbers for the F -cycle algorithm on the L-shaped domain
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In the second set of experiments we study the biharmonic problem on the L-shaped do-
main with vertices (−1,−1), (1,−1), (1, 0), (0, 0), (0, 1) and (−1, 1). We take T0 to be the
triangulation with three elements. Again we use the symmetric V -cycle algorithm for the
Poisson problem with three pre-smoothing and three post-smoothing steps as the precon-
ditioner. The contraction numbers of the V -cycle, F -cycle and W -cycle algorithms on the
k-th level with m pre-smoothing and m post-smoothing steps are reported in Tables 5–7.
The relative performance of these algorithms is similar to the case of the unit square.
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Table 7. Contraction numbers for the W -cycle algorithm on the L-shaped domain

Appendix A. Some Properties of Multigrid Poisson Solves

In this appendix we consider multigrid Poisson solves as the preconditioner in (2.18) and
(2.20). We will show that properties (i)–(iv) in Section 2 are satisfied by such preconditioners.

Consider the discrete Poisson problem: Find z ∈ Vk such that

(A.1) Lkz = ψ ∀ v ∈ Vk,

where Lk is defined in (2.13) and ψ ∈ V ′
k.

Let Sk : V ′
k −→ Vk be the solution operator for (A.1) generated by either a symmetric V -

cycle algorithm, a symmetric W -cycle algorithm or a symmetric variable V -cycle algorithm
(that satisfies (4.13)), with 0 as the initial guess and Richardson relaxation as the smoother.
In terms of Sk the output MG(k, ψ, z0) of the multigrid method can be written as

(A.2) MG(k, ψ, z0) = z0 + Sk(ψ − Lkz0),

and Idk − SkLk is the error propagation operator.
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The operator Sk is symmetric, or equivalently the operator Idk − SkLk is symmetric
with respect to the bilinear form 〈Lk·, ·〉 (cf. Lemma 7.1 of [17] where Sk is denoted by
Bk). Furthermore (cf. Theorems 5.1, 7.1 and 7.2 of [17]) there exists a number δ ∈ (0, 1)
independent of k such that

(A.3) 0 ≤ 〈Lk(Idk − SkLk)v, v〉 ≤ δ〈Lkv, v〉 ∀ v ∈ Vk.

We see from (A.3) that Sk is positive definite. Therefore we can define Bk = S−1
k and

the operator Bk : Vk −→ V ′
k is symmetric positive definite. Moreover (A.3) implies that the

eigenvalues of the operator Idk −B−1
k Lk : Vk −→ Vk lie between 0 and δ. Since Idk −B−1

k Lk

is also symmetric with respect to 〈Bk·, ·〉, we deduce that

(A.4) 0 ≤ 〈Bk(Idk − B−1
k Lk)v, v〉 ≤ δ〈Bkv, v〉 ∀ v ∈ Vk.

The estimate (2.16) follows from (A.4) immediately.
Hence the operator Bk satisfies properties (i) and (ii) in Section 2. Property (iv), which

states that multigrid algorithms have optimal complexity, is also standard [32]. In particular
Theorem 4.5 and Theorem 4.6 are valid for all three types of multigrid preconditioners.

On the other hand, the proofs of Theorem 6.9 and Theorem 6.10 require property (iii).
Below we will demonstrate that (2.17) is satisfied by the Bk generated by W -cycle or variable
V -cycle Poisson solves.

Let B−1
k : V ′

k −→ Vk be the preconditioner obtained by a symmetric W -cycle algorithm.
We have a well-known recurrence relation [32]:

(A.5) Idk − B−1
k Lk = Rm

k (Idk − Ik
k−1P

k−1
k )Rm

k +Rm
k I

k
k−1(Idk−1 − B−1

k−1Lk−1)
2P k−1

k Rm
k ,

where Ik
k−1 : Vk−1 −→ Vk is the natural injection, P k−1

k : Vk −→ Vk−1 is the adjoint of Ik−1
k

with respect to the bilinear form 〈Lk·, ·〉 and 〈Lk−1·, ·〉, and Rk is the error reduction operator
of one Richardson relaxation step. Of course at the coarsest level we have B−1

0 = S0 = L−1
0

and hence

(A.6) Id0 −B−1
0 L0 = 0.

