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TWO-LEVEL ADDITIVE SCHWARZ PRECONDITIONERS FOR
C 0 INTERIOR PENALTY METHODS

SUSANNE C. BRENNER AND KENING WANG

Abstract. We study two-level additive Schwarz preconditioners that can be used in the
iterative solution of the discrete problems resulting from C0 interior penalty methods for
fourth order elliptic boundary value problems. We show that the condition number of the
preconditioned system is bounded by C(1 + (H3/δ3)), where H is the typical diameter of a
subdomain, δ measures the overlap among the subdomains and the positive constant C is
independent of the mesh sizes and the number of subdomains.

1. Introduction

C0 interior penalty methods for fourth order elliptic boundary value problems have recently
been analyzed in [19, 12]. The idea behind this approach can be explained in terms of the
following model problem:
Find u ∈ H2

0 (Ω) such that

(1.1)
2∑

i,j=1

∫
Ω

∂2u

∂xi∂xj

∂2v

∂xi∂xj

dx =

∫
Ω

fv dx ∀ v ∈ H2
0 (Ω),

where Ω is a bounded polygonal domain in R
2 and f ∈ L2(Ω).

Let Th be a (simplicial or convex quadrilateral) triangulation of Ω and Vh ⊂ H1
0 (Ω) be a

Lagrange (triangular or tensor product) finite element space associated with Th. By a careful
integration by parts argument [12], it can be shown that the solution u of (1.1), which by
elliptic regularity [24, 15, 26, 3] belongs to H2+α(Ω) for some α > 1/2 , satisfies

(1.2) Ah(u, v) =

∫
Ω

fv dx ∀ v ∈ Vh,

where

Ah(w, v) = ah(w, v) + bh(w, v) + η ch(w, v),(1.3)

ah(w, v) =
∑
D∈Th

2∑
i,j=1

∫
D

∂2w

∂xi∂xj

∂2v

∂xi∂xj
dx,(1.4)
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bh(w, v) =
∑
e∈Eh

∫
e

({{
∂2w

∂n2

}}[[
∂v

∂n

]]
+

{{
∂2v

∂n2

}}[[
∂w

∂n

]])
ds,(1.5)

ch(w, v) =
∑
e∈Eh

1

|e|

∫
e

[[
∂w

∂n

]] [[
∂v

∂n

]]
ds.(1.6)

Eh in (1.5) and (1.6) is the set of all the edges of Th, and η in (1.3) is a penalty parameter.
The jumps [[·]] and averages {{·}} in (1.5) and (1.6) are defined as follows.

Let e be an interior edge of Th and ne be a unit normal vector of e. Then e is shared
by two elements D+ and D− in Th where the normal vector ne points from D− to D+. We
define on e, for any function v that is piecewise Hs with respect to the triangulation Th for
some s > 5

2
,

(1.7)

[[
∂v

∂n

]]
=
∂v+

∂ne
− ∂v−
∂ne

and

{{
∂2v

∂n2

}}
=

1

2

[∂2v+

∂n2
e

+
∂2v−
∂n2

e

]
,

where v± = v
∣∣
D±

. Note that [[∂v/∂n]] and {{∂2v/∂n2}} are independent of the choice of ne.

For an edge e that is a subset of ∂Ω, we take ne to be the outward pointing unit normal
vector and define

(1.8)

[[
∂v

∂n

]]
= − ∂v

∂ne
and

{{
∂2v

∂n2

}}
=
∂2v

∂n2
e

.

In the C0 interior penalty approach, the discrete problem for (1.1) is:
Find uh ∈ Vh such that

(1.9) Ah(uh, v) =

∫
Ω

fv dx ∀ v ∈ Vh.

In view of (1.2), the C0 interior penalty method defined by (1.9) is consistent and, for a
sufficiently large η, it is also stable. Therefore the discretization error u−uh is quasi-optimal
with respect to appropriate norms [19, 12].

The C0 interior approach has certain advantages: (i) The simplest C0 interior penalty
methods for (1.1), i.e., those based on the P2 Lagrange triangular element or theQ2 Lagrange
tensor product element, are as simple as classical nonconforming finite elements. (ii) Unlike
nonconforming finite elements, the C0 interior penalty methods come in arbitrary orders. For
smooth solutions, the higher order C0 interior penalty methods have the same convergence
rate as higher order C1 finite elements for smooth solutions and at the same time are much
simpler. (iii) Because the finite element spaces in the C0 interior penalty approach are
the standard spaces for second order problems, Poisson solves can be used naturally as
preconditioners [13] in iterative methods for (1.9). (iv) Unlike mixed methods, this approach
can be extended in a straight-forward way to more complicated fourth order problems, such
as the fourth order elliptic systems that appear in strain-gradient elasticity and plasticity
theory [22, 29].

Multigrid methods for (1.9) have been analyzed in [13]. In this paper we construct two-
level additive Schwarz preconditioners [16, 17, 27] for the discrete problem (1.9). We show
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that the classical results for this overlapping domain decomposition method can be extended
to (1.9). More precisely, we prove that the condition number of the preconditioned system
is bounded by C(1 + (H3/δ3)), where H is the typical diameter of a subdomain, δ measures
the overlap among the subdomains and the positive constant C is independent of the mesh
sizes and the number of subdomains.

The rest of the paper is organized as follows. We recall two-level additive Schwarz pre-
conditioners in Section 2. Then we define the coarse spaces and derive some preliminary
estimates in Section 3. Condition number estimates are established in Sections 4 and 5,
followed by numerical results in Section 6. We conclude the paper with some remarks in
Section 7.

We note in passing that domain decomposition methods for discontinuous Galerkin meth-
ods for second order problems were studied in [20, 25], and two-level additive Schwarz pre-
conditioners for the discontinuous interior penalty method [4] for fourth order problems was
investigated in [21].

2. Two-level Additive Schwarz Preconditioners

We will use quadrilateral meshes in this paper in view of the potential of their three
dimensional counterparts for future investigation. For simplicity we will also focus on the
case where Th is a rectangular mesh. The extension to general convex quadrilateral meshes
will be discussed in Section 7.

Let Vh ⊂ H1
0 (Ω) be the Q2 finite element space [14, 11] associated with Th and the operator

Ah : Vh −→ V ′
h be defined by

(2.1) 〈Ahv1, v2〉 = Ah(v1, v2) ∀ v1, v2 ∈ Vh,

where 〈·, ·〉 is the canonical bilinear form between a vector space and its dual, and Ah is the
variational form defined by (1.3). We can then rewrite (1.9) as Ahuh = φh, where 〈φh, v〉 =∫

Ω
fv dx for all v ∈ Vh. Therefore Ah is the operator that needs to be preconditioned.
Note that, for η sufficiently large (which is assumed to be the case), the following relation

[12] holds:

(2.2) C1|v|2H2(Ω,Th) ≤ 〈Ahv, v〉 = Ah(v, v) ≤ C2|v|2H2(Ω,Th) ∀ v ∈ Vh,

where

(2.3) |v|2H2(Ω,Th) =
∑
D∈Th

|v|2H2(D) +
∑
e∈Eh

1

|e|‖[[∂v/∂n]]‖2
L2(e)

and the constants C1 and C2 depend only on the shape regularity of Th. Here and throughout
this paper we follow the standard notation for L2-based Sobolev spaces [1, 14, 11].

