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Abstract

Franklin systems induced by Courant elements over multilevel nested triangula-
tions of polygonal domains in R? are explored. Mild conditions are imposed on the
triangulations which prevent them from deterioration and at the same time allow for
a lot of flexibility and, in particular, arbitrarily sharp angles. It is shown that such
anisotropic Franklin systems are Schauder bases for C' and L;, and unconditional bases
for L, (1 < p < oo0) and the corresponding Hardy spaces Hj. It is also proved that the
anisotropic H; is exactly the space of all functions in L for which the corresponding
Franklin system expansions converge unconditionally in L;. Finally, it is shown that
the Franklin bases characterize the corresponding anisotropic BMO spaces.

1 Introduction

The Franklin systems in the univariate case as well as in the multivariate case in regular
setups are thoroughly studied and well-known. We refer the reader to [11], [1], and [8] as
references for Franklin systems.

In this article, we consider Franklin systems generated by sequences of Courant elements,
i.e. piecewise linear elements, induced by multilevel nested triangulations of compact polyg-
onal domains in R?. For a given polygonal domain E in R? we consider a sequence of nested
triangulations 7Ty, Ty, ... of a general nature. Mild conditions are imposed on the triangula-
tions which prevent them from deterioration. At the same time these conditions allow for a
great deal of flexibility and, in particular, arbitrarily sharp angles.

We show that the Franklin systems obtained by applying the Gram-Schmidt orthog-
onalization process to the corresponding Courant elements are Schauder bases for C' and
L,, and unconditional bases for L, (1 < p < oo) and the corresponding Hardy space Hj.
Further, we prove that H; is exactly the space of all functions in L; for which the corre-
sponding Franklin system expansions converge unconditionally in L;. Finally, we show that
the anisotropic Franklin systems characterize the corresponding BMO spaces. Thus we show
that the basic and well-known results on Franklin bases in the regular case have analogues in
the anisotropic case. We do not consider anisotropic atomic Hardy spaces H, with 0 <p <1
in this article.

The motivation for this article is two-fold. On the one hand the spaces induced by general
multilevel nested triangulations are an example of spaces on homogeneous spaces. There are
no bases available for such spaces in general and hence such bases are worthy to be studied.



On the other hand the Franklin bases that we explore are the only anisotropic bases over
general sequences of nested triangulations. There are no constructions of spline wavelet or
prewavelet bases over such triangulations available as for now.

In [12] we show that the anisotropic Franklin systems considered in this article char-
acterize the anisotropic B-space (generalized Besov spaces) which are naturally associated
with hierarchical sequences of nested triangulations. These spaces play a fundamental role
in nonlinear spline approximation (see [4, 5, 9, 10]).

The paper is organized as follows. In §2 we give all auxiliary results needed for the
development of the anisotropic Franklin bases. In §3 we introduce the anisotropic Franklin
systems and state and proof our main results. Section §4 is an appendix where we give an
example which shows that the anisotropic H; spaces essentially depend on the triangulations
which are used.

Notation. Throughout this article for a set G C R?, |G| denotes the Lebesgue measure
of GG, while G° means the interior of GG; 14 denotes the characteristic function of G, and
lg := |G|7"/?1¢. For a finite set G, #G denotes the cardinality of G. Positive constants
are denoted by ¢, ¢y, ... (if not specified, they may vary at every occurrence), A ~ B means
1A < B < B, and A := B or B =: A stands for “A is by definition equal to B”. We set

<fvg> = fEfg

2 Preliminaries

In this section we collect all prerequisites regarding triangulations, maximal operators, Hardy
spaces on spaces of homogeneous type, and other results, which will be needed in the de-
velopment of the Franklin bases. Most of these facts are well known and we give only the
essentials and suitable references for them.

2.1 Multilevel triangulations

We call E C R? a bounded polygonal domain if its interior E° is connected and E is the
union of a finite set 7y of closed triangles with disjoint interiors: E' = J o7 A. Following
[9] we call

T=UTn

1Ce

a locally regular triangulation of E or briefly an LR-triangulation with levels (7,,),,-, if the
following conditions are fulfilled: -

(a) Every level T,, is a partition of E, that is, E = [J,.7. & and Ty, consists of closed
triangles with disjoint interiors.

(b) The levels (7,,) of T are nested, i.e. T, 11 is a refinement of 7,.

(c) Each triangle A € T, has at least two and at most M children (subtriangles) in 7,1,
where M, > 2 is a constant.

(d) The valence N, of each vertex v of any triangle A € T, (the number of the triangles
from T, which share v as a vertex) is at most Ny, where Ny is a constant.
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(e) No hanging vertices condition: No vertex of any triangle A € 7, which belongs to the
interior of FE lies in the interior of an edge of another triangle from 7,,.

(f) There exist constants 0 <r < p <1 (r < 3) such that for each A € Ty, (m > 0) and
any child A" € T4 of A,
rlA] < A < plA. 2.1)

(g) There exists a constant 0 < § < 1 such that for A, A" € T, (m > 0) with a common
vertex,

EINTINES (2:2)

The notion of a regular triangulation will be needed later on. We call T = J°_, T a
regular triangulation of a bounded polygonal domain E C R? if T satisfies conditions (a)-(e)
of LR-triangulations and also the minimal angle condition, that is, min angle (A) > § for
every triangle A € T, where § > 0 is a constant. Evidently, every regular triangulation is
locally regular but not the other way around. For other types of triangulations, see [9].

We denote by V,, the set of all vertices of triangles from 7,,,, where if v is on the boundary
of E we include in V,, as many different copies of v as is its multiplicity. The multiplicity
of a vertex v € Ty on the boundary of E can be bigger than one if the interior of the union
of all triangles which share v as a vertex is not connected. Also, cuts in £ along edges of
triangles from 7y are possible; such edges belong to the boundary of E.

We let &, denote the set of all edges of triangles in 7,,. We also set V := U,,>oV,, and
&= Um>()gm.

Figure 1: A skewed cell in an LR-triangulation

We next clarify a number of issues concerning LR-triangulations, which are discussed in
detail in [9] (see also [5, 10]).

The constants My, Ny, r, p, 0, and #7q (the cardinality of Ty) associated with an LR~
triangulation 7 are assumed fixed. We refer to them as parameters of T.

It is an important observation that the collection of all LR-triangulations with given
(fixed) parameters is invariant under affine transforms. More precisely, if 7 is an LR-
triangulation of E C R? and A is an affine transform of R?, then A(7) := {A(A): A € T}
is an LR-triangulation of the polygonal domain A(E) with the same parameters.

The most important conditions (f)-(g) on LR-triangulations involve only areas of triangles
but not angles. Consequently, if 7 is an LR-triangulation and A', A" € T,, have a common



edge, then it may happen that A’ is an equilateral triangle (or close to an equilateral triangle)
but A" has a uncontrollably sharp angle (see Figure 1).

In an LR-triangulation 7 there can be an equilateral (or close to such) triangle A° at
any level T, with descendants Ay D Ay D ... such that minangle(A;) — 0 as j — 0.

It is important to know how fast the area |A| of a triangle A € 7T, may change when A
moves away from a fixed triangle within the same level. Condition (f) suggests a geometric
rate of change but in fact it is polynomial.

Lemma 2.1. If A, A" € T,, can be connected by n intermediate edges from &,,, then
al(n+1) <|A/|A" < e(n+ 1), (2:3)
where s,c; > 0 depend only on the parameters of T .

This result follows easily by the following lemma (see [9], Lemma 2.4):

Lemma 2.2. Let T be an LR-triangulation of E C R?. Suppose that /', \" € Ty, (with m
sufficiently large), and A" and A" can be connected by < 2V intermediate edges from &, with
(pairwise) common vertices. Then there exist Ay, Ao € Tr—an,w with a common vertex such

that AN' C Ay and A" C Ns.

From the above discussion (see Figure 1) it follows that for two triangles A", A" € T,
which share a vertex |maxedge (A)|/|maxedge (A”)| can by uncontrollably large (or small).
However, when going in depth the maximal edges of the triangles behave similarly as their
areas.

Lemma 2.3. If T is an LR-triangulation of E, there exist constants 0 < r; < p; < 1
depending only on the parameters of T such that if A" C A, AN € T, (m > 0), and
AN € Trisngs, V > 1, then
, _ |maxedge (A")]
r <

|max edge (A)|

< p1. (2.4)

Proof. Evidently, it suffices to prove (2.4) for v = 1 only. Let A € 7, and let e be an
edge of A. If it is also an edge of a child of A, then the valence of at least one of the two
endpoints of e will increase by one at level m + 1. (Recall that there are always at least two
children, so that a child and a parent cannot be the same triangle.) Therefore, e will be
subdivided at least once after at most S := 2(Np — 3) + 1 steps of refinement. By (2.1) it
readily follows that any edge e’ obtained by subdividing e satisfies |¢/| < ple].

We say that an edge of a descendant of A is a cutting edge for /A if one of its endpoints is a
vertex of A and the other lies in the interior of the opposite edge of A. Since all cutting edges
must emanate from the same vertex of A, there are totally no more than M := Ny — 3 such
edges for AA. Therefore, no new cutting edges for A will be created at levels [ > m + Ny — 3.
(It is easy to see that, as long as no new cutting edges are created at a level [, they cannot be
created at any further level.) Using this and the above observation, we conclude that there
will be no cutting edges at levels | > m+ M + S since they all will be subdivided. Therefore,
each edge ¢’ inside A\ at these levels is either a proper part of an edge of A, or has both of its
endpoints in the interiors of two different edges of /A, or it has at least one endpoint in the
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interior of A. In all cases, condition (2.1) ensures that |¢/| < p|maxedge (A)|. Consequently,
if A" € Trisn, then |maxedge (A")| < p|maxedge (A)]|, since 3Ny > M + S + 1. Thus the
upper bound in (2.4) is established.

