
IMI
Preprint Series

INDUSTRIAL

MATHEMATICS

INSTITUTE

Department of  Mathematics
University of  South Carolina

2004:19 

Adaptive approximation of curves 

P. Binev, W. Dahmen, R. DeVore 
and N. Dyn



Adaptive Approximation of Curves

Peter Binev, Wolfgang Dahmen, Ronald DeVore, Nira Dyn ∗

July 15, 2004

Abstract

We propose adaptive multiscale refinement algorithms for approximating and
encoding curves by polygonal curves. We establish rates of approximation of these
algorithms in the Hausdorff metric. For example, we show that under the mere
assumption that the original curve has finite length then the first of these algo-
rithms gives a rate of convergence O(1/n) where n is the number of vertices of the
approximating polygonal curve. Similar results giving second order approximation
are proven under weak assumptions on the curvature such as Lp integrability, p > 1.
Note that for nonadaptive algorithms, to obtain the same order of approximation
would require that the curvature is bounded.

1 Introduction

In this paper, we shall consider certain problems concerning the approximation and
encoding of curves in R

3 that arise in compression of terrain surfaces. One strategy
for compressing and encoding such surfaces (see e.g. [7]) begins by extracting a finite
number of curves that represent the given surface well. These are typically level curves,
ridge curves and drainage curves. They can be viewed as giving a wire frame for the
surface. In an encoding algorithm, these curves would be approximated, e.g. by piecewise
linear functions, to get an approximate wire frame for the original surface. Extension
techniques can then be used to generate a surface which interpolates the approximation
curves. This new surface, which is viewed as an approximation to the original surface
can be encoded by simply encoding the approximating curves since the extension part of
the algorithm does not require any encoding. This type of encoding strategy can also be
made progressive by prioritizing the original curves in terms of importance and sending
bits to describe the highest priority curves first and then bits to describe the next curves,
in order of priority, as well as update bits to improve the accuracy of the approximation
of the previous curves.

The implementation of this encoding strategy rests on two issues: (i) how to extract
a suitable network of curves, (ii) how to efficiently approximate and encode these curves.

∗This work has been supported by the Office of Naval Research Contract Nr. N0014-03-10051, the
Army Research Office Contract Nr. DAAD 19-02-1-0028, the National Science Foundation Grants DMS
0221642, DMS 9872890, the Deutsche Forschungsgemeinschaft grant SFB 401, the European Community’s
Human Potential Programme under Contract HPRN-CT-2002-00286, “Breaking Complexity”.

1



The purpose of the present paper is to discuss algorithms for the second of these problems.
We shall restrict ourselves to planar curves, for example the level curves of the original
surface. We shall always assume that these curves are continuous. Thus, we shall be
interested in the approximation of a given continuous planar curve γ by polygonal curves.
We consider the curve γ to be parametrized with respect to a parameter t ∈ ∆, where
∆ is some finite interval. For specificity, we shall use the arclength parametrization and
shall denote the arclength parameter by s. Thus, ∆ = [0, �(γ)], where �(γ) is the length
of γ.

The algorithms we propose are motivated by multiscale or wavelet decompositions
which have proven so effective in image encoding. We shall propose two algorithms. Of
these, the first is more of theoretical interest and the second, which is easier to use in
encoding, is currently used in our surface encoding software.

For the remainder of this paper, let γ denote a planar curve in R
2 of finite length. In

the case that γ has a finite number of self intersections, one can consider it as a union of
curves which have no self intersections, and work with them separately. So from now on
we shall assume in addition that γ does not intersect itself.

The algorithms begin with a fixed polygonal curve λ0 which interpolates γ. The choice
of this first polygon is arbitrary and can be defined by selecting three points arbitrarily
from the curve and then interpolating with vertices of a triangle. In practical encoding,
a good choice for this interpolatory polygon is crucial. For example, if the original curve
has a finite number of point singularities (e.g. cusps), then choosing these points for the
initial interpolation is effective. This will separate the curve into arcs with no singularities.
However, we shall not consider this issue further here and the theorems we prove about
our algorithms are impervious to the effectiveness of this initial polygonal approximation.