The two-level additive Schwarz preconditioner is constructed in terms of subdomain solves
and a coarse grid solve.

Let TH be a coarse rectangular mesh for Ω and VH ⊂ H1
0 (Ω) be a finite element space

associated with TH . (The choice of the finite element for the coarse space will be discussed
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in Section 3.) We can then define A0 : VH −→ V ′
H by

(2.4) 〈A0v1, v2〉 = AH(v1, v2) ∀ v1, v2 ∈ VH ,

where AH is the analog of Ah for the coarse grid TH .
Let Ωj , 1 ≤ j ≤ J , be overlapping subdomains of Ω such that Ω = ∪J

j=1Ωj and the

boundaries of Ωj are aligned with the edges of Th. We assume that there exist θj ∈ C∞(Ω̄)
for 1 ≤ j ≤ J such that

θj = 0 on Ω \ Ωj ,(2.5)

J∑
j=1

θj = 1 on Ω̄,(2.6)

‖∇θj‖L∞(Ω) ≤
C

δ
, ‖∇2θj‖L∞(Ω)≤

C

δ2
,(2.7)

where ∇2θj is the Hessian of θj , δ > 0 is a parameter that measures the overlap among the
subdomains and C is a positive constant independent of h, H and J .

Remark 2.1. Suppose Th is a refinement of TH . We can construct Ωj by enlarging the
subdomains of TH by the amount δ so that each Ωj is the union of rectangles in Th (cf.
Figure 1). The construction of θj satisfying (2.5)–(2.7) is then standard [28].

δδ

Figure 1. Th, TH and Ωj

Let Vj ⊂ H1
0 (Ωj) (⊂ H1

0 (Ω)) be the Q2 finite element space associated with the fine grid
Th on Ωj . The following variational form is the analog of (1.3):

Aj(w, v) =
∑
D∈Th
D⊂Ωj

2∑
i,j=1

∫
D

∂2w

∂xi∂xj

∂2v

∂xi∂xj

dx

+
∑
e∈Eh

e⊂Ω̄j

∫
e

({{
∂2w

∂n2

}}[[
∂v

∂n

]]
+

{{
∂2v

∂n2

}}[[
∂w

∂n

]])
ds(2.8)
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+ η
∑
e∈Eh

e⊂Ω̄j

1

|e|

∫
e

[[
∂w

∂n

]] [[
∂v

∂n

]]
ds ∀ v, w ∈ Vj,

where the jumps [[·]] and averages {{·}} are defined by (1.7) if e ⊂ Ωj and (1.8) if e ⊂ ∂Ωj .
The bilinear form Aj(·, ·) can be represented by the operator Aj : Vj −→ V ′

j defined by

(2.9) 〈Ajv1, v2〉 = Aj(v1, v2) ∀ v1, v2 ∈ Vj,

and we have the following analog of (2.2):

(2.10) C1|v|2H2(Ωj ,Th) ≤ 〈Ajv, v〉 = Aj(v, v) ≤ C2|v|2H2(Ωj ,Th) ∀ v ∈ Vj,

where

(2.11) |v|2H2(Ωj ,Th) =
∑
D∈Th
D⊂Ωj

|v|2H2(D) +
∑
e∈Eh

e⊂Ω̄j

1

|e|‖[[∂v/∂n]]‖2
L2(e).

Let Ij : Vj −→ Vh be the natural injection for 1 ≤ j ≤ J . Note that (2.3) and (2.11) imply
immediately

(2.12) |Ijv|H2(Ω,Th) ≤ C3|v|H2(Ωj ,Th) ∀ v ∈ Vj ,

where the positive constant C3 is independent of h, H and J . Furthermore, under the
condition δ ≤ H (which is assumed to be the case),

(2.13) the relation Ah(vj, v�) = 0 ∀ vj ∈ Vj and v� ∈ V� holds for all but Nc many �’s,

where the positive integer Nc is independent of h, H , J and δ, and in particular,

(2.14) each point of Ω belongs to less than Nc many subdomains.

Suppose the space VH is connected to Vh by an operator I0 : VH −→ Vh. (The construc-
tion of I0 will be given in Section 3.) We can now define the two-level additive Schwarz
preconditioner B : V ′

h −→ Vh by

(2.15) B =
J∑

j=0

IjA
−1
j I t

j ,

where I t
j : V ′

h −→ V ′
j is the transpose of Ij : Vj −→ Vh, i.e.,

(2.16) 〈I t
jψ, v〉 = 〈ψ, Ijv〉 ∀ v ∈ Vj.

(We take V0 to be VH .)

Remark 2.2. The operators Aj (0 ≤ j ≤ J), Ij (0 ≤ j ≤ J) and Ah can be represented by
matrices with respect to the natural nodal bases of Vj and Vh and the canonical dual bases
of V ′

j and V ′
h. The matrix for I t

j is then the transpose of the matrix for Ij . In other words,
the matrix form for the preconditioner B is also given by (2.15).
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Let Πh : C(Ω̄) −→ Vh be the nodal interpolation operator. Then every v ∈ Vh can be

written as v =
∑J

j=1 vj where vj = Πh(θjv) and the θj ’s are the partition of unity functions

that appear in (2.5)–(2.7). From (2.5) we see that vj ∈ Vj and therefore the condition

(2.17) Vh =

J∑
j=0

IjVj

is satisfied. It follows from the additive Schwarz theory [16, 17, 32, 5, 31, 23, 30, 11] that B is
symmetric positive definite and therefore the eigenvalues of BAh are positive. Furthermore,
the maximum and minimum eigenvalues of BAh are characterized by the following formulas:

λmax(BAh) = max
v∈Vh
v �=0

〈Ahv, v〉

min
v=

∑J
j=0 Ijvj

vj∈Vj

J∑
j=0

〈Ajvj , vj〉
,(2.18)

λmin(BAh) = min
v∈Vh
v �=0

〈Ahv, v〉

min
v=

∑J
j=0 Ijvj

vj∈Vj

J∑
j=0

〈Ajvj , vj〉
.(2.19)

Remark 2.3. It is clear from (2.18) and (2.19) that the results of this paper would not be
affected if the exact solve A−1

j is replaced by an inexact solve B−1
j as long as 〈Bjv, v〉 ≈

〈Ajv, v〉 for all v ∈ Vj.

3. Coarse Spaces and Preliminary Estimates

In this section, we define the coarse spaces and derive some preliminary estimates which
will be used in the analysis of the condition number of BAh.