The argument for the proof of the lower bound in (2.4) is simpler. Suppose A € T,
AN € Tmi1, and ' C A, Let enay and €/ be the largest edges of A and A/, respectively.

max

Denote by h the length of the height to eyax in A and by A’ the length of the height to el ..
in AA’. Further, let R and R’ be the radii of the circles inscribed in A and A’ respectively. A
simple geometric argument shows that R < h < 3R as well as R’ < b’ < 3R'. Since A\ C A,

then R’ < R and hence b’ < 3h. We use this and (2.1) to obtain
(1/2)rlemax|h = r|A] < |A'] < (1/2) €y P < (3/2)[€faslh
which implies |/ .. | > (/3)|emax|. This obviously yields the lower bound in (2.4). O

Graph distance. We next introduce the mth level graph distance between vertices, which
will play a vital role in our further development: For any two vertices v',v" € T,,, m > 0,
we define the graph distance p,,(v',v") as the minimum number of edges from &,, needed to
connect v and v”.

By the conditions on LR-triangulations, in particular condition (d), it follows that every
edge in & is divided at least once after 2N, steps of refinement. This immediately implies
the important inequality:

pm+2N0V(,Ulvv”) Z 2me(vlvvu)7 ,UI’,UII € va m,v Z 0. (25)
The following lemma is a consequence of Lemma 2.2.

Lemma 2.4. There exist constants ¢ > 0 and t > 0 depending only on the parameters of T
such that for any v°® € V,,

#{v €V : p(v,0°) <n} <en', n>1. (2.6)
Furthermore, for any v',v" € V,, with p,(v',v") =n,
#{v €V 1 pu(v, V) + p(v,0") =n + k} < c(n+ k), k>0. (2.7)

Proof. To prove (2.6) choose v > 1 so that 2/7! < n < 2. Assume first that m > 2Nyv.
Denote by 7° the set of all triangles /A € 7,, which have at least one vertex in the set
{v €V :pm(v,v°) < n}. Let A® € T° have v° as a vertex. Applying Lemma 2.2 with A°
and any other triangle in 7°, it readily follows that there exists a set 7°, say, consisting of
a triangle Ag € T,_an,, and its neighbors (triangles in 7, _sn,, which share a vertex with
/\g) such that Unere /A C Upero/A. Evidently #7° < 3N.

Let Apin be a triangle in 7° with maximum area. By (2.1)-(2.2), we infer §r2Vo¥|Ay| <
| Amin|- We use this to obtain

HT° Amin] < > |A] < 3N6 ™ Ao| < 3N ™21 2NV A
AeTO
and hence
#{v €V : pm(v,0°) <n} <3H#TC < 9Nd ~2r2Nov < ept
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for some ¢,t > 0 depending on Ny, r, and 9.
If m < 2Nyv one proceeds in the same way using 7y in place of T°.
Estimate (2.7) follows easily by (2.6). O

Cells. For any vertex v € V,, (m > 0), we denote by 6, the union of all triangles from 7,
which have v as a common vertex. (Here we take into account the above observation about
the multiplicities of vertices from V,,). We denote by ©,, the set of all such cells 8, with
v eV, and set O = Um>0 O,,. For a given cell § € O, we shall denote by vy the “central”
vertex of §. We let [(#) denote the level of . Thus I(0) = m if § € O,,.

For given #',0" € O,,, we define the graph distance p,,(0',0") between 6’ and 0" by
pm(0',0") := pu(ve,vgr), where vg, vgn € V,, are the “central vertices” of ¢',6". Evidently,
Pm(+,-) is a true distance on O,,.

Furthermore, if 6',0" € ©,,_1 U ©,, then vy ,ver € V,,, and we define the mth level
graph distance py,(6',0") between 6" and 0" by p,(0',0") := pm(ve,ver). Evidently, if A C
©m_1 U O, consists of cells with distinct “central” points, then p,,(+,-) is a true distance
on A. This will be needed in §3.2.

Definition of 67'. We want to associate with each x € E a cell 07" € ©,,, m > 0, which
contains x. Since the cells from ©,, overlap this needs some care. We first associate with
each triangle A € T, a cell % € O, such that A C §%. Such a cell can be selected in
three different ways. We choose one of them for each A € 7T,,. Then for each z € E such
that x € A° with A € T, we define 07" := 0. If x lies on the edge of a triangle from 7,
we define 07" as any cell from 6,, such that = belongs to its interior, but if = vy for some
8 € ©,,, weset 07" :=0.

From the above definition of 67 it readily follows that for any 6 € ©,, the function
h(z) := pm(0,67") is piecewise constant over 7,, and hence it is measurable, which will be
needed later on.

We now introduce the mth level graph “distance” between any two points z,y € E by

(@, i= p(67,67). 2.8)
The following useful inequality is immediate from (2.5): For m > 0, v > 1, and z,y € E,

PmiaNgs (T,Y) > 2 2 pp(m,y), i pu(z,y) > 3. (2.9)

Stars. In order to deal with graph distances and neighborhood relations it is convenient to
employ the notion of the mth level star of a set: For any set G C E and m > 0, we define
the first mth level star of G' by

Star ,,(G) := Star . (G) :=U{# € ©,, : 0° NG # 0} (2.10)

and inductively
Star® (G) := Star} (Star*~Y(@)), k> 1. (2.11)

When G consists of a single point z, in slight abuse of notation, we shall write Star* ()
instead of Star® ({x}). For instance, Star} (v) = 6, if v € V,,.

Courant elements. The no-hanging-vertices condition (e) on LR-triangulations guarantees
the existence of Courant elements, that is, for every cell 8 € ©,, there exists a unique
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continuous piecewise linear function py on E which is supported on § and satisfies @g(vg) = 1.
We denote @, := @, 7 := (¥9)geo, -

We let S,,, denote the space of all continuous piecewise linear functions over 7,,. Clearly,
S €S, if and only if S = Z S(v)ps,. Evidently, Sy € §; C ... and by Lemma 2.3 it

vEVm

follows that U,,>0Sm = Ly(E), 0 < p < oo.

We shall frequently use the obvious fact that all norms of a polynomial on a triangle are
equivalent, namely, if P is a polynomial of degree < k and A is a triangle in R?, then

1Pllz,ea) = |AP VAP L,n), 0 <pg < oo, (2.12)

with constants of equivalence depending only on k, p, and q.

The L,-stability of ®,, = (¢g)gco,, is immediate from (2.12). In fact we shall need the
following obvious modification of this fact: Let A C ©,,,_1 U©O,, consists of cells with distinct
“central points”. If (ap)gca, is an arbitrary sequence of real numbers and S := }_,_, asye,

then y y
p p
ISl ~ (- laawolls)  ~ (D 16llas?) ™, 0<p < 0. (2.13)
el el

2.2 Quasi-distance and maximal operators

Here we introduce a quasi-distance and maximal operators induced by LR-triangulations.
We begin by recalling the definition of a quasi-distance on a set X: The mapping d :
X x X — [0,00) is called a quasi-distance on X if for z,y,z € X,

(a) d(z,y) =0 <=z =y,
(b) d(y, ) = d(z,y),
(c) d(z,z) < K(d(z,y) + d(y,z)) with K > 1.

Assuming that 7 is an LR-triangulation of a polygonal domain E C R?, we define the
quasi-distance dy : E x E — [0,00) by

dr(z,y) == min{|f]| : 6 € © and =z,y € 6}, (2.14)
if z,y belong to at least one cell from O, and by dr(z,y) := |E| otherwise.
Lemma 2.5. The mapping dr : E x E — [0,00) defined above is a quasi-distance on E.

Proof. Condition (a)-(b) on quasi-distances are apparently satisfied by d(-,-). To prove
that condition (c) holds let x,y, z be three distinct points in E. Assume that d(z,z) = |0'|,
where 6 € ©,, is a cell containing z, z and let d(y, z) = |0"| for some cell #” € ©,, containing
Y, z. Suppose m < n. Since z,z € ', x and z lie in two triangles from 7, with a common
vertex or in the same triangle. Since m < n, the same is true for y and z. In other words
there exist triangles Ay, Ay € T,, which can be connected by < 22 edges from 7,,, so that
x €N,y e N,

Assume that m > 4Ny. Then by Lemma 2.2 there exists § € O,,_4n, such that
A1, Ny C 0 and hence d(z,y) < |0]. By (2.1)-(2.2) there exists a constant ¢ depending
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on the parameters of 7 such that |#] < c|¢'|. Therefore, d(z,y) < c(d(z,z) + d(z,y)). If
m < 4Ny, we use E instead of § with the same result. O

With the following lemma we relate the quasi-distance dr(-,-) to the mth level graph
distance introduced in §2.1.

Lemma 2.6. There ezist constants f > 0 and ¢ > 0 such that for § € ©,, (m > 0) and
r€eF,
dr(ve, ) < c|0|pm(6,0™)° if pm(6,0™) > 2. (2.15)

Proof. Clearly, if we prove (2.15) when z = v’ with v' € V,,, then it will hold in general
with a different constant c. Let dr(vg,v') = |w| with w € ©, (£ > 0), i.e. the cell w is
of minimum area and vy, v € w. Let w* € Q be of maximum level such that vg,v' € w*.
Evidently, |w| < |w*|. Since w Nw* # 0, it follows by (2.1)-(2.2) that

l(w) <l(w*) < l(w) + v

where vy > 0 is a constant depending only on the parameters of 7.

Our next claim is that p,,(ve,v") > 2", where n := [(m — [(w*))/2Np] + 1. Assume to the
contrary that p,,(ve,v') < 2". Then by Lemma 2.2 it follows that there is n € ©,, an,, such
that vg,v" € n and hence m —2Nyn > [(w*) or n < (m —I(w*)/2Ny, which is a contradiction.