The algorithms proceed to adaptively create new polygons by adding new interpolation
points between the existing ones. This can be considered also as a refinement process.
Given two points A and B on γ we denote by I = AB = [A, B] the linear segment that
connects A and B, and by γI = γAB the arc of γ between A and B. More generally, if we
have a set Λ = {Q0, Q1, ..., Qn} of consecutive points on γ, we denote by λΛ the polygonal
curve that interpolates the points Qk, k = 0, . . . , n, and is linear in between each pair of
points (Qk−1, Qk). Thus λΛ is composed of linear segments Ik := [Qk−1, Qk] (which we
call intervals). Going further in the paper, we shall mostly use intervals instead of points
to describe a partition, and in particular, shall use the same notation Λ = {Ik}n

k=1 to
denote the set of intervals for the partition Λ.

Given an interval I = AB, the algorithms that we shall analyze give a specific rule
for generating a new point R on γI . We call this rule the refinement rule. Applying the
refinement rule we obtain two new segments I ′ = AR and I ′′ = RB that correspond to
two subarcs of I, namely γI′ and γI′′ . We call I ′ and I ′′ children of I and denote by
C(I) = {I ′, I ′′} the set of these two children. Then I = P(I ′) = P(I ′′) is called the parent
of I ′ and I ′′.

Starting from some initial partition Λ0 and applying the refinement rule successively
generates an infinite binary tree T ∗ called the master tree associated to the algorithm.
The nodes I ∈ Λ0 are the root nodes of T ∗. By a tree we shall mean a finite subtree of
T ∗ that contains all the root nodes of T ∗ and in addition whenever I ∈ T is not a root
node then the parent of I and the sibling of I must be in T .

We shall work separately with each of the arcs in which the curve γ is subdivided by the

2



initial interpolation points from Λ0. To make the notation simpler, we shall assume that
γ is one of these arcs, and hence λ0 will be the linear segment connecting the endpoints
of γ which is the only element of the initial partition Λ0.

The algorithms that we shall analyze generate new partitions by adaptively choosing
which intervals to subdivide based on certain error criteria. Each such adaptively gen-
erated partition can be identified with a tree T which records the refinement made in
creating the partition. The leaves of the tree are the intervals in the final partition.

If we add a point R to the current list of interpolating points, it subdivides some
interval I ∈ Λ and thereby creates two new intervals I ′ and I ′′ and a new partition
Λ+ = (Λ\{I}) ∪ {I ′, I ′′}. The tree T+ = T (Λ+) is then obtained from T by adding two
branches from the node I to its children I ′ and I ′′.

We can associate a multiresolution analysis to the refinement rule. Namely starting
with the initial partitions Λ0 we do one refinement and thereby obtain Λ1. In general, we
subdivide every arc corresponding to Λj by using our refinement rule. Thus, Λj+1 is the

collection of all children of the intervals I ∈ Λj. Thus, Λj = {Ij,k}2j

k=1 where the Ij,k are
the intervals for the j-th partition. Thus, Λj can be considered as the j-th level of the
full binary tree T ∗ with root node I0,1.

Our algorithms for generating finite subtrees of T ∗ are adaptive. Given an ε > 0 and
an error indicator E(I) defined for every I ∈ T ∗, the algorithms start initially with Λ = Λ0

and adaptively generate new partitions Λ as follows:

• Subdivide the interval I which has the largest E(I) by using the refinement rule. In
case there are several intervals with the largest E(I) choose one in an arbitrary way
to refine.

• Redefine Λ = (Λ\{I}) ∪ {I ′, I ′′} and calculate E for the new intervals I ′ and I ′′.

• Stop, if E(I) ≤ ε for all I ∈ Λ.