Our first choice of the coarse space VH ⊂ H1
0 (Ω) is the Q1 Lagrange tensor product finite

element space associated with TH . The Q1 Lagrange element is depicted in Figure 2 together
with the Q3 Bogner-Fox-Schmit element [6], where we use the solid dot • to denote pointwise
evaluation of the shape functions, the circle ◦ to denote pointwise evaluation of all the first
order derivatives of the shape functions and the arrow to denote pointwise evaluation of
the mixed second order derivative.

Let ṼH ⊂ H2
0 (Ω) be the Bogner-Fox-Schmit finite element space associated with TH . The

two spaces VH and ṼH are connected by a map EH : VH −→ ṼH defined by

(EHv)(p) = v(p),(3.1)

∇(EHv)(p) =
1

|Tp|
∑
D∈Tp

∇v
D
(p),(3.2)
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Figure 2. Q1 element and Q3 Bogner-Fox-Schmit element

∂2(EHv)

∂x1∂x2
(p) =

1

|Tp|
∑
D∈Tp

∂2v
D

∂x1∂x2
(p),(3.3)

where p is any interior vertex of the rectangular mesh, Tp is the set of the rectangles sharing
p as a vertex, |Tp| is the number of elements in Tp and v

D
= v

∣∣
D
. The operator I0 : VH −→ Vh

appearing in (2.15) is then defined by

(3.4) I0 = Πh ◦ EH ,

where Πh : C0(Ω̄) −→ Vh is the nodal interpolation operator.

Remark 3.1. The Q3 Bogner-Fox-Schmit element is a C1 relative of the Q1 Lagrange tensor
product element. The enriching map EH that connects a C0 element to a C1 element enables
us to derive estimates that are independent of the mesh sizes (cf. (3.22) below).

The following lemma gives the properties of the operator EH . To avoid the proliferation of
constants, we henceforth use the notation A � B to represent the statement A ≤ constant×
B, where the positive constant depends only on the shape regularity of the meshes and not
h, H , J nor δ. The notation A ≈ B is equivalent to A � B and B � A.

Lemma 3.2. The following estimates hold:

‖v − EHv‖L2(Ω) � H2|v|H2(Ω,TH) ∀ v ∈ VH ,(3.5)

|v − EHv|H1(Ω) � H|v|H2(Ω,TH) ∀ v ∈ VH ,(3.6)

|EHv|H2(Ω) � |v|H2(Ω,TH) ∀ v ∈ VH ,(3.7)

where | · |H2(Ω,TH) is the analog of | · |H2(Ω,Th) (cf. (2.3)) for v ∈ VH .

Proof. Let v ∈ VH be arbitrary. Let D be a subdomain in TH and p be a vertex of D that
is interior to Ω. By (3.2), the Cauchy-Schwarz inequality and a standard inverse estimate
[14, 11], we have

|∇v
D
(p) −∇(EHv)(p)|2 =

∣∣∣ 1

|Tp|
∑

D′∈Tp

[∇v
D
(p) −∇v

D′ (p)]
∣∣∣2

�
∑

D′∈Tp

|∇v
D
(p) −∇v

D′ (p)|2(3.8)
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�
∑
e∈Ep

1

|e|‖[[∇v]]‖
2
L2(e) =

∑
e∈Ep

1

|e|‖[[∂v/∂n]]‖2
L2(e),

where Ep is the set of edges sharing p as a common vertex. Note that in the derivation of
(3.8) we have used the fact that for any two subdomains D1 and D2 sharing e as a common
edge, the tangential derivatives of v

D1
and v

D2
agree on e.

For a vertex p of D that belongs to ∂Ω, we also have, by (1.8),

(3.9) |∇v
D
(p) −∇(EHv)(p)|2 = |∇v

D
(p)|2 � 1

|e|‖[[∂v/∂n]]e‖2
L2(e)

,

where e ⊂ ∂Ω is an edge of Th with p as an endpoint and we have used the fact that the
tangential derivative of v along ∂Ω vanishes.

Furthermore, the second order nodal values of Ehv can be easily estimated through a
standard inverse estimate:

(3.10)
∣∣∣∂2(EHv)

∂x1∂x2
(p)

∣∣∣2 �
∑
D∈Tp

∣∣∣ ∂2v
D

∂x1∂x2
(p)

∣∣∣2 =
∑
D∈Tp

(diamD)−2|v|2H2(D).

Finally we observe that, by scaling,

‖w‖2
L2(D) ≈ (diamD)2

∑
p∈VD

(w(p))2 + (diamD)4
∑
p∈VD

(∇w(p))2(3.11)

+ (diamD)6
∑
p∈VD

[
∂2w

∂x1∂x2
(p)

]2

∀w ∈ ṼH ,

where VD is the set of the vertices of D.
Since v − EHv ∈ ṼH , it follows from (3.1) and (3.8)–(3.11) that

(3.12) ‖v − EHv‖2
L2(D) � (diamD)4

( ∑
p∈VD

∑
e∈Ep

1

|e|‖[[∂v/∂n]]‖2
L2(e) +

∑
p∈VD

∑
D′∈Tp

|v|2H2(D′)

)
,

which together with standard inverse estimates also implies

|v −EHv|2H1(D) � (diamD)2
( ∑

p∈VD

∑
e∈Ep

1

|e|‖[[∂v/∂n]]‖2
L2(e) +

∑
p∈VD

∑
D′∈Tp

|v|2H2(D′)

)
,(3.13)

|v −EHv|2H2(D) �
∑
p∈VD

∑
e∈Ep

1

|e|‖[[∂v/∂n]]‖2
L2(e) +

∑
p∈VD

∑
D′∈Tp

|v|2H2(D′).(3.14)

Summing up (3.12)–(3.13) over all the subdomains of TH , we obtain (3.5) and (3.6).
Finally, from (3.14) we have

|EHv|2H2(Ω) �
∑

D∈TH

(
|v − EHv|2H2(D) + |v|2H2(D)

)
� |v|2H2(Ω,TH).