Therefore,
pm(ve’vl) Z 2(m—l(w*))/2N0 Z 2(m—l(w)—u0)/2N0 Z C2(m—l(w))/2N0. (216)

Evidently, by (2.1)-(2.2), |w|/|8] < ¢(1/r)™ '), Combining this with (2.16), there exists
B > 1 such that
B
dr(v9,1) = J] < cl6] (2710) < el (vg, o).
Above it may happen that w = 0y := E. The proof is the same. O

The quasi-distance dr(-,-) induces a maximal operator. Denote by B(y,a) the ”ball”
centered at y of radius @ > 0 with respect to this quasi-distance, i.e. B(y,a) = {z :
dr(z,y) < a}. Then for any s > 0 the maximal operator M _ is defined by

(M, (@) i= sup (|—113|/B|f(y)|8dy)l/s, r€E, (2.17)

where the supremum is over all balls B containing z.
For our purposes it is more convenient to use the equivalent maximal operator M5
defined by

i nie) = sw (0 [ 1wy " (2.18)

0:xc

where the supremum is over all cells § € © containing x or § = E.

Lemma 2.7. For any measurable function f
Sf(z) ~ My _f(z), zeR? (2.19)

where the constants of equivalence depend only on s and the parameters of T .
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This equivalence is immediate from the following lemma which will be needed later on
as well.

Lemma 2.8. (a) Given a ball B= B(x,r), x € E, r > 0, there exist ¢ € © and " € © or
0" = E such that

0 CcBCO" and r<|0"|<c|Bl <l <cor (2.20)

(b) For any 0 € © there exists a ball B C E (with respect to the quasi-distance dr) such
that
6C B and |B]<cld (2.21)

Here the constants depend only on the parameters of T .

Proof. (a) Fix a ball B = B(x,r), x € E, r > 0. Let 6’ be a cell of minimal level, say m,
such that x € 8’ C B. Clearly,

B C U 0 C Star? (z)
0EOm: xch

and by Lemma 2.2 there exists 6" € 0, 4y, or 8" = E if m < 4Ny such that
0' C B C Star? (z) C 6"

By properties (f)-(g) of LR-triangulations (§2.1), it follows that [0"| < c|¢’|. Evidently
6’| < r and |0"] > r, and (2.20) follows.

(b) Suppose that § € O, (n > 0) is with “central” vertex v. Let ¢ := max{|f| : § C
Star 2(v)}. Then for sufficiently small £ > 0,

6 C B(v,0+¢)= U 6 C Star?(v),
6] <6+4e: veb

which yields |B(v,d + ¢)| < ¢||. O

We now come to the main point in this subsection. It is well-known that the Fefferman-
Stein vector valued maximal inequality holds for maximal functions generalized by quasi-
distances as in our case (see [15]). This combined with Lemma 2.7 gives the needed maximal
inequality:

Proposition 2.9. Let T be an LR-triangulation of E C R%. If0 < p < 00, 0 < q < 00, and
0 < s < min{p, q}, then for any sequence of functions (f;)32, on E,

H (> M) < (S 1) p
j=1 Jj=1

where ¢ depends only on p, q, s, and the parameters of T .

: (2.22)




2.3 Spaces of homogeneous type on polygonal domains

Spaces of homogeneous type were first introduced in [2] as a means to extend the Calderon-
Zygmund theory of singular integral operators to more general settings.

Let X be a topological space endowed with a Borel measure p and a quasi-distance d(-, -)
(see §2.2). Assume that the balls B(z,r) := {y € X : d(z,y) <r},z € X, r > 0, form a
basis for the topology T" in X, and u(B(z,7)) > 0 if » > 0. The space (X, d, i) is said to be
of homogeneous type if there exists a constant A such that for all z € X and r > 0,

0 < u(B(z,2r)) < Au(B(z,r)). (2.23)

The space of homogeneous type (E, dr, m). Suppose that E is a bounded polygonal
domain and let 7 be a LR-triangulation on E. Also, let dr(-,-) be the quasi-distance on
E, defined in (2.14). Finally, denote by m the Lebesgue measure on E. It is easy to
see that (E,dr,m) is a space of homogeneous type, so that we can utilize the machinery
developed in [2]. Indeed, by Lemma 2.5, dr(:,-) is a quasi-distance on E and evidently
m(B(z,r)) = |B(z,r)] > 0 for x € E and r > 0. Further, it follows by Lemma 2.8 that
condition (2.23) is fulfilled as well.

The Hardy space H;(E, 7). We next define the Hardy space H; := H(E,T) associated
with the space (E,dr, m) by means of atomic representations (see [3]).

According to Coifmann and Weiss [3], a function a(x) is said to be a ¢g-atom (1 < ¢ < 00)
if there exist o € E and r > 0 such that

(i) suppa C B(zo,r), (ii) ||all, < |B(zo,r)|Y97L, (iii) [ a(z)dz = 0.
In addition, |E|'1g is by definition a g-atom as well.

We adopt the following slightly different but equivalent definition for a g-atom which
better suits our purposes.

Definition 2.10. A function a(x) is said to be a g-atom (1 < ¢ < oo) for Hy(E,T) if there
is @ € © or § = FE such that

(a) suppa C 6,

(b) llally < |6]*/¢,

(

¢) [pa(z)ds =0.
We also postulate |E| *1g to be a g-atom.

The equivalence of the two definitions for a g-atom is immediate by Lemma 2.8,(a).

Definition 2.11. The space H{ := H{(E,T) (1 < ¢ < o0) is defined as the set of all
functions f € L;(F) admitting an atomic decomposition

f = Z )\jaj,
7=0

where the a;’s are g-atoms and Z;io |A;| < co. Moreover, the norm of f € H{ is given by
| f[l g := inf { Z I\l f = Zx\jaj, a; q—atoms}.
j=0 =0

10



A fundamental fact in the theory of Hardy spaces is that Hf = H{® whenever 1 < ¢ < oo
with equivalent norms (see [3], Theorem A). Thus all spaces Hj are the same and we shall
drop the index ¢. In the following we shall only work with the norm in H; defined by using
2-atoms.

An important fact is that the spaces H;(F,T) essentially depend on the triangulations
T. We call H(E,T*) a reqular Hy-space if T* is a regular multilevel triangulation of E (see
§2.1). It is readily seen that if Hy(E,T*) is regular, then it is the same (with equivalent
norms) as the space H;(E) defined using atoms generated by the Euclidean distance on
E. Thus all regular spaces Hy(E,T) are the same. Consider the case when E := [—1,1]?
and denote by H;(E) the regular H;-space on [—1,1]%2. As will be shown in the appendix
there exists an LR-triangulation 7 such that H;(E,T) # H;(E). The reason for this is
that there exist LR-triangulations on [—1, 1]? containing triangles with uncontrollably sharp
angles (see §2.1). The fact that the spaces H(E,T), where T is allowed to vary, are not all
the same is not a surprise since as is well known the norm in H;(R?) (d > 1) is not invariant
(like the L;-norm) under linear transforms with determinant one. We do not explore in more
detail the relationship between the various spaces Hy(E,T) in this article.

It is not hard to prove that Hy(E,T) is a Banach space and || f{|1,(z) < ¢||f|| (&1 for
f € H(E,T).

Another fundamental result is that the dual of Hy(E, T') is the space BMO := BMO(E,T)
which can be defined in our case as the set of all functions f on E such that

lf | Bro == ‘ /Ef(x)dx‘ + sgp (ﬁ/gﬁ(m) — f0|2d$)1/2 < 00, (2.24)

where fp := ﬁ [, f(z)dz and the supremum is taken over all § € © or § = E. More precisely,
for g € BMO(E,T) and f € H,(E,T) with an atomic decomposition f = >, A;a;,

nli_r}réoZAj/Eg(x)aj(x)dx (2.25)

defines a continuous linear functional on H; whose norm is equivalent to ||g||sao and vice
versa each continuous linear functional on H; is of this form.
Note that an equivalent norm in BMO(E,T) can be defined by replacing in (2.24)

1/2
(ﬁ Jolf(z) — f9|2dx) / by |7}| [y 1f(x) — foldx. For more details, see [3].

Finally, we observe that since H,(E,T) # Hy(E) for some LR-triangulations 7, then
by a duality argument it follows that for the same triangulations BMO(E,T) # BMO(E),
where BMO(FE) stands for the regular BMO space on E. Thus in general BMO(E,T)
depends on the triangulation 7.

One of the advantages of introducing H; via atomic decompositions is that questions
related to the boundedness of Calderon-Zygmund operators (CZO) on H; can be answered
by focusing on individual atoms. Evidently, any operator 7' would be bounded if 7" maps
atoms into atoms. Coifman and Weiss observed that for certain type of operators T, for
every atom a(z), Ta is a function with similar structure, which they term a molecule. We
shall use the following definition of a molecule.
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Definition 2.12. For a given £ > 0, we say that m(z) is an e-molecule for H,(E, T") centered
at ro € B if

(/E |m(l’)|2dl’) (/E |m(x)|2dfr(x,xo)”€dx>l/6 <1 (2.26)
and [ m(z)dz = 0.

It is trivial to see that every 2-atom is an e-molecule for any € > 0. More importantly,
|lm/||, < ¢ for each e-molecule m(z) (see [3], Theorem C). From this it follows that a linear
operator mapping atoms into molecules has a bounded extension to H;.

The following result [3] will play an important role in our further development:

Proposition 2.13. Let T : Ly(E) — Lo(E) be a bounded linear operator given by

/ny

Suppose that for each 2-atom a # |E|™'1g

/E (Ta)(z) dz = 0 (2.27)

and there is € > 0 such that for d(x,yo) > cd(y,yo) the kernel K(-,-) satisfies

K (2,y) — K (z,y)| < C(Zéi’zz;)ed(xlyo)' (2.28)

Then Ta is a constant multiple of an e-molecule for any atom a # |E| ' 1g.