An alternative algorithm would begin with a budget N of the number of intervals allowed
in the final partition and then stop when the number of intervals in Λ is N . This algorithm
can be further improved using the techniques described in [2] but we shall not discuss that
issue here.

We shall measure the error of approximation in terms of the Hausdorff metric which
matches well the intended application to surface encoding. As usual the (one sided)
Hausdorff distance between the two curves γ and λ is defined by

H(γ, λ) := sup
Q∈γ

dist(Q, λ) = sup
Q∈γ

inf
R∈λ

|QR| , (1.1)

where |QR| = �(QR) is the length of QR. The Hausdorff distance between γ and Λ is
then defined as

dH(γ, λ) = max(H(γ, λ),H(λ, γ)) (1.2)

In this paper we shall consider two basic algorithms. Both of them are using the same
error indicator, namely,

E(I) = H(γI , λI). (1.3)

The distinction in the two algorithms lies in the refinement rule.

3



Algorithm A: In this algorithm, given I, we subdivide the arc γI into two arcs with
equal length, i.e. the two children I ′, I ′′ must satisfy �(γI′) = �(γI′′).

Algorithm B: In this algorithm, given I, we choose a point P from γI which is equally
distanced from the ends of the interval I. This point is on the perpendicular bisector of
I. If there is more than one such point then we choose the one whose distance from the
endpoints is largest. Notice that for the two children I ′, I ′′ of I we have �(λI′) = �(λI′′).

As we shall see, the estimates for Algorithm A require a little bit less restrictive
conditions on the smoothness of the curve γ.

2 Approximation of a single arc

Given two points A, B from γ, we shall study in this section how well the linear segment
I = AB approximates the arc γI . Let us begin by making some observations about
approximating an arbitrary point P from R

2 by the line segment I = AB. Let Q =
Q(P ) ∈ I be the best approximation of P from I, i.e. Q(P ) is the projection of P onto
I. If Q is in the interior of I then PQ is perpendicular to I. The mapping P → Q(P ) is
a continuous function of P .

We use these observations to note that

H(λI , γI) ≤ H(γI , λI). (2.4)

Indeed, consider the projection of an arbitrary point P from γI onto I. Since, by as-
sumption, γ is continuous, this projection is a continuous mapping. Since both A and
B are images of this projection, it follows that every point Q from I is an image of this
projection. Hence, given any point Q from I, there is a point P which projects onto it.
We have that |QP | does not exceed the right side of (2.4) and (2.4) follows.

To describe our first bound for H(γI , λI), we introduce a certain second order modulus
of smoothness for curves. For any two points Q, R ∈ γ we define a finite difference of
order two as twice the maximal distance between the segment QR and any point on γQR

which lies on the symmetry line with respect to Q and R:

∆2(γ, Q, R) := max

{
2 dist

(
P,

Q + R

2

)
: P ∈ γQR, |PQ| = |PR|

}
. (2.5)

Let us mention that
√

2(|PQ|2 + |PR|2) − |QR|2 = 2dist
(
P, Q+R

2

)
. The reason we put

the factor 2 in front of the distance is to be analogous to the definition of finite differences
of functions. Using the quantity from (2.5) we define a modulus of smoothness of order
two for γ

ω2(γ; A, B) = ω2(γAB) := sup
P∈γAB

max{∆2(γ, A, P ), ∆2(γ, P, B)} . (2.6)

The following lemma is an analogue for curves of the Whitney theorem [8] for approx-
imation by linear functions.