�
The next lemma gives the relevant properties of Πh.
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Lemma 3.3. The following estimates on Πh are valid:

‖ζ − Πhζ‖L2(Ω) + h|ζ − Πhζ |H1(Ω) � h2|ζ |H2(Ω) ∀ ζ ∈ H2
0 (Ω),(3.15)

|Πhζ |H2(Ω,Th) � |ζ |H2(Ω) ∀ ζ ∈ H2
0 (Ω).(3.16)

Proof. Let ζ ∈ H2
0 (Ω) be arbitrary. On each D ∈ Th we have the standard estimates [14, 11]:

‖ζ − Πhζ‖L2(D) + (diamD)|ζ − Πhζ |H1(D) � (diamD)2|ζ |H2(D),(3.17)

|Πhζ |H2(D) � |ζ |H2(D),(3.18)

which implies (3.15) immediately.
For any e ∈ Eh, by the trace theorem (with scaling), (3.17) and (3.18), we have

1

|e|

∥∥∥∥
[[
∂(Πhζ)

∂n

]]∥∥∥∥
2

L2(e)

=
1

|e|

∥∥∥∥
[[
∂(ζ − Πhζ)

∂n

]]∥∥∥∥
2

L2(e)

� 1

|e|
∑
D∈Te

∥∥∥∥∂(ζ − Πhζ)D

∂ne

∥∥∥∥
2

L2(e)

�
∑
D∈Te

[
(diamD)−2

∥∥∥∥∂(ζ − Πhζ)

∂ne

∥∥∥∥
2

L2(D)

+

∣∣∣∣∂(ζ − Πhζ)

∂ne

∣∣∣∣
2

H1(D)

]
(3.19)

�
∑
D∈Te

[
(diamD)−2|ζ − Πhζ |2H1(D) + |ζ − Πhζ |2H2(D)

]

�
∑
D∈Te

|ζ |2H2(D),

where Te is the set of the subdomains in Th sharing e as a common edge.
The estimate (3.16) follows by summing up (3.18) and (3.19) over all the subdomains in

Th and all the edges in Eh. �
We can now derive the key estimates for the operator I0.

Lemma 3.4. The following estimates on I0 hold :

‖v − I0v‖L2(Ω) � H2|v|H2(Ω,TH) ∀ v ∈ VH ,(3.20)

|v − I0v|H1(Ω) � H|v|H2(Ω,TH) ∀ v ∈ VH ,(3.21)

|I0v|H2(Ω,Th) � |v|H2(Ω,TH) ∀ v ∈ VH .(3.22)

Proof. Let v ∈ VH be arbitrary. Since EHv ∈ H2
0 (Ω), using (3.4), the triangle inequality,

Lemma 3.2, Lemma 3.3 and the fact that h ≤ H , we have

‖v − I0v‖L2(Ω) = ‖v − ΠhEHv‖L2(Ω)

� ‖v − EHv‖L2(Ω) + ‖EHv − ΠhEHv‖L2(Ω)

� H2|v|H2(Ω,TH) + h2|EHv|H2(Ω)

� H2|v|H2(Ω,TH).
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Similarly we can obtain (3.21). Finally, it follows from (3.4), (3.7) and (3.16) that

|I0v|H2(Ω,Th) = |ΠhEHv|H2(Ω,Th) � |EHv|H2(Ω) � |v|H2(Ω,TH).

�
Remark 3.5. If we replace the operator I0 defined by (3.4) by the natural injection from VH

to Vh, then the estimate (3.22) is not valid.

Recall that Vh is the Q2 Lagrange tensor product finite element space associated with
Th. The Q2 element and the Q4 Bogner-Fox-Schmit element are depicted in Figure 3, where
we use the arrow ↑ to denote pointwise evaluation of the normal derivative of the shape
functions.

Figure 3. Q2 element and Q4 Bogner-Fox-Schmit element

Let Ṽh(⊂ H2
0 (Ω)) be the Q4 Bogner-Fox-Schmit finite element space associated with Th.

We can define a map Eh : Vh −→ Ṽh analogous to EH by

(Ehv)(p) = v(p),(3.23)

∇(Ehv)(p) =
1

|Tp|
∑
D∈Tp

∇v
D
(p),(3.24)

∂(Ehv)

∂ne

(me) =
1

|Te|
∑
D∈Te

∂v
D

∂ne

(me),(3.25)

∂2(Ehv)

∂x1∂x2
(p) =

1

|Tp|
∑
D∈Tp

∂2v
D

∂x1∂x2
(p),(3.26)

where (3.23) is defined for any interior node p associated with Th, (3.24) and (3.26) are
defined for any interior vertex p of Th, and (3.25) is defined for any interior edge e of Th with
midpoint me. Note that (3.23) implies

(3.27) ΠhEhv = v ∀ v ∈ Vh.

Remark 3.6. The Q4 Bogner-Fox-Schmit element is a C1 relative of the Q2 Lagrange tensor
product element. The map Eh was introduced in [12] for the post-processing of the solutions
obtained by the C0 interior penalty methods.

The following lemma is the analog of Lemma 3.2.
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Lemma 3.7. The following estimates hold:

‖v −Ehv‖L2(Ω) � h2|v|H2(Ω,Th) ∀ v ∈ Vh,(3.28)

|v −Ehv|H1(Ω) � h|v|H2(Ω,Th) ∀ v ∈ Vh,(3.29)

|Ehv|H2(Ω) � |v|H2(Ω,Th) ∀ v ∈ Vh.(3.30)

Proof. Let v ∈ Vh be arbitrary. First of all the analogs of (3.8)–(3.10) are valid for Eh and
we also have the following analog of (3.11) on each D ∈ Th:

‖w‖2
L2(D) ≈ (diamD)2

∑
p∈VD

(w(p))2 + (diamD)4
∑
p∈VD

(∇w(p))2(3.31)

+ (diamD)4
∑

e∈E(D)

[
∂w

∂ne
(me)

]2

+ (diamD)6
∑
p∈VD

[
∂2w

∂x1∂x2
(p)

]2

∀w ∈ Ṽh,

where E(D) is the set of the edges of D.
Let e ⊂ Ω be an edge of D ∈ Th. It follows from (3.25) and a standard inverse estimate

that ∣∣∣∣∂vD

∂ne

(me) −
∂(Ehv)

∂ne

(me)

∣∣∣∣
2

=

∣∣∣∣∣12
∑

D′∈Te

(
∂v

D

∂ne

(me) −
∂v

D′

∂ne

(me)

)∣∣∣∣∣
2

(3.32)

� 1

|e| ‖[[∂v/∂n]]‖2
L2(e)

.

On the other hand, if e ⊂ ∂Ω is an edge of Th, then we have, by (1.8),

(3.33)

∣∣∣∣ ∂v∂ne
(me) −

∂(Ehv)

∂ne
(me)

∣∣∣∣
2

=

∣∣∣∣ ∂v∂ne
(me)

∣∣∣∣
2

� 1

|e| ‖[[∂v/∂n]]‖2
L2(e)

.

The estimates (3.28)–(3.30) can then be obtained from (3.31)–(3.33) and the analogs of
(3.8)–(3.10), as in the proof of Lemma 3.2. �

Let ΠH : C0(Ω̄) −→ VH be the nodal interpolation operator and JH
h : Vh −→ VH be the

restriction of ΠH to Vh. The operator JH
h will play a role in the analysis of the two-level

additive Schwarz preconditioner. Note that (3.23) implies

JH
h v = ΠHEhv ∀ v ∈ Vh,

and the lemma below is an analog of Lemma 3.4 that follows from Lemma 3.7 and the analog
of Lemma 3.3 for ΠH .