3 Anisotropic Franklin Bases

In this section we explore the Franklin system F7 generated by the Courant elements asso-
ciated with an arbitrary locally regular triangulation 7 of a compact polygonal domain F in
R?. We shall show that each such Franklin system is a Schauder basis for C(E) and L;(E),
and it is an unconditional basis for Hy(£,T) and L,(E) (1 < p < co). We also prove some
related results.

3.1 Definition of the Franklin system. Main results

Throughout this section, we assume that 7 = J,._, 7. is an LR-triangulation of E. We
recall that V,, denotes the set of all vertices of triangles from 7,,. We set Vj =V} and
Vi =V \ Vinoi for m > 1 and write V* = [Jo_, Vi

Let 0y := E. Choose Op.x € O to be of maximum area and denote OF := {6} U
©0 \ {Omax}, i-6. we replace Onax by 0y = E. Moreover, we associate 6y with vy_, and set
v, = lg,. For m > 1 denote by O, the set of all cells § € ©,, with “central” vertices
vg € Vi and set ©* :=J*°_ O

12



Note that for each m, the set {@y : 8 € [J, OF} is linearly independent. Also, S,, =
span{pg : 0 € O©,,} =span{py : 0 € |J*,O;}. For § € © we denote by @y the Ly-normalized
version of the Courant element @y, i.e. $p 1= ||0g|l3" 0o = |0]*%g.

We consider an arbitrary (but fixed) linear order < on ©* satisfying the following condi-
tions:

(i) If 0 € ©F, and ' € ©F with m < n, then § < 6" and (ii) 6y < 0, V0 € O*. (3.1)

We now define the Franklin system Fr by applying the Gram-Schmidt orthogonalization
process to {Pgloco in Lo(E) with respect to the order <. We obtain an orthonormal
system Fr := {fgp}oco+ in Lo(FE) consisting of continuous piecewise linear functions. Each
Franklin function fy is uniquely determined (up to a multiple +1) by the conditions:

() fo € span {pg : 0’ < 6}.
(b) (fo,p9) =0 for all & < 6,

(©) [Ifoll2=1.
Note that fp, = +£1g, := £|E|"1/?1.

We next state our main results on Franklin systems F7, where T is an arbitrary LR-
triangulation of a bounded polygonal domain E C R?.

Theorem 3.1. The Franklin system Fr := {fo}oco is a Schauder basis for L,(E), 1 <p <
00, with Loo(E) := C(E).

Theorem 3.2. The Franklin system Fr := {fo}oco~ is an unconditional basis for Hi(E,T)
and L,(E),1 < p < oo.

Theorem 3.3. The following conditions are equivalent:

(a) f € Hl(EaT);'
(b) The series Yo . ([, fo)fo converges unconditionally in L;

©) 85(@) = (Tocor I PI@)E) " € Ln;
(@ Fya) = (Sacor 10 PIo)E) " € Ly

Furthermore, if f € Hi(E,T), then

[ e = 1S5l ~ 1 s (3.2)

Theorem 3.4. A function f € BMO(E,T) if and only if

sup (ﬁ > f7,>|2)1/2 < 00, (3.3)

0 ne®*: nCh

where the supremum is taken over all 6 € © or § = E. Furthermore, | f|smoE,1) 5
equivalent to the quantity in (3.3).
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3.2 Representation of the Franklin functions
and proof of Theorem 3.1

The exponential decay of the Franklin functions is a central issue in the study of Franklin
systems. We begin with a generalization of the well-known result of Demko [6] on the inverses
of band matrices, given in [13].

Proposition 3.5. Suppose K is a finite set of indices and let p be a distance on K. Let
A = [aglkiex be an invertible band matriz of order r > 1, i.e. ap; = 0 if p(k,l) > r. Let
A = [blkiex be the inverse matriz of A. Suppose that for some 1 < p < oo,

1Al z)-epx) < My and ([ A7 g, (x)e,(5) < Mo
Then there exist constants ¢ > 0 and 0 < q¢ < 1 depending only on My, My, r, and p such
that
|brs| < c@®®)  for kleK.
For any n € ©F, (m > 0), denote
A, =0,_1U{0c0;,, :0=<n} (3.4)

Note that the cells # € A, have distinct “central” points vy and hence the set {pg : 6 € A, }
is linearly independent. Let G, be the Gram matrix given by

G’? = [aogl]e,gleA" with Qg -— <g59,g591>. (35)
and denote G, ' =: [bgo']g.prca,-

Lemma 3.6. There exist constants 0 < ¢ < 1 and ¢ > 0 such that for any n € ©F, (m > 0)
we have the following estimate for the entries of G;l:

lboor| < cqm®), 0,6 € A, (3.6)
where pp,(6,0") is the mth level graph distance between 6 and 6', introduced in §2.1.

Proof. By condition (¢) on LR-triangulations, every triangle A € T has at most My
children. Then agy := (Pg, o) = 0 if p,,(0,60") > 2M, and hence the Gram matrix G, is
r-banded with r := 2M, + 1. Since G, is symmetric, then

|Gy lles(Ag)—ta2(r,) = max{A : X eigenvalue of G} and

||G;1||52(An)%g2(/\n) = max{1/\ : X\ eigenvalue of G, }.

On the other hand, for any vector z := (zg)peca, We have || 3oy 559959”%2(13) = (Gzx,r) and
thus by (2.13) there exist constants ¢, ca > 0 such that

cllzllZ,a,) < Gy, 2) < callzllg ),
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which implies ¢; < A < ¢; for every eigenvalue A. Hence

1Gyllearg)—seaiay) < €2 and (|G lea,)—ea(ry) < 61

Finally, note that since the “central” points of the cells from A,, are distinct points in V,,,, the
mth level graph distance p,,(-,-) is a true distance on A,. Thus G, satisfies the conditions
of Lemma 3.5 with p(+,-) = pm(-,-) and hence (3.6) holds. O

We are now prepared to deduce an important representation of the Franklin functions.

Lemma 3.7. For any 0 € OF, (m > 0) the Franklin function fy has a representation of the
form

f0 = Z 697]%5177 (37)

n€EO,

with coefficients cg, satisfying
lcon| < cg” @, € O, (3.8)
where the constants 0 < ¢ < 1 and ¢ > 0 depend only on the parameters of T .

Proof. It is readily seen (and well-known) that the function gy defined by

go:= Y boepe= Y bocPet Y b, (3.9)

£€Ny EEOm—1 €O, £<0

where bge are entries of Gg_l, has the property (go, ) = do,. Here, we set bge := 0if £ € ©_;.
Therefore, fy = £||gsl|5 ' gs. Evidently, for £ € ©,,_1,

D¢ = Z Pe (vy)llen|l28y-

nEOm:nCE

Substituting this in (3.9) and switching the order of summation, we arrive at

fO = Z 697795777

nEO,
where
con = llgollz ells Y boee(vy) if n€O,\Ag, and
n oll2 1|¥nll2 0¢Pe\Un n m )
£€Om_1:nCE
con = lgolly" (bon +llnllz D" baetelvn)) i 7€ OnN Ao,
£€O,m—1:1CE
Note that

1 = (g0, 0) < lIgell2l|@all2 = [lgell2
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and pn(1,§) < Mo, whenever n € Op_1, € € Oy, and £ C 1. Also, [[Zlloe = [l@ell" ~
|€]71/2. We use these along with properties (2.1)-(2.2) of LR-triangulations, and the estimate
for |bg,| from Lemma 3.6 to obtain, for n € ©,, N Ay,

Icon| < |bog| + c|n|'/? Z | Do | Pe (vn)

f€®m712 77C§

< qum(b‘,n) + C(|77|/|§|)1/2 Z qpm(e,f) < qum(t‘)m)‘
£€EOm_1:1C¢

The estimate of |cg,| when n € ©,, \ Ay is the same. O

Proof of Theorem 3.1. As was already mentioned in §2.1, U_,S,, = L,(E), 1 < p < o0,
and hence Fr is dense in L,(E). It remains to prove that the orthogonal projector operator
Pyf == > 2g<,(f, fo) fo is bounded on L,(E) (1 < p < o0), i.e. considered as an operator
from L, into L,. It is easy to see that

RI@ = [ 3 boadole)on W)y, Ay = O U8 €0} 50 <)

0,0'cAy

Denote K, (z,y) 1= >2g gc, bo,0Po(2)Po (y). Then for each z € E,

1K@ )z < ) [booll@o(@)lgoz,

0,6'cA,,

< e Y @01/ 14 (w),

0,6'cA,

where we used (3.6) and that ||Pg|lo = 1. Our goal is to show that [|K,(z,-)||., < C <
oo. Fix ¢ € E. Since there are at most 6 cells § € A, such that x € 6°, it suffices to
show that for each 6 € Ay, > pcp, @9 (16]/16')"* < ¢ < oo. By (2.3) it follows that
if p(0,0') = n (n > 1), then |6|/|¢'| < cn®. On the other hand, Lemma 2.4 yields that
#{0' € A, : pp(0,0") = n} < en'. Using the above, we obtain

S OBl < et < e < oo
=1

0'eAy n=

since 0 < ¢ < 1. Consequently, ||K,(z,")||r, < C. This estimate implies || P,||5,—r, < 0o and
| Pyl Loc—Lee < 00. By interpolation it follows that || P,||z, -z, < 00, 1 < p < oco. O

3.3 Localization and smoothness of the Franklin functions

Here we show that the Franklin functions belong to Lip & (for some ¢ > 0) with respect
to the quasi-distance dr(-,-) introduced in (2.14) and have exponential rate of decay with
respect to the corresponding graph distance.