Lemma 1 Given a continuous curve γAB of finite length with end points A and B,
the following estimate for the approximation of γAB by the linear segment AB holds

H(γAB, AB) ≤ ω2(γAB) . (2.7)

4



Proof. Since γAB is a compact set in R
2, the left side of (2.7) is finite and the supre-

mum from (1.1) is realized at some point Q∗ ∈ γAB. Let E = H(γAB, AB). Then
dist(Q∗, AB) = E. Without loss of generality we can assume that |AQ∗| ≤ |BQ∗|. Then
the arc γQ∗B crosses the circle with center Q∗ and radius |AQ∗| at some point P . We
denote by R the midpoint of the linear segment AP and observe that by the definitions
(2.5) and (2.6)

|Q∗R| ≤ 1

2
∆2(γ, A, P ) ≤ 1

2
ω2(γ; A, B) . (2.8)

Let P0 ∈ AB be the point for which |PP0| = dist(P, AB) and let R0 ∈ AB be the midpoint
of AP0. Then

dist(R, AB) ≤ |RR0| ≤
1

2
|PP0| ≤

1

2
E . (2.9)

Using the triangle inequality, (2.8), and (2.9) we receive

E = dist(Q∗, AB) ≤ |Q∗R| + dist(R, AB) ≤ 1

2
ω2(γ; A, B) +

1

2
E . (2.10)

This proves E ≤ ω2(γ; A, B). �

Next, we consider another estimate of H(γAB, AB) in terms of a certain first order
modulus of continuity of the tangent vector to γ. We define

ω�(γAB) = ω�(γ; A, B) := max( sup
P∈γAB

�PAB, sup
P∈γAB

�PBA). (2.11)

Lemma 2 Let γ be any curve of finite length. Then

H(γAB, AB) ≤ 1

2
�(γAB) ω�(γAB) . (2.12)

Proof. Let P �= A, B be any point on the curve segment γAB. We want to show that
dist(P, AB) can be bounded by the right side of (2.12). We can assume that ω�(γAB) ≤
1 ≤ π/2 since otherwise (2.12) follows trivially since the distance from P to AB is always
≤ �(γAB)/2. We can also assume that |AP | ≤ �(γAB)/2 since otherwise we reverse the
roles of A an d B in the following derivation. It follows from these assumptions that P
projects onto a point Q in the interior of AB and

|PQ| ≤ | sin α||AP | ≤ | sin α|�(γAB)/2, (2.13)

where α = �PAB is the angle made by the vectors AP and AB. Since | sin α| ≤ |α| ≤
ω�(γAB), (2.12) follows. �

We are next going to derive a bound for Hausdorff distance in terms of curvature.

Lemma 3 If γ has finite curvature at almost every point, then

H(γAB, AB) ≤ �(γAB)

2

∫
{s:γ(s)∈γAB}

κ(s)ds . (2.14)

Proof. In view of Lemma 2, it is enough to show that for any points A, B on γ, we
have

ω�(γAB) ≤
∫
{s:γ(s)∈γAB}

κ(s)ds . (2.15)

Let P be any point in γAB. The total angular change of the tangent in traversing the
curve between A and B is larger than �PAB + �PBA and the (2.15) follows. �

5



3 Main Results

In this section we shall give sufficient conditions on the curve γ such that the applica-
tion of our algorithms will yield a polygonal curve with n segments which approximates γ
in the Hausdorff metric to accuracy Cn−r. Here r can be any positive real number. The
condition we impose on the curve is given in terms of certain maximal functions. The
reader unfamiliar with maximal functions and their use in analyzing adaptive algorithms
should look at the simple paper [4] for orientation. The two most interesting cases of our
theorems are r = 1 and r = 2 since then the conditions we impose on γ relate simply to
arc length or curvature. The theorems actually hold for r > 2 but then the spaces are
very esoteric and very thin in content.

In this section, we assume that the curve γ is parametrized with respect to the ar-
clength parameter s. We recall our notation from the last section. For each I in the
master tree T ∗, we have the arc γI and the linear segment λI connecting the endpoints of
γI . The local error E(I) is defined by

E(I) := H(γI , λI). (3.16)

Let Λ = Λ(ε) be the partition obtained by the adaptive algorithm (i.e. by either
Algorithm A or Algorithm B) for a given choice of ε. We recall that the algorithm
terminates when E(I) ≤ ε for all I ∈ Λ. The approximation λΛ of the curve γ is defined
as the union of the linear segments λI for I ∈ Λ. It follows that

dH(γ, λΛ) ≤ max
I∈Λ

dH(γI , λI) ≤ max
I∈Λ

H(γI , ΛI) ≤ ε, (3.17)

The efficiency of the algorithm is determined by the size of Λ(ε) as a function of ε. In
this section, we shall show how we can bound the size of Λ(ε) through certain maximal
functions. The idea goes back to [4] where the Hardy-Littlewood maximal function was
used in bounding the error in adaptive algorithms for approximating functions.