Lemma 3.8. The following estimates on JH
h are valid:

‖v − JH
h v‖L2(Ω) � H2|v|H2(Ω,Th) ∀ v ∈ Vh,(3.34)

|v − JH
h v|H1(Ω) � H|v|H2(Ω,Th) ∀ v ∈ Vh,(3.35)

|JH
h v|H2(Ω,Th) � |v|H2(Ω,Th) ∀ v ∈ Vh.(3.36)
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Our second choice for the coarse space VH ⊂ H1
0 (Ω) is the Q2 Lagrange tensor product

finite element space associated with TH . In this case we take ṼH to be the Q4 Bogner-Fox-
Schmit space associated with TH and define EH : VH −→ ṼH by the analogs of (3.23)–(3.26).
We can then define I0 : VH −→ Vh by (3.4). In view of Lemma 3.7 (which also holds for
EH), the results in Lemma 3.4 remain valid for this I0.

4. A Condition Number Estimate

In this section we derive an estimate for the condition number of BAh. We begin with an
upper bound for the eigenvalues of BAh.

Lemma 4.1. The following upper bound for the eigenvalues of BAh holds:

(4.1) λmax(BAh) � 1.

Proof. Let v ∈ Vh be arbitrary. For any vj ∈ Vj such that v =
∑J

j=0 Ijvj, we have, by (2.2)

(and its analog for AH), (2.10), (2.12), (2.13), (3.22) and the Cauchy-Schwarz inequality,

〈Ahv, v〉 ≈ |v|2H2(Ω,Th) � |I0v0|2H2(Ω,Th) +
∣∣∣ J∑

j=1

Ijvj

∣∣∣2
H2(Ω,Th)

� |v0|2H2(Ω,Th) +

J∑
j=1

|vj|2H2(Ω,Th) ≈
J∑

j=0

〈Ajvj, vj〉,

which implies

(4.2) 〈Ahv, v〉 � min
v=

∑J
j=0 Ijvj

vj∈Vj

J∑
j=0

〈Ajvj , vj〉.

The estimate (4.1) follows from (2.18) and (4.2). �
We now turn our attention to a lower bound for the eigenvalues of BAh.

Lemma 4.2. The following lower bound for the eigenvalues of BAh holds:

(4.3) λmin(BAh) �
(

1 +
H4

δ4

)−1

.

Proof. Let v ∈ Vh be arbitrary,

v0 = JH
h v,(4.4)

vj = Πh(θj(v − I0v0)) for 1 ≤ j ≤ J.(4.5)

From (2.6) and the fact that v − I0v0 ∈ Vh, it is clear that

(4.6)

J∑
j=0

Ijvj = v.
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Below we will carefully estimate the terms 〈Ajvj, vj〉 for 0 ≤ j ≤ J .
First we consider v0. From (3.36), (4.4) and the analogs of (2.2) and (2.3) for | · |H2(Ω,TH),

we have

(4.7) 〈A0v0, v0〉 = 〈AHv0, v0〉 ≈ |JH
h v|2H2(Ω,TH) � |v|2H2(Ω,Th) ≈ 〈Ahv, v〉.

Next we consider vj for 1 ≤ j ≤ J . Let

(4.8) w = v − I0v0 and wj = θjw.

From Lemma 3.4, Lemma 3.8, (4.4) and (4.8) we have

‖w‖L2(Ω) = ‖v − I0J
H
h v‖L2(Ω)

� ‖v − JH
h v‖L2(Ω) + ‖I0JH

h v − JH
h v‖L2(Ω)(4.9)

� H2|v|H2(Ω,Th) +H2|JH
h v|H2(Ω,TH) � H2|v|H2(Ω,Th),

and similarly,

|w|H1(Ω) � H|v|H2(Ω,Th),(4.10)

|w|H2(Ω,Th) � |v|H2(Ω,Th).(4.11)

We can also rewrite (4.5) as

(4.12) vj = Πh(θjw) = Πhwj .

Let D ⊂ Ωj be an arbitrary subdomain in Th and θ̃j,D be the bilinear interpolant of θj on

D, i.e., θ̃j,D ∈ Q1(D) and θ̃j,D = θj at the vertices of D. We have the following standard
interpolation error estimates [14, 11]:

‖θ̃j,D‖L∞(D) ≤ ‖θj‖L∞(D),(4.13)

‖∇θ̃j,D‖L∞(D) � ‖∇θj‖L∞(D),(4.14)

‖∇2θ̃j,D‖L∞(D) � ‖∇2θj‖L∞(D),(4.15)

‖θ̃j,D − θj‖L∞(D) � (diamD)2‖∇2θj‖L∞(D).(4.16)

It follows from (2.6), (2.7), (3.18), (4.12)–(4.16), a standard inverse estimate and the chain
rule that

|vj |2H2(D) � |Πh(θ̃j,Dw)|2H2(D) + |Πh((θj − θ̃j,D)w)|2H2(D)

� |θ̃j,Dw|2H2(D) + (diamD)−4‖Πh((θj − θ̃j,D)w)‖2
L2(D)(4.17)

� ‖θ̃j,D‖2
L∞(D)|w|2H2(D) + ‖∇θ̃j,D‖2

L∞(D)|w|2H1(D)

+ ‖∇2θ̃j,D‖2
L∞(D)‖w‖2

L2(D) + (diamD)−4‖θj − θ̃j,D‖2
L∞(D)‖w‖2

L2(D)

� |w|2H2(D) +
1

δ2
|w|2H1(D) +

1

δ4
‖w‖2

L2(D).



14 SUSANNE C. BRENNER AND KENING WANG

Let e ∈ Eh be arbitrary. We have, from (4.12),

1

|e| ‖[[∂vj/∂n]]‖2
L2(e)

=
1

|e| ‖[[∂(Πhwj)/∂n]]‖2
L2(e)(4.18)

� 1

|e| ‖[[∂wj/∂n]]‖2
L2(e) +

1

|e| ‖[[∂(Πhwj − wj)/∂n]]‖2
L2(e)

.

Using (4.8) we can estimate the first term on the right-hand side of (4.18) as follows:

1

|e| ‖[[∂wj/∂n]]‖2
L2(e) =

1

|e| ‖[[∂(θjw)/∂n]]‖2
L2(e)

=
1

|e| ‖[[θj(∂w/∂n)]]‖2
L2(e)

(4.19)

≤ 1

|e| ‖[[∂w/∂n]]‖2
L2(e)

� 1

|e| ‖[[∂v/∂n]]‖2
L2(e)

+
1

|e| ‖[[∂(I0v0)/∂n]]‖2
L2(e)

.