We shall systematically use the notation introduced in §2.1. We recall, in particular, that
for z € E, 0 is a cell from ©,, containing x, and p,,(, ) is the mth level graph distance.
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Theorem 3.8. There exist constants € > 0, 0 < q; < 1, and ¢ > 0 depending only on the
parameters of T such that for any 6 € ©F, (m > 0),

dT:L‘,yE (6,6 m0,9{,"
| fo(x) = fo(y)| < c|9|(1T+Z ((Jf ©0F) 4 g )), z,y € E. (3.10)
Moreover,
|fo(z)] < 72" "%) )z € B, (3.11)

and for any s > 0 there exist a constant cs such that
[fo(2)] < |02 (ML) (2), =€ B, (3.12)

where M- is the mazimal operator defined in (2.18).
In addition,

¢ 10172 < follyo) < Il folls < l0]7H2, 0 <p < o0, (3.13)

and
I follm, < cl6]*2. (3.14)

We first prove that each Courant element g is an Lip € function with respect to the
quasi-distance dr.

Lemma 3.9. There exist constants € > 0 and ¢ > 0 depending only on the parameters of T
such that for any 0 € ©

dr(x,y)®
|po(x) — a(y)] Sc%, z,y € E. (3.15)

Proof. Let 6 € ©,, n > 0, and assume that d7(z,y) > 0 and x € § or y € §. (Otherwise the
claim is trivial.) Also, let dr(z,y) = |0°| with 6° € ©,, (m > 0) and 6° containing z and y.

If m < n, (3.15) is trivial because there is a constant ¢ > 0 such that |6°|/|0] > ¢
(e #£0).

Assume that n 4+ 3Nok < m < n+ 3Ny(k + 1) for some k > 0.

Case 1. Let z,y € A, where A € T, is one of the triangles forming #. It is easy to
see that estimate (3.15) is invariant under affine transforms. So, without loss of generality
we may assume that A is an equilateral triangle with side lengths 1. Then there exist two
triangles A, A" € T,, with a common vertex such that x € A’, y € A" and A", A" C A.
(It may happen that A" = A”.) By Lemma 2.3,

max{|max edge (A')], jmax edge (A")|} < p¥maxedge (A)] < pF

with 0 < p; < 1. Choose £, > 0 so that p; = r°!, where 0 < r < 1 is from (2.1). Then

|66(2) = Po(¥)] < [IVeollLaialz =yl
< 2max{|maxedge (A")|, maxedge (A")|}
< 20f < 2T < oMK AY T
< oA < b,
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where ¢ = €1 /3Ny and we used (2.1). Since || ~ |A| ~ 1, estimate (3.15) follows.

Case 2: Let x € Ay and y € Ay, where /A1, Ay € T, are distinct triangles with a common
vertex vg and Ay, Ay C 6. Since x,y € 6°, there are two smaller subtriangles A", A" € T,
of #° containing = and y, respectively, such that A" C Ay, A" C Ay. Choose z € A'NA".
Then using that estimate (3.15) holds in Case 1, we obtain

lo(x) —wo(y)| < lwa(z) — wo(2)| + |wa(2) — wa(y)]
(dT(iU,Z)E dT(Z;y)E> < dr(z,y)°

< ;
16]° 16]° 16]°

where we used that dr(z,z) < dr(z,y) since x, z € §° and similarly dr(z,y) < dr(z,y).
Case 3: Let x € @ and y ¢ 0 (or y € 6 and x ¢ #). This case reduces to the first case by

introducing an appropriate point z on the boundary of # such that dr(z,z) < dr(z,y) and

taking into account that yg(y) = @e(z) = 0. O

Proof of Theorem 3.8. By Lemmas 3.7 and 3.9, we have for § € ©} ,

fo@) = foy)| < D Il lcanllon(@) = 0a(y)]

NEOm

< > |2 P N dp (, y)°

NEOm: xEN® or yeEN®

< oy (X DD )6l e,

NEOm:zEN®  NEOy:yEN°

Note first that for any x € E there are at most 3 cells n € ©,, such that x € n°. By the
definition of 62", we have z € 67 and 0" € ©,,, and hence |n| ~ |07*| if n € ©,, and x € n.
Also, by (2.3) it follows that |0]/|67'| < c(pm(6,0*) + 1)°* Finally, we choose the constants
c1 > 0and ¢ < ¢ < 1, depending only on ¢, ¢, and s, so that (v + 1)(/2+2)3¢» < ¢1¢¥ for
v > 1. We use this preparation to obtain

ST (01/1n) gm0 < (i (B, 0) + 1)1/2FD2qenOOF) < gm0,

NEOm: zEN°

We similarly estimate the second sum above, and (3.10) follows.
Estimate (3.11) follows in a similar way but it is easier and will be omitted.
To prove (3.12) we need estimate (M51g)(z) (0 € O,,) from below. By (2.2) it follows
that
(M51p)(z) >¢>0 for z € Star) (6). (3.16)

Suppose = € E \ Star! (8). Then p,,(6,0™) > 2. Let dr(vs,z) = |6°| with §° € ©, and
6° containing vy and z. Evidently, ¢ < m and |# N 6°| > c|f|. Further, by Lemma 2.6,
d7(ve, x) < |0 pm(0,6™)P. Using all of the above, we obtain

Mi1)(@) = (g7 [ 1ot dn)" = (00610 = e (0,02)7

|6

Combining this estimate with (3.16) and (3.11) yields (3.12).
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We next prove (3.13). If p < co and 6 € ©},, we have using (3.11),

- m (0,
1Foll2 < D7D Mlfallh o < 101772 > Il ®?, (3.17)

v=0 nei}, v=0 neX},

where X” := {n € 0,, : pm(6,17) = v}. As above |n|/|0] < c(pm(0,n) +1)° = c(v + 1)* if
n € XY and by Lemma 2.4 it follows that #X% < c¢(v + 1)t. Using these in (3.17), we find

[ foll5 < cl@]7P/F1 Y (v + 1) gy < PP, (3.18)
v=0

We now estimate || fp||, from below. From the proof of Lemma 3.7 it follows that f, =
+196l|5 ' g9, where go = > cen, boePe, and also (gg, Po) = 1. Exactly as in (3.17)-(3.18) (with
fo replaced by gg) we obtain ||gg||2 < ¢. Therefore,

[{for o)l = Ilgallz (g0, Go)| = llgallz" > c.

On the other hand |{fs, Po)| < |6]'2|fo|lr..(6). Consequently, || follr..(o) = |6] '/* and using
(2.12), we infer || fol|z,0) = [0]'/P Y2, 0 < p < 0.

It remains to prove that each Franklin function fy belongs to H; and (3.14) holds true.
To this end it suffices to prove that gy := |#|~'/%f, is a constant multiple of an e-molecule
centered at vg. Evidently [, |go(x)|* dz = |0|~". We use Lemma 2.6 and (3.11) to obtain

/ (90(@)Pdr(w,09) " dw < clf] / ") (0 (6,67) + 170+ dg
B E

< o6 ST nlg O (pn(8,m) + 170 (3.19)

nedm,
< b5,

where for the latter estimate we proceed exactly as in (3.17)-(3.18). Therefore, according to
the definition of a molecule (see Definition 2.12) gy is a constant multiple of an e-molecule
and hence fy € Hy and || fo||m, < c|0]}/2. O

3.4 Proof of Theorem 3.2

We first observe that since by Theorem 3.8 each Franklin function f, belongs to H;, then
(fo, fo)aco+ is a biorthogonal system in Hj.

We next prove a technical result which will provide the main step in the proof of Theo-
rem 3.2.

Proposition 3.10. For any 2-atom a(x),

a= > (a, fo)fo, (3.20)

0cO*
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where the series converges unconditionally in Hy. Moreover, there exists a constant ¢ > 0
depending only on the parameters of T such that for any M C ©* and any sequence w =

(wg)oeM with Wy = j:l,
H Z we(a, f0>f0‘
H
0eM

<c (3.21)

1

and

(% 1o i) ], < 322)

For given M C ©* and w = (wp)gepm With wy = £1, consider the linear operator

(Tmwf)(z /KMw z,y)f(y) dy (3.23)
with kernel
Kmw(T,y) Z we fo(z (3.24)
feM

With the next lemma we show that the kernel K, satisfies condition (2.28) of Propo-
sition 2.13

Lemma 3.11. There ezists a constant ¢ > 0 such that if dr(z,y0) > 2Kdr(y,v0), where K
is the constant from the definition of the quasi-distance dr(-,-), and min{l(f) : 6 € M} >
1w >0, then

dT(y,yo))’f 1
dT(xayO) dT(xvyO) ’

where € > 0 is from Theorem 3.8, 0 < v, <¢, and v, — 0 as . — oo.

| Kato(, ) = Kol 90)| < 7 (3.25)

Proof. Denote Kp,(z,y) := > 5c vine+ wWofo()fo(y). We use (3.10)-(3.11) to obtain

| K (z,y) — (@, 90)| < Z | fo(2)|1 fo(y) — fo(yo)

0€O,

€ —1—€ m 7;” mevgg’r/n ’m(00 )
< adr(ypo)® Y 101 caf O (g0 4 O, (3.26)

0cOn,

We now claim that there exist constants ¢ > 0 and 0 < ¢y < 1 such that

> lolimeg O < el g . (3.27)
0€Om,

To see this set n := p,, (67", 0;") and define

={0 € On : p(0,07) + pm(0,0") = k +n}.
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By Lemma 2.4, #A; < c(n + k), and by Lemma 2.1, |6]"|/|60] < cpm(6,0;)° if 0 € ©,,. We
use the above to obtain

Pm (07921)""/)’"& (9,9;”)

q m|—1l—€ m € N
D T LA DD DI (4] ar'ia

0€O, k>0 0c Ay

< Copl YD (6,67 g

k>0 0 Ay,
< C|0;n|7175 Z(n + k)t+s(1+5)q?+k
k>0

< oyt egy = oy g,

where ¢; < g2 < 1. Thus (3.27) is established.
Applying (3.27) in (3.26) we get

pm (63",05") pm (05",655)
d> ! ds *
|Km(xa y) - Km(x7y0)| S CdT(y’yO)E m|1l+e + m |1+e
1671 |67

and hence
|KM,W($ay) - KM,w(x>y0)| < Z |Km(x>y) - Km(x,y0)|
m=0
00 qpm(szv%") qu(9 o)
< cd ¢ 2 2 . (3.28
< cdr(y,90) mZ:H< |0;n|1+5 + |0;,é|1+g > ( )