Let β be any number in (0, 1/2). The following estimates are valid [20]:

|Rm
k (Idk − Ik

k−1P
k−1
k )Rm

k v|H1(Ω) � hβ
km

−β/2‖v‖H1+β(Ω) ∀v ∈ Vk and k ≥ 1,(A.7)

‖P k−1
k v‖H1+β(Ω) � ‖v‖H1+β(Ω) ∀ v ∈ Vk and k ≥ 1,(A.8)

|(Idk − B−1
k Lk)v|H1(Ω) � m−α∗ |v|H1(Ω) ∀ v ∈ Vk and k ≥ 1,(A.9)

where α∗ ∈ (1/2, 1] is the index of elliptic regularity for the Poisson problem. Furthermore,
we have

|Rm
k v|H1(Ω) ≤ C|v|H1(Ω) ∀ v ∈ Vk , k ≥ 1, and m ≥ 1,(A.10)

‖Rm
k v‖H1+β(Ω) ≤ C‖v‖H1+β(Ω) ∀ v ∈ Vk, k ≥ 1, and m ≥ 1,(A.11)

where the positive constant C is independent of the meshes.
It follows from (2.1), (A.5), and (A.7)–(A.11) that

(A.12) |v − B−1
k Lkv|H1(Ω) ≤ C∗h

β
k

[
m−β/2 + σm−α∗/2

]
‖v‖H1+β(Ω) ∀ v ∈ Vk,
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where C∗ is a mesh-independent positive constant, provided that

|v −B−1
k−1Lk−1v|H1(Ω) ≤ σhβ

k−1‖v‖H1+β(Ω) ∀ v ∈ Vk−1.

Hence, if m is sufficiently large, we obtain from (A.6), (A.12) and mathematical induction
that

(A.13) |v − B−1
k Lkv|H1(Ω) ≤ σhβ

k‖v‖H1+β(Ω) ∀ v ∈ Vk, k ≥ 0,

if σ is the number defined by

σ =
C∗m

−β/2

1 − C∗m−α∗/2
.

Therefore (2.17) is satisfied by the W -cycle preconditioner provided that m is sufficiently
large.

Now we consider the preconditioner B−1
k obtained from a variable V -cycle algorithm.

Given a positive integer k, we assume that the number mj of smoothing steps on level j
satisfies

(A.14) (1 + ε)mj+1 ≤ mj for 0 ≤ j ≤ k − 1,

where ε is a positive number. We have an additive expression for the error propagation
operator:

Idk − B−1
k Lk = Rmk

k (Idk − Ik
k−1P

k−1
k )Rmk

k

+Rmk
k Ik

k−1R
mk−1

k−1 (Idk−1 − Ik−1
k−2P

k−2
k−1 )R

mk−1

k−1 P k−1
k Rmk

k(A.15)

+Rmk
k Ik

k−1R
mk−1

k−1 Ik−1
k−2R

mk−2

k−2 (Idk−2 − Ik−2
k−3P

k−3
k−2 )R

mk−2

k−2 P k−2
k−1R

mk−1

k−1 P k−1
k Rmk

k

+ · · · .
The following estimates are valid [20]:

‖Rmk
k (Idk − Ik

k−1P
k−1
k )Rmk

k v‖H1−β(Ω) � hβ
km

−α∗+(β/2)
k |v|H1(Ω) ∀ v ∈ Vk, k ≥ 1,(A.16)

‖Rmk
k Ik

k−1 · · ·R
mj+1

j+1 Ij+1
j v‖H1−β(Ω) � ‖v‖H1−β(Ω) ∀ v ∈ Vj , j ≤ k,(A.17)

|P j
j+1R

mj+1

j+1 · · ·P k−1
k Rmk

k v|H1(Ω) � |v|H1(Ω) ∀ v ∈ Vk, j ≤ k.(A.18)

Combining (2.1), (A.6) and (A.15)–(A.18), we find, for any β ∈ (0, 1/2),

|v −B−1
k Lkv|H1−β(Ω) ≤ Cβ|v|H1(Ω)

k∑
j=2

hβ
jm

−α∗+(β/2)
j

≤ Cβ|v|H1(Ω)

k∑
j=2

(2(j−k)hk)
β((1 + ε)(j−k)mk)

−α∗+(β/2)(A.19)

≤ Cβm
−α∗+(β/2)
k hβ

k |v|H1(Ω)

k∑
j=2

[2β(1 + ε)(−α∗+β/2)]j−k,
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where Cβ depends on β but not the meshes. It follows from (A.19) that there exists a positive
mesh-independent constant C such that

(A.20) |v −B−1
k Lkv|H1−β(Ω) ≤ Chβ

k |v|H1(Ω) ∀ v ∈ Vk

if we choose β > 0 so that

β < max
(1

2
,
α∗ ln(1 + ε)

ln(2
√

1 + ε)

)
.

The estimate (2.17) follows from (A.20) and duality. In other words, property (iii) is satisfied
by the variable V -cycle preconditioner under condition (A.14).
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