For the second term on the right-hand side of (4.18), we find from (2.6), (2.7), (3.17), (3.18),
(4.8), the trace theorem (with scaling) and the chain rule that

1

|e| ‖[[∂(Πhwj − wj)/∂n]]‖2
L2(e)

�
∑
D∈Te

1

|e| ‖∂(Πh(wj)D
− (wj)D

)/∂ne‖2
L2(e)

�
∑
D∈Te

(diamD)−2 |Πhwj − wj|2H1(D) +
∑
D∈Te

|Πhwj − wj |2H2(D)

�
∑
D∈Te

|wj|2H2(D)(4.20)

�
∑
D∈Te

‖θj‖2
L∞(D)|w|2H2(D) +

∑
D∈Te

‖∇θj‖2
L∞(D)|w|2H1(D)

+
∑
D∈Te

‖∇2θj‖2
L∞(D)‖w‖2

L2(D)

�
∑
D∈Te

[
|w|2H2(D) +

1

δ2
|w|2H1(D) +

1

δ4
‖w‖2

L2(D)

]
.

Combining (4.18)–(4.20), we have

1

|e| ‖[[∂vj/∂n]]‖2
L2(e)

� 1

|e| ‖[[∂v/∂n]]‖2
L2(e) +

1

|e| ‖[[∂(I0v0)/∂n]]‖2
L2(e)(4.21)

+
∑
D∈Te

[
|w|2H2(D) +

1

δ2
|w|2H1(D) +

1

δ4
‖w‖2

L2(D)

]
.
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We can now conclude from (2.3), (2.11), (2.14), (3.20), (4.7), (4.9)–(4.11), (4.17) and
(4.21) that

J∑
j=1

|vj |2H2(Ωj ,Th) ≈
J∑

j=1

( ∑
D∈Th
D⊂Ωj

|vj|2H2(D) +
∑
e∈Eh

e⊂Ω̄j

1

|e|‖[[∂vj/∂n]]‖2
L2(e)

)

� |v|2H2(Ω,Th) + |I0v0|2H2(Ω,Th) +
∑
D∈Th

[
|w|2H2(D) +

1

δ2
|w|2H1(D) +

1

δ4
‖w‖2

L2(D)

]
(4.22)

� |v|2H2(Ω,Th) +
H2

δ2
|v|2H2(Ω,Th) +

H4

δ4
|v|2H2(Ω,Th)

�
(

1 +
H4

δ4

)
|v|2H2(Ω,Th).

Combining (2.2), (2.10), (4.7) and (4.22) we arrive at the estimate

〈A0v0, v0〉 +
J∑

j=1

〈Ajvj , vj〉 �
(

1 +
H4

δ4

)
〈Ahv, v〉,

which together with (4.6) implies

(4.23) min
v=

∑J
j=0 vj

vj∈Vj

J∑
j=0

〈Ajvj , vj〉 �
(

1 +
H4

δ4

)
〈Ahv, v〉.

Since v ∈ Vh is arbitrary, the estimate (4.3) follows from (2.19) and (4.23). �
From Lemma 4.1 and Lemma 4.2 we have the following condition number estimate for the

two-level additive Schwarz preconditioner.

Theorem 4.3. The condition number of BAh satisfies the estimate

(4.24) κ(BAh) =
λmax(BAh)

λmin(BAh)
≤ C

(
1 +

H4

δ4

)
,

where the positive constant C depends on the shape regularity of Th and TH but not h, H, δ
nor J .

5. The Case of Small Overlap

Theorem 4.3 implies in particular that the two-level additive Schwarz preconditioner is an
optimal preconditioner when δ is comparable to H (the case of generous overlap). In the
case of a small overlap, i.e. when δ << H, the factor [1 + (H/δ)4] in Theorem 4.3 becomes
significant. In this section we show that it can be improved to [1 + (H/δ)3] provided that
we have more information on the subdomains Ωj . The arguments we use follow those in [18]
for conforming finite elements.
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More precisely, we assume, in addition to (2.5)–(2.7), that

the subdomains are rectangles,(5.1)

h ≤ δ � H and in particular 2δ is less than the length of any edge(5.2)

of the subdomains,

Ωi ∩ Ωj ⊂ {(x1, x2) ∈ Ωi : dist ((x1, x2), ∂Ωi) < 2δ}(5.3)

∩ {(x1, x2) ∈ Ωj : dist ((x1, x2), ∂Ωj) < 2δ}.

Remark 5.1. These additional assumptions on the subdomains are valid if the subdomains
are constructed according to Remark 2.1.

The proof of the following lemma can be found in [9].

Lemma 5.2. Let d < l be two positive numbers, G = {(x1, x2) : 0 < x1 < l, 0 < x2 < d} and
Q = {(x1, x2) : 0 < x1 < l, 0 < x2 < l}. Then there exists a positive constant C independent
of d and l such that

(5.4) ‖ζ‖2
L2(G) ≤ C

d

l

(
‖ζ‖2

L2(Q) + l4|ζ |2H2(Q)

)
∀ ζ ∈ H2(Q).

We now return to the proof of Lemma 4.2.
Let Ωj,ε and Ωj,ε,h be defined by

Ωj,ε = {(x1, x2) ∈ Ωj : dist((x1, x2), ∂Ωj) < ε},
Ωj,ε,h = the union of all D ∈ Th such that D ⊂ Ωj,ε.

Conditions (2.5), (2.6) and (5.3) imply that θj is identically one in the rectangle {(x1, x2) ∈
Ωj : dist((x1, x2), ∂Ωj) ≥ 2δ}. Thus the terms Πh((θj − θ̃j,D)w), ∇θ̃j,D, ∇2θ̃j,D, ∇θj and ∇2θj

in (4.17) vanish except for those D which are subsets of Ωj,2δ.
Therefore, derivations similar to (4.17) and (4.20) yield∑

D⊂Ωj

D∈Th

|vj |2H2(D) =
∑

D⊂Ωj

D∈Th

‖θ̃j,D‖2
L∞(D)|w|2H2(D) +

∑
D⊂Ωj,2δ

D∈Th

[
‖∇θ̃j,D‖2

L∞(D)|w|2H1(D)

+ ‖∇2θ̃j,D‖2
L∞(D)‖w‖2

L2(D) + (diamD)−4‖Πh((θj − θ̃j,D)w)‖2
L2(D)

]
(5.5)

� |w|2H2(Ωj ,Th) +
1

δ2
|w|2H1(Ωj,2δ) +

1

δ4
‖w‖2

L2(Ωj,2δ),

and ∑
e∈Th

e⊂Ω̄j

1

|e|‖[[∂(Πhwj − wj)/∂n]]‖2
L2(e)

�
∑

D⊂Ωj

D∈Th

‖θj‖2
L∞(D)|w|2H2(D)(5.6)
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+
∑

D⊂Ωj,2δ

D∈Th

[
‖∇θj‖2

L∞(D)|w|2H1(D) + ‖∇2θj‖2
L∞(D)‖w‖2

L2(D)

]

� |w|2H2(Ωj ,Th) +
1

δ2
|w|2H1(Ωj,2δ) +

1

δ4
‖w‖2

L2(Ωj,2δ).