To estimate the right-hand-side of (3.28) let us assume that d(z,y) = |0*| with 6* € O,,-
Then

(91- B y Pm(e:;n:e;n)

q79m|1+5 (Z+ > ) = e (3:29)

m=u m=m*+1
For oy, using (2.1)-(2.2), we have

m*

c * m € m(e;/cn:%n)
o < [EEE Z(W /167 a5
m=p
C ™ * C
< p(m —m)(1+¢) L — 3.30
e 2 I, e (3:30)

We now estimate os. Denote Zj, := [m* + 2Nk, m* + 2Ny(k + 1)). Note that by (2.9)
pl(gia 05) Z 2k72pm*+2N0 (ggrcn*JrQNo’ 0;n*+2N0) Z 2k727

whenever ¢ > m* 4+ 2Nyk. We use this and (2.1)-(2.2) to obtain

o0

c * m m (07",05")
oy < THEE Z (16°1/165") ' ** g5 !

m=m*+1
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[oe]

C « gm _gm
(m*—m)(1+¢) ,pm(07",05")
e r q
d']‘(l’, y)H‘E m—%;le ’
C > * k
< e Y Y g
= 1+ 2
dr(z,y)"* = meTy
c - —2Np (k+1)(14¢) 2k ¢
T TP S e L .
) k:() Y

Estimates (3.30)-(3.31) yield
o OF07) c

< :
= 0= 7 dr(z, )t

m

Using this inequality twice in (3.28) (for y and yg) we obtain

1 1
Kpo(@,y) — Kpolz, <d,5( ) 3.32
[ K pmw (2, y) M (@, 90)| < edr(y, yo) dr(z,y) e T dr(z,yo) He ( )

Finally, since dr(x,yo) > 2Kd7(y, o), then d(x,y) ~ d(z,ys) and (3.32) implies (3.25) with

Yu = C.
If m* + 2Nok® < pu < m* + 2Ny(k? + 1) for some k* > 1, then oy = 0 and as above

¢ ) . ng(u*m*)/”’o

< - - ,',,72N0(k+1)(1+5) 2 < 37

7= dr(a, ) kzkh R RN
for some 0 < g3 < 1. This estimate yields (3.25) with v, := cqg“‘*”*’””‘). Evidently, v, — 0
as 4t — 00. The proof of Lemma 3.11 is complete. O

Proof of Proposition 3.10. Suppose first that a(z) = +|E|"'1g. If §y € M, then
using the orthogonality of the Franklin functions and that fs, = £|E|"'/?1y it follows that
Tmwa = £a, while if 8y ¢ M then T ,a = 0. In both cases the result obviously holds.

Let now a(z) be a 2-atom and a # +|E| '1g. Then [pa = 0. As above, we see that
Jy Trmwa = 0. Then by Proposition 2.13 and Lemma 3.11 with M := {6 € ©* : [(0) > p}
and an arbitrary sequence w = (wp)pco+ With wy = £1, it follows that the function

hei= Y. wela, fo)fo

0€0*,1(8)>p

belongs to H; and ||h,||m, < 7., where 7, — 0 as pp — oco. Therefore, the series in (3.20)
converges unconditionally in H;. We also know that (3.20) holds in L. Since both spaces
H, and L, are continuously embedded in Ly, it follows that (3.20) holds in H;.

Estimate (3.21) follows by Proposition 2.13 and Lemma 3.11.

It remains to prove (3.22). From above for an arbitrary sequence w = (wp)peco+ With
wg = £1, we have

<c
Ly

| > wola, f) 0] > wolafifi <e
0cO* 0cO* 1
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Applying now the usual trick with Khintchine’s inequality, we infer

| > e fPi@P], < > wla, fo)fof| | <.

fcO*

O

Proof of Theorem 3.2. We begin by proving that the Franklin system F7 is a uncondi-
tional basis for Hy := H;(E,T). As we have already mentioned fy € H; for all § € ©* and
hence (fy, fo)oco is a biorthogonal system in H;.

By Proposition 3.10 for any atom a(z), a = > ,.o.(a, fs) fo in H;. This along with the
definition of H; yields that F7 is dense in H;.

By estimate (3.21) from Proposition 3.10, it readily follows that for any M C ©*,

| >t 5040
0EM

Therefore, F+ is a unconditional basis for H;.

We now turn to L, (1 < p < oo). Taking into account Lemma 2.3, it is obvious that
Fr is dense in L,(E). For a given M C ©*, consider the operator Th := Ty, with
w = (1)pem, where Ty, is defined in (3.23). By (3.33) Tz is bounded on H; and, since Fr
is an orthogonal basis for Ly, T is bounded on L, as well. Then by interpolation it follows
that T is bounded on L, for 1 < p < 2. Finally, by a standard duality argument, it easily
follows that T is bounded on L,,2 < p < 0o, as well. Consequently, F7 is a unconditional
basis for L,(E), 1 < p < oo. O

<c|fllw for fe H. (3.33)

H,

3.5 Proof of Theorem 3.3

We first note that the implication (a) = (b) is immediate from the fact that Fr is a
unconditional basis for H; (see Theorem 3.2), since H; is embedded in L;.

One applies Khintchine’s inequality as usual to show that (b) <= (c) (see e.g. [11, 17]).

We now show that (¢) <= (d). We know from Theorem 3.8 that for any s > 0, | fo(z)| <
cs(M31g)(z), * € E. Then choosing 0 < s < 1 and applying Proposition 2.9 we obtain
155l10, < cllFy |l thus (d) = (o).

For the other direction, we first note that by Theorem 3.8, || fsl|z..(6) > c|f|~*/?. Then
since fp is linear on each triangle of 6, there exist a set Gy C 0 with |Gy| > «|f| such that
|fo(z)| > c|Gy|~'/? for x € Gy, where ¢ > 0 and 0 < o < 1 are constants depending only on
the parameters of 7. Therefore, 1¢,(x) < ¢|fs(z)| for z € E. Denote

Do) = (1 fP e @)P)

fcO*

Then by the above estimate ||T';||z, < ¢[[S||z,- On the other hand, 14(z) < c,(M%1g,)(2),

since |G| > «a|f|. Applying again Proposition 2.9 we infer ||Fy||z, < ¢||T¢llz, < ¢||S¢llr,-
Consequently, (¢) = (d).

It remains to show that (d) = (a) which is the main step in the proof of Theorem 3.3.
We give it in the following proposition.
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Proposition 3.12. Suppose that for a collection of numbers (ag)gco~ we have

F(z) = (Z |a,,|2|11(,(gc)|2)1/2 e L, (3.34)

0cO*

which is equivalent to

s = (X ol lfoto)?) " € Ly (3.35)

9co*
Then f:= 3 yco« asfo belongs to Hy and || f||g, < c||F||L,.

Proof. We shall use the idea of the proof in the wavelet case (see e.g. [14, 17]). Note first
that the equivalence ||F||,, ~ ||S]|, follows by the argument which we used above to show
that (c) <= (d).
Let us denote
Gr:={r€E:F(z)>2"}, kel

It is easy to see that
> 251Gl < 20|F |lzys) (3.36)
kEZ
(see e.g. [17], Proposition 8.15).
We introduce the collections of cells

Cr . ={0 €0 :10NG >10]/2}.
Since Gy C Gy, then C; C Cg. It is easy to see that
0" = Ujezcj.

Indeed, if ag # 0, then |ag||] /2 > 27 for some j € Z, and hence F(x) > |ag|1(x) > 27 on 6.
Therefore, 6 € C;.
Denote now
GZ = Ugecke.

It is not hard to see that the Lebesgue differentiation theorem holds with the cells from ©.
(For its proof one can use the maximal operator M4 introduced in §2.2.) Consequently,
G C G} modulo a set of measure zero.

By the coloring lemma in [10] (Lemma 3.2), © can be represented as a finite disjoint
union of subsets (0¥)%_ | with K = K(Ny, M) such that each ©” has a tree structure with
respect to the inclusion relation, i.e., if ¢,60" € ©¥, then (#")° N (6”)° = 0 or &' C 6" or
§" C 0.

Further, denote by My, the set of all maximal cells in C,NOY, i.e. § € My, if § € C,NOY
and 6 is not contained in any other cell from C, N ©”. Clearly, G = UK | Ugcq,, 6 and

K K
Gil < D> 1e<2) 0 ) Gen g

v=1 e My, v=1 e My,
K
< 2 |Gk NUpenm,, 0] < 2K|Gyl. (3.37)
v=1
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Denote Dy, := Ci, \ Cr+1. Now for any 0 € My, we define Dy := {n € D, N O : n C 0}.
Clearly, the sets Dy are disjoint and

o-yYU U

k€Z v=1 0cM,,

We also define
Ae = Z agfg, 6 e Mk,,.

n€Dy

We next show that mg := 27%|0| 1A is a constant multiple of an e-molecule, which will
imply ||meg||#, < c and as a consequence || Ay||m, < 2¥|6]. Note first that, for 6 € My,

[ P@dr= Y el [ Bwdez 3 jaPll Gl
N\Grt1 nEDy N\Glr1 n€Dy
Since ) € Ci41, |Grr1 N | < |n|/2 and hence |\ Ggi1| > |n]/2. Therefore,
1
/ Fr(z)de> =Y la,f*, 0€ My, (3.38)
ON\Gr+1 2 neDy

On the other hand,

/ F?(z)dr < 22(k+1)|0 \ G| <4- 22k|9|-
\Gr+1

Combining this with (3.38) we arrive at
Iall3 = > lag|* < c2*l]. (3.39)
n€Dy

To prove that my is a constant multiple of an e-molecule it suffices to show that my
satisfies (2.26) with the 1 in the write-hand-side of (2.26) replaced by a constant ¢ > 0 (for
some ¢ > 0). This is apparently equivalent to

</E [ Ag () dx) </E |A9($)|2d7—(x,v0)1+5d;1:) e < (2+|2) e,

We chose an arbitrary € > 0, e.g. ¢ = 1 and fix it. Taking into account (3.39) it suffices to
show that

/ |Ag(x)|2dr(, vg) Todx < c2%F|6)*F°. (3.40)
E
To prove this estimate we need the following lemma:

Lemma 3.13. For 0 € ©,, (m > 0) and x € E with p,(0,07) > 3, we have

R(z):= ) |fy@)] < clf] /20, (3.41)

neoe*,nCo

where the constants ¢ > 0 and 0 < g, < 1 depend only on the parameters of T .
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Proof. Write briefly N := p,,(0,07) and Z; := [2Npk,2Ny(k + 1)), where Ny is from
condition (d) on LR-triangulations (§2.1). If v € 7}, (k > 0), then using (2.9) we obtain
Pmiv(ve, ) > 2872p, (vg, 2) = 282N Then by (3.11) we have for v € Iy,

m-+v
Z |f77(x)| S C Z |77|_1/2qu+1/(77701 )

nE@;‘nJru,nCG ne@jnJr,,,nCG

< e D Il (3.42)

p>2k=2N pexl

where
XTI;L+V = {77 S @m+u : pm+u(7770T+V) =K and nc 9}'

By Lemma 2.4, #X!.., < cu' and by (2.1)-(2.2) we have for n € X/.,,,
cr?Nok|g) since n C 0. Using these in (3.42), we obtain

S @) < oA NR N gk,

USSMN (& p>2k=1N
—1/2_—Nok Bt
< g A NR N gl
[1,221“_1./\/
—1/2 2N
< o] P,

In| > erv|6] >

where 0 < ¢, < 1 and we used that 0 < ¢; < 1. Summing up the above estimates we get

R(z) < c|f|~V/? Z INog?™N < )12 = c|f|~1/2grm @8,
k=0

]
We are now prepared to prove (3.40). Assuming that 6 € ©,,, m > 0, we can write

[ MePar i = [+ —nea
E Star 2, (vg) E\Star 2, (vg)

To estimate the first integral we note that dr(vg, z) < c|f| if 2 € Star? (vg) and using (3.39)

we obtain
Jo < c|0]"F¢ || Agll3 < c2%%|9)>Te. (3.43)

To estimate J; we first observe that by (3.39) it follows that |a,| < c2*|0|*/2 for n € Dy.
Using this and Lemma 2.6, we obtain

- / (@) Pdr(z, vo) Foda
E\Star , (vg)

2
< an||fo(2)]) dp(z,ve) edx
J AN O LN ECH) RAERD

n€Dy

2
< 2%|g|te / Fo(@)]) pm(8,0™)P ) dy,
I RN O SR O WA

ned*, nCo
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Applying Lemma 3.13 we obtain

Jl < 022k|0|1+s/ qu(0,9zm)pm(07H;n)ﬁ(l—{-s)dx
E\Star?, (vg)

and exactly as in (3.19) (see also (3.17)-(3.18)) we obtain J; < ¢2%|6|?*¢. This and (3.43)
yield (3.40). Consequently, ||Agl|z, < c¢2¥|6]|, which implies

K K
1 <S5 S ol < 372537 37 181 < 324Gl < el Pl

k€Z v=1 €Dy, keZ v=1 0e My, keZ

where we used (3.36). This completes the proof of Proposition 3.12. O

It remains to prove equivalences (3.2). The estimate ||f||n, < c||Sf||r, and equivalence
IS¢l ~ ||FfllL, are immediate from Proposition 3.12. The estimate [|S¢||z, < ¢||fllm
holds since by Proposition 3.10 it is true for each individual atom. The proof of Theorem 3.3
is complete.

3.6 Proof of Theorem 3.4

We shall follow the scheme of the proof of Wojtaszczyk [16] combined with our techniques
of this article. We begin with one technical lemma.

Lemma 3.14. For any 0 € ©,, (m >0) and 1 < q < 00, we have

V2§, < c||'/e 3.44
Hne(;yce|n| il Lq(B\0) g ( )
and

H D IWPPARI, < el (3.45)

neO®*,nZ0,l(n)>m

Proof. We shall prove only (3.44) since the proof of (3.45) is the same. We first observe
that by (3.11) and Lemma 2.4,

ST nl"Plfy(@) <, z€B, n>o0. (3.46)

neo;,

For z € £\ 6 and v > 1, we define py,,(0,07") := infyep pm ., (0, 07). Exactly as in
the proof of Lemma 3.13 one shows that there exist constants 0 < ¢, < 1 and ¢ > 0 such
that

>, |2\ fy(2)| < cqfm @) g e B\ Star?,,,(6). (3.47)
neO®*,nCoh,l(n)>m-+v

and, in particular,

STl Alf(@)] < @), w € B\ Star?(9). (3.48)

ned*,nCo
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Taking into account (2.5), estimates (3.46)-(3.47) yield

> @) <e(v+1), € E\Stary,,(6), v>0. (3.49)

nee*, nCo
For the proof of (3.44) we also need the estimate:

IStar2,, (0)\ 0] < cpslf], v >0, (3.50)

m—+v

where 0 < p» < 1 and ¢ > 0 are constants depending only on the parameters of 7. Estimate
(3.50) is an immediate consequence of estimate (2.4) from Lemma 2.3 and properties (2.1)-
(2.2) of LR-triangulations.

Denote briefly Fi(z) := 3" g« o In|'/2| £, (z)|. We have

/ |F(z)|9dz = / |F(z)|%dz + Z/ |F(z)|%dz.  (3.51)
E\6 E\Star 2,(6) v—0 Y Star fn_,,_l,(ﬁ)\Star 3n+u+1(9)

Using (3.48) we obtain
/ |F(2)]tde < c > wlq@em @) < clg, (3.52)
B\Star 7, (6) WEB,: woNStar 2, (0)=0

where for the latter estimate we proceed exactly as in (3.17)-(3.18).
By (3.49)-(3.50) we get

o9} o0

Z/ F(@)|dz < ¢S (v + 1)pl6] < ],
v—0 v Star fn+u(9)\Star fn+u+1(0) V=0
This and (3.52) yield (3.44). O

We are now in a position to prove Theorem 3.4.

(a) Assume that (3.3) holds and denote by A the quantity in (3.3). We shall prove that
f S BMO(E,T) and ||f||BMO S cA.

Let 6 € ©,, (m > 0) (the case § = E is trivial). We write

f:( Z + Z + Z )(fafn>fn::F1+F2+F3.
neEO*,nCO  ncO®*, 170, l(n)>m  ncO*,l(n)<m

Using (3.3) we have
|FllZam = D £ f) P < A%9) (3.:53)

ncCo

From (3.3), [(f, f,)| < Aln|*/? and using (3.45) with ¢ = 2, we obtain

1ol a0y < cAl6]"2. (3.54)
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We use (3.10) and that |(f, f,)] < A|n|*? to obtain, for z € 6,
|F3(z) — F3(vp)] < cA Z 02| £ () = fo(ve)|

ne®*,l(n)<m

- €l,.|—€ v (n,0% v(n,0%,)
< eAY S drlwg ol (o a7 ) (359)

v=0 neo;
< A Y ol o)
v=0n€0;
Now, exactly as in the proof of Lemma 3.11, we have
Z n|~¢" pv (1,0% < clo|p (m—v) Z po(n,07)% ¢ pv (1,0 < cl6|=p (m—v)e
neo: NCH
We use this in (3.55) to obtain
|F3(x) — F3(vg)| < cA, z€0. (3.56)
By (3.53)-(3.54) and (3.56) it readily follows that

’ ’Uo diE C/ l .
| |

Consequently, || f||smo < cA.

(b) Assume that f € BMO and ||f||pmo = B. Fix 0 € ©,, (m > 0) (the case § = E is
easier). We shall prove that

S WL f)P < B, (3.57)

ne®*, nCo
which implies (3.3).
We write

(X + X o+ X Jemh=R+R+R

ned*,nCh ned*,ngo,l(n)>m neO*,I(n)<m
As was shown in the proof of Theorem 3.2 || f,[|z, < c[n|'/?. Then by (2.25) it follows that
[ )l < I lmacollfyllm, < cBln]2. (3.58)
We use this and (3.44) to obtain

‘/Fl d“" < > |<fafn>|‘/fn($)dx‘

neO®*, nCo

cB > In|'?

/ fie)de] (3.59)
nee*, nCo

Y Wl

nee*, nCo

cB|6|*/?

IN

cB

IN

L1(E\9)

IN
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Using (3.45) we have

| F2lL,y0) < cBH Z 01" £ ;

neO*,nZo,l(n)>m

| < cBl|A|Y2. (3.60)
(4

Finally, exactly as in (3.56) (using (3.58) instead of |(f, f,)| < cA|n|*/?), we obtain
|F5(z) — F3(vg)| < ¢B, xz€8. (3.61)

Now, (3.59)-(3.61) readily imply

|F3(vg) — fol = ‘F3(Ue) — ﬁ/gf(x)dx‘ < ¢B.