Recall that Ehw ∈ Ṽh ⊆ H2(Ωj). Hence it follows from Lemma 3.3, (3.27), (5.1), (5.2),
Lemma 5.2 (with scaling) and a standard inverse estimate that

‖w‖2
L2(Ωj,2δ) = ‖ΠhEhw‖2

L2(Ωj,2δ)

� ‖ΠhEhw − Ehw‖2
L2(Ωj,2δ) + ‖Ehw‖2

L2(Ωj,2δ)

� h4|Ehw|2H2(Ωj,2δ) + ‖Ehw‖2
L2(Ωj,2δ)(5.7)

� ‖Ehw‖2
L2(Ωj,2δ)

� δ

H

[
‖Ehw‖2

L2(Ωj)
+H4|Ehw|2H2(Ωj)

]
.

In view of (5.5)–(5.7), the estimate (4.22) becomes

(5.8)
J∑

j=1

|vj|2H2(Ωj ,Th) � |v|2H2(Ω,Th) +
H2

δ2
|v|2H2(Ω,Th) +

1

δ3H

[
‖Ehw‖2

L2(Ω) +H4|Ehw|2H2(Ω)

]
.

Furthermore, from Lemma 3.7, (4.9), (4.11), (5.2) and a standard inverse estimate, we have

‖Ehw‖2
L2(Ω) +H4|Ehw|2H2(Ω) � ‖Ehw − w‖2

L2(Ω) + ‖w‖2
L2(Ω) +H4|Ehw|2H2(Ω)

� h4|w|2H2(Ω,Th) + ‖w‖2
L2(Ω) +H4|w|2H2(Ω,Th)(5.9)

� H4|v|2H2(Ω,Th).

Combining (5.8) and (5.9) we find

J∑
j=1

|vj|2H2(Ωj ,Th) �
(

1 +
H3

δ3

)
|v|2H2(Ω,Th),

and (4.23) becomes

(5.10) min
v=

∑J
j=0 Ijvj

vj∈Vj

J∑
j=0

〈Ajvj , vj〉 �
(

1 +
H3

δ3

)
〈Ahv, v〉.

Finally (2.19) and (5.10) yield a new lower bound for λmin(BAh) :

(5.11) λmin(BAh) �
(

1 +
H3

δ3

)−1

.

The second condition number estimate for the two-level additive Schwarz preconditioner
now follows from (4.1) and (5.11).
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Theorem 5.3. Under the additional assumptions (5.1)–(5.3), we have the following improved
bound on the condition number of BAh :

κ(BAh) ≤ C

(
1 +

H3

δ3

)
,

where the positive constant C depends on the shape regularity of Th and TH but not h, H, δ
nor J .

6. Numerical Experiments

In this section we present the results of some numerical experiments for the biharmonic
problem on the unit square. The penalty parameter η in Ah, AH and Aj is taken to be 5.

In the first set of experiments we take the coarse space VH to be the Q1 finite element
space associated with TH , for H = 2−1, 2−2 and 2−3. The corresponding overlapping domain
decomposition has J = 4, 16 and 64 subdomains (cf. Remark 2.1 for the construction
of the domain decomposition). For each choice of H and h, we generate a vector vh ∈
Vh randomly, compute the right-hand side vector g = Ahvh and apply the preconditioned
conjugate gradient algorithm to the equation Ahz = g using the two-level additive Schwarz
preconditioner. The number of iterations needed for reducing the energy norm error by a
factor of 10−2 is computed for 5 random choices of vh and then averaged. The results are
reported in Table 1, Table 2 and Table 3. They demonstrate that the condition number
κ(BAh) is independent of h.

 2  2  2  2-2 -3 -4 -5 -6 -7

5 4 4 4

4

4

4

4

5.2

4.8

44

44

4445

 2 2

-5

-4

-3

 2

 2

 2

 2-2

  h
δ

Table 1. Average number of iterations for reducing the energy norm error
by a factor of 10−2 (Q1 coarse space, J = 4, H = 1/2)

In Table 4 we collect the number of iterations for h = 2−6 according to J and H/δ. They
demonstrate the independence of κ(BAh) on J and at the same time the adverse effect of
the increase in H/δ.
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2 -3 -4 -5 -6 -7

-3

-4

-5

6 5 5

5 4 4

4 4

55.6

5.4

5.22

h
δ 2 2 2 2

2

2

Table 2. Average number of iterations for reducing the energy norm error
by a factor of 10−2 (Q1 coarse space, J = 16, H = 1/4)

2

-4 -5 -6 -7

-4

-5

6 6 5 5

6 5 4

2

h
δ

2 2 2 2

Table 3. Average number of iterations for reducing the energy norm error
by a factor of 10−2 (Q1 coarse space, J = 64, H = 1/16)

In the second set of experiments we take the coarse space VH to be the Q2 finite element
space associated with TH , and carry out similar computations. The results are reported in
Table 5, Table 6, Table 7 and Table 8. They are very similar to the results for the first set
of experiments.

In the last experiment we take H to be 1/4, VH to be the Q1 finite element space associated
with TH and replace the operator I0 by the natural injection operator from VH into Vh.
The results are reported in Table 9. They show that the performance of the two-level
preconditioner suffers from the absence of the enriching operator (cf. Remark 3.5).

7. Concluding Remarks

We have demonstrated that the two-level additive Schwarz preconditioner can be extended
to C0 interior penalty methods for fourth order elliptic boundary value problems. The
preconditioned system behaves in the same way as the preconditioned system for classical
conforming and nonconforming finite element methods [8, 9, 10, 7]. The novelty of the
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Table 4. Average number of iterations for reducing the energy norm error
by a factor of 10−2 (Q1 coarse space, h = 2−6)
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44
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 2

 2

 2

 2-2

  h
δ

Table 5. Average number of iterations for reducing the energy norm error
by a factor of 10−2 (Q2 coarse space, J = 4, H = 1/2)

analysis is in the role played by the jumps of the normal derivatives across the edges (see for
example (3.12)–(3.14), (3.19), (4.18)–(4.21) and (5.6)), and the enriching map developed in
[12] for the post-processing of the solutions of C0 interior penalty methods is useful for both
the construction and the analysis of the preconditioners.

The results of this paper can be extended to C0 interior penalty methods that are based on
triangular or convex quadrilateral finite elements [12]. The key again is to use the enriching
maps that connect C0 finite elements to their C1 relatives, which are the triangular Argyris
elements [2] or the quadrilateral generalized Bogner-Fox-Schmit elements [12].
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2 -3 -4 -5 -6 -7
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h
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2

Table 6. Average number of iterations for reducing the energy norm error
by a factor of 10−2 (Q2 coarse space, J = 16, H = 1/4)

2

-4 -5 -6 -7

-4

-5

6 6 5 5

5 5 4

2

h
δ

2 2 2 2

Table 7. Average number of iterations for reducing the energy norm error
by a factor of 10−2 (Q2 coarse space, J = 64, H = 1/16)

References

[1] R.A. Adams and J.J.F. Fournier. Sobolev Spaces (Second Edition). Academic Press, Amsterdam, 2003.
[2] J.H. Argyris, I. Fried, and D.W. Scharpf. The TUBA family of plate elements for the matrix displacement

method. Aero. J. Roy. Aero. Soc., 72:701–709, 1968.
[3] C. Bacuta, J.H. Bramble, and J.E. Pasciak. Shift theorems for the biharmonic Dirichlet problem. In

Recent Progress in Computational and Applied PDEs, pages 1–26. Kluwer/Plenum, New York, 2002.
[4] G.A. Baker. Finite element methods for elliptic equations using nonconforming elements. Math. Comp.,

31:45–59, 1977.
[5] P. Bjørstad and J. Mandel. On the spectra of sums of orthogonal projections with applications to parallel

computing. BIT, 31:76–88, 1991.
[6] F.K. Bogner, R.L. Fox, and L.A. Schmit. The generation of interelement compatible stiffness and mass

matrices by the use of interpolation formulas. In Proceedings Conference on Matrix Methods in Structural
Mechanics, pages 397–444. Wright Patterson A.F.B., Dayton, OH, 1965.

[7] J.H. Bramble, J.E. Pasciak, and X. Zhang. Two-level preconditioners for 2m’th order elliptic finite
element problems. East-West J. Numer. Math., 4:99–120, 1996.



22 SUSANNE C. BRENNER AND KENING WANG

4 16 64 256

4

4

5

4

4

5

5

5

5

5

4

8

J
H/ δ

2

4

Table 8. Average number of iterations for reducing the energy norm error
by a factor of 10−2 (Q2 coarse space, h = 2−6)

2 -3 -4 -5 -6 -7

-3

-4

-5

8 9 9.8 8

10.4 10.4 9.6

11.8 11.2

9

7.8

7.82

h
δ 2 2 2 2

2

2

Table 9. Average number of iterations for reducing the energy norm error
by a factor of 10−2 (Q1 coarse space without enriching operator, J = 16,
H = 1/4)

[8] S.C. Brenner. A two-level additive Schwarz preconditioner for macro-element approximations of the
plate bending problem. Houston J. Math., 21:823–844, 1995.

[9] S.C. Brenner. A two-level additive Schwarz preconditioner for nonconforming plate elements. Numer.
Math., 72:419–447, 1996.

[10] S.C. Brenner. Two-level additive Schwarz preconditioners for nonconforming finite element methods.
Math. Comp., 65:897–921, 1996.

[11] S.C. Brenner and L.R. Scott. The Mathematical Theory of Finite Element Methods (Second Edition).
Springer-Verlag, New York-Berlin-Heidelberg, 2002.

[12] S.C. Brenner and L.-Y. Sung. C0 interior penalty methods for fourth order elliptic boundary value prob-
lems on polygonal domains. IMI Research Report 2003:10 (http://www.math.sc.edu/∼imip/03.html),
Department of Mathematics, University of South Carolina, 2003 (to appear in J. Sci. Comput.).



ADDITIVE SCHWARZ PRECONDITIONERS FOR C0 INTERIOR PENALTY METHODS 23

[13] S.C. Brenner and L.-Y. Sung. Multigrid algorithms for C0 interior penalty methods. IMI Research
Report 2004:11 (http://www.math.sc.edu/∼imip/04.html), Department of Mathematics, University of
South Carolina, 2004.

[14] P.G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.
[15] M. Dauge. Elliptic Boundary Value Problems on Corner Domains, Lecture Notes in Mathematics 1341.

Springer-Verlag, Berlin-Heidelberg, 1988.
[16] M. Dryja and O.B. Widlund. An additive variant of the Schwarz alternating method in the case of many

subregions. Technical Report 339, Department of Computer Science, Courant Institute, 1987.
[17] M. Dryja and O.B. Widlund. Some domain decomposition algorithms for elliptic problems. In L. Hayes

and D. Kincaid, editors, Iterative Methods for Large Linear Systems, pages 273–291. Academic Press,
San Diego, CA, 1989.

[18] M. Dryja and O.B. Widlund. Domain decomposition algorithms with small overlap. SIAM J. Sci.
Comput., 15:604–620, 1994.

[19] G. Engel, K. Garikipati, T.J.R. Hughes, M.G. Larson, L. Mazzei, and R.L. Taylor. Continu-
ous/discontinuous finite element approximations of fourth order elliptic problems in structural and
continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Com-
put. Methods Appl. Mech. Engrg., 191:3669–3750, 2002.

[20] X. Feng and O.A. Karakashian. Two-level additive Schwarz methods for a discontinuous Galerkin ap-
proximation of second order elliptic problems. SIAM J. Numer. Anal., 39:1343–1365, 2001.

[21] X. Feng and O.A. Karakashian. Two-level non-overlapping Schwarz preconditioners for a discontin-
uous Galerkin approximation of the biharmonic equation. Technical report, University of Tennessee,
Knoxville, 2003 (to appear in J. Sci. Comput.).

[22] N.A. Fleck and J.W. Hutchinson. Strain gradient plasticity. Adv. Appl. Mech., 33:295–361, 1997.
[23] M. Griebel and P. Oswald. On the abstract theory of additive and multiplicative Schwarz algorithms.

Numer. Math., 70:163–180, 1995.
[24] P. Grisvard. Elliptic Problems in Non Smooth Domains. Pitman, Boston, 1985.
[25] C. Lasser and A. Toselli. An overlapping domain decomposition preconditioner for a class of discontin-

uous Galerkin approximations of advection-diffusion problems. Math. Comp., 72:1215–1238, 2003.
[26] S.A. Nazarov and B.A. Plamenevsky. Elliptic Problems in Domains with Piecewise Smooth Boundaries.

de Gruyter, Berlin-New York, 1994.
[27] S. Nepomnyaschikh. On the application of the bordering method to the mixed boundary value problem

for elliptic equations and on mesh norms in W
1/2
2 (S). Sov. J. Numer. Anal. Math. Modelling, 4:493–506,

1989.
[28] W. Rudin. Functional Analysis (Second Edition). McGraw-Hill, New York, 1991.
[29] J.Y. Shu, W.E. King, and N.A. Fleck. Finite elements for materials with strain gradient effects. Internat.

J. Numer. Methods Engrg., 44:373–391, 1999.
[30] B. Smith, P. Bjørstad, and W. Gropp. Domain Decomposition. Cambridge University Press, Cambridge,

1996.
[31] J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Review, 34:581–613,

1992.
[32] X. Zhang. Studies in Domain Decomposition: Multilevel Methods and the Biharmonic Dirichlet Problem.

PhD thesis, Courant Institute, 1991.

Department of Mathematics, University of South Carolina, Columbia, SC 29208

E-mail address: brenner@math.sc.edu

Department of Mathematics, University of South Carolina, Columbia, SC 29208

E-mail address: kwang@math.sc.edu