This combined with the definition of BMO yields
/ |f(z) — Fy(vg)|2d ) B
3(vg)|*dx < c¢B.
|9|

This in turn along with (3.60)-(3.61) implies || Fi||1,9) < ¢B|#]*/2. On the other hand using
(3.44) we have

1Bl <cB| Y mMen@]|  <esip

|H (E\@
ned*,nCo (E\9)

Therefore, ||Fi||z,z) < c¢B|0]"/2. Consequently,

Y WL =R, < B,

neO®*, nCo

which is (3.57). The proof of Theorem 3.4 is complete. O

4 Appendix

Example of a space H1(E,T) # Hy.(E). Here H,(E) denotes the regular H;-space
on E. We consider the case F = [—1,1]%,
Denote

[ V2] Infas|[2 i 2 € [-1,1],

9(x) = g(x1,22) 1= { 0 itz € R\ [-1,1]. (4.1)

In the following we denote by BMO(E) the regular BMO space on E.
Lemma 4.1. The above defined function g(z) belongs to BMO(R?).
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Proof. Let I := [a,b] x [¢,d] with b—a = d —a = h > 0. We shall prove that there is a
constant C' such that

1
1 / g(z) — Cldz < ¢ < oo, (4.2)
1] J;
where ¢ > 0 is an absolute constant.
We first consider the important situation when I C [—%, ] x [-1,1J U [-1,1] x [-1, 3

and hence 0 < h < 1/2. Note that g(—z1,22) = g(z1, —x2) = g(:z;l,xg) Therefore, all
possibilities for I are covered by considering the following three cases:

Case 1: a <0 < band ¢ < 0 < d. Because of the symmetry of g(z) we may assume that
la| < b and |c¢| < d. By integration by parts we get

u 1 u
/|1nt|1/2dt:u|1nu|l/2+§/ |Int| Y2dt, 0<u<1/2,
0 0

and hence

1

1 ! 1/2 1/2
5/0 |lnt| dt:|lnu| +Ru, where 0<R <W

(4.3)

Denote I := [0,b] x [0,d], Is := [a,0] x [0,d], I3 := [a,0] X [¢,0], and I := [0, b] x [¢,0]. From
the definition of g(z) it follows that 0 < g( ,d) = minger g(x) and hence

lg(z) — g(b,d)|dx = / g(b,d))dx = / d))dx.
|f|/ 1] |f|

Using the assumptions and the symmetry of g(z), each integral [, g I z)dz can be written in

the form .
/ g(x)dx = / / |In 1 |Y?) In 2o dayday
I o Jo

for some u, v satisfying 0 < u < b and 0 < v < d. Then using (4.3), we have
1

< wv(bd)"! [| Inu|Y2|Inv|2 — |Inb|Y2|In d|/?

+uv(bd) Y Inu|Y?R, + uv(bd) | Inv|?R, + uv(bd) 'R,R,
= A1+A2+A3+A4.

To estimate A; we substitute v = sb and v = td, 0 < s,t < 1, and obtain
A = st[(|1ns|+|1nb|)1/2(|1nt|+|1nd|)1/2—|1nb|1/2|1nd|1/2}

st[q Ins| + |Inb|)(|In¢| + | Ind]) — |Inb]| 1nd|]

(|lns| 4+ |Ind|)/2(|Int| + |Ind|)'/2 + |Inb|*/2| Ind|'/2
st(|lns||Int| + B|Int| + D|In s|)
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where B := |Inb| and D := |Ind|. Since b—a =d—c=h > 0 and |a] < b, |¢|] < d, then
In2 <|lnh| < B,D < |In(h/2)| < 2|Inh|. We use this above to obtain

Ay < (In2)7's|Ins|-t|Int| + 2¢|Int| + 2s|Ins| < ¢ < co.

To estimate As we use (4.3) and again replace u,v by u = sb, v = td (0 < s,t < 1). We
have

1/2 1/2 1/2
Azguv|lnu| g |Ins| + |Ind| < st |Ins| + | InA| .
bd| In v|'/2 |Int| + |Ind]| |Int| + [In Al

Since 1 < |Inh| < oo (0 < h <1/2), it is readily seen that

|lns|+ |Inh|  |lns|+1
|Int| + |Inh| = |Int|+1

+1<|lns|+2.
Consequently,
Ay < 2s(]Ins| +2)'/? < ¢ < 0.
Exactly in the same way we get A3 < ¢ < o0o. Also, by (4.3),

A, < akd < !
4= 4bd(|Inul|Inv))/? = 4In2’

The above estimates for Ay, A, A3, A4 imply (4.2) with C := g(b, d) and ¢ > 0 an absolute
constant.
Case 2: 0 < a < band 0 < c < d. In this case we shall make use of the following simple
identity
/b|1 t"2dt = (b—a)|1 b|1/2+1/b bza oy (4.4)
n = (b—a)|lln — _— )
a 2/, tlnt]t/2 7

which can be verified by differentiating both sides with respect to b. We next use (4.4) to
prove the following (h := b — a):

2

—_—. 4.
Tu k|72 (45)

1 b
E/ |Int[*2dt = |Inb|"? + R., where 0 < Ry <

Note first that from our assumptions it follows that h < 1/4. If 0 < a < h, then by (4.4)

R, < L /b 1 dt < 1 < < 1
® =50 ), Tme)2 ™ = 2[mo[2 = 2| 2a[V2 = |In A2

If h <a<1/4, then (4.4) implies

1 1

b
Rp<- [ ———dt< — ,
b= 2/a {In¢[1/2"" = 2h[In k|12~ 2[Inh[1/?

where we used that the function #|In¢|*/? is increasing on (0,1/2] and b = a +h < 1/2.
Finally, (4.5) is trivial if a > 1/4. Thus (4.5) holds true.
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Evidently, 0 < ¢(b, d) = min,c g(x) and hence

1
i1 1 o) = todias = i [ @) = g0, 0)da

1 [* d
a ﬁ/ [Py / | Inzo|"?dzy — | Inb|"/?|Ind|"/>.
Now, employing (4.5), we obtain

|I|/|g g(b,d)|dz = (|Inb]'?+ Re)(|Ind|"? + Req) — | Inb|*/*| Ind|"/?

= |Inb|"?Reg + |Ind|"/*Rap + RapRea
2(1nbY2/|In k|2 + 2|Ind|*?/|In h|? + 4/|1n A|

<
< c< oo,

where we used that b,d > h and 0 < h < 1/4. Thus (4.2) holds true.

Case 3 0 < a < band c <0 < d. In this case one proceeds as above using (4.3) and
(4.5). We omit the details.

It remains to show that (4.2) holds whenever I ¢ [—1, Z] [—1,1]U[-1,1] x [—1, 7]. Ifin
this case h < 1/8 and I C [—1,1]?, then (4 2) is obvious since ||g||Loo < g(1/8 1/8) =1n8.

If h > 1/8, then [, g(x d:L'<f[ 11]zg z)dr = ¢ < oo and (4. )follovvs

If I°N[—1,1]* = 0, then (4.2) is agaln obvious.

Finally, suppose that h < 1/8, I ¢ [-1,1]?, and I N[—1,1]* # 0. Then evidently there is
a square J = [«, 8] X [, d] of the same size as I such that J C[-1,1%and IN[-1,1]2 C J.
Then by the monotonicity of g(z), we have

1
|[|/ m/}g(x)dz§c<oo,

where we used the results of Case 2 or Case 3 above. This yields (4.2) with C' = 0. The
prove of the lemma is complete. O

Armed with this lemma, we proceed to showing that there is an LR-triangulation 7 of
E :=[-1,1)? such that H,(E,T) # H,(E).

From [9] (see the construction in the beginning of §2.1) it follows that there exists an
LR-triangulation 7 of E with the property: There is a sequence of cellsin 7: 61 Dy D ---
such that

[—A/2,A,/2] X [—e,/2,e,/2] C 8, C[=A,, \)] X [—€u,e.],

where 1/4 > Ay > Ao > --->0,1/4> 6 >e9 > --- >0, lim, ;o A, =0, lim, .o, =0,
and lim, ,+ €,/\, = 0. In addition to this each 6, is convex and symmetric with respect to
the x;-axis and the zy-axis.

Let 0 := {(z1,22) € 0, : 1 > 0} and 0, := {(x1,22) € 0, : 21 < 0}. The functions

= 16,]*(Lys — 1, ) are obviously atoms in Hy(E, T).

Now, fix ¥ > 1 and denote briefly 6 := 6,, A :== \,, € :== ¢,, a := a,, etc. We next
estimate from below ||a||#, (), where H;(E) is the regular Hi-space on E. By Lemma 4.1
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the function g from (4.1) is in BMO(R?) and hence all functions obtain from g by dilations
and shifts also belong to BMO(R?) and have the same BMO norm. In particular, gy(z) :=
g(z1/A+1/2, 29/ ) belongs to BMO(R?) and ||gx||smo = ||9]|Bao- Therefore, the restriction

of gy on E := [—1,1] (that we denote again by gx) belongs to BMO(E) and ||gx||smor) <
9/l Barore)-
(Clearly,
lollmaey = _sup S S8 [y, @ya.
wemo() |lellero ~ llgallBamo 0
Since g(x1, —z3) = g(x1,z2) and g(x,z3) is monotone decreasing with respect to z; on

(0,1), we have

e/2 0 A/2
c Ty 1 x2> 1 1 @y
> £ ey - (5 + 5,52 ) dan | daa.
ol = 52 [ [ [ o g )am = [ (5 5,5 Jam]ar,

Substituting y; := z1/A + 1/2 and ys := 23/ we infer

c\ e/ 1/2 1
lallmm = — (/ g(yl,yg)dyl—/ g(y1,y2)dy1)dyz
€ Jo 0 1/2
e\ [/ 1/2 1
= — Ilnyzll/zdm(/ |1ny1|1/2dy1—/ |1ny1|1/2dy1)
€ Jo 0 1/2

> ¢ (In\/e)Y?,
where ¢; > 0 is an absolute constant and for the last estimate we used (4.3). Thus there is

a sequence of atoms (a, )52, in Hy(E,T) such that ||a, | g, s — 0o as v — oo, which leads
to the conclusion that Hi(E,T) # Hy(FE).
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