For the analysis of Algorithm A, we shall use the maximal function

Mr(s) = Mr(γ; s) := sup
γ(s)∈γQR

E(QR)

[�(γQR)]r
. (3.18)

In the case of Algorithm B we shall use

Mr(s) = Mr(γ; s) := sup
γ(s)∈γQR

E(QR)

|QR|r . (3.19)

Theorem 1 Let ε > 0 be given and let Λ := Λ(ε) be obtained by applying our algo-
rithm for this choice of ε. Then,

dH(γ, λΛ) ≤ ε. (3.20)

(i) In the case of Algorithm A, whenever Mr(γ, s) ∈ Lp, for p = 1/r and some r > 0,
then

#(Λ(ε)) ≤ 2ε−1/r‖Mr‖1/r
Lp

. (3.21)

(ii) In the case of Algorithm B, whenever Mr(γ, s) ∈ Lp, for p = 1/r and some r > 0,
then

#(Λ(ε)) ≤ 2ε−1/r‖Mr‖1/r
Lp

. (3.22)

6



Proof. We have already observed that (3.20) holds. To prove (i), we note that whenever
I ∈ Λ(ε), we have that the parent I∗ of I satisfies E(I∗) > ε and therefore

ε < �(γI∗)
r E(I∗)
�(γI∗)r

≤ �(γI∗)
r

[
inf

{s:γ(s)∈γI∗}
Mr(s)

p

]r

≤
[
�(γI∗)

�(γI)

]r [∫
{s:γ(s)∈γI}

Mr(s)
p ds

]1/p

= 2r

[∫
{s:γ(s)∈γI}

Mr(s)
p ds

]1/p

. (3.23)

If we raise both sides of (3.23) to the power p = 1/r and then sum over I ∈ Λ(ε), we
arrive at (3.21) because the arcs γI are disjoint.

The proof of (ii) is similar. Now, we have

ε < |I∗|r E(I∗)
|I∗|r ≤ |I∗|r

[
inf

{s:γ(s)∈γI∗}
Mr(s)

p

]r

≤
[
|I∗|
�(γI)

]r [∫
{s:γ(s)∈γI}

Mr(s)
p ds

]1/p

≤
[
|I∗|
|I|

]r [
|I|

�(γI)

]r [∫
{s:γ(s)∈γI}

Mr(s)
p ds

]1/p

≤ 2r

[∫
{s:γ(s)∈γI}

Mr(s)
p ds

]1/p

. (3.24)

We complete the proof as before. �

The remainder of this section will be used to give sufficient conditions which will
guarantee that the maximal function Mr or Mr is in Lp, p = 1/r. We begin with the
following case which corresponds to a first order approximation.

Corollary 1 Let γ be a curve with finite length �(γ) and let ε > 0.
(i) The polygon λΛ, Λ := Λ(ε) obtained by applying Algorithm A for this ε has the
following approximation property

dH(γ, λΛ) ≤ ε and #(Λ(ε)) ≤ �(γ)

ε
. (3.25)

(ii) Define M̃(s) := sup
Q,R∈γ : γ(s)∈γQR

�(γQR)

|QR| and assume that M̃ ∈ L1(γ). Then, the

polygon λΛ, Λ = Λ(ε) obtained from Algorithm B for this ε satisfies

dH(γ, λΛ) ≤ ε, #(Λ(ε)) ≤ ‖M̃‖L1(γ)

ε
. (3.26)

Proof. It is enough to apply Theorem 1 with r = 1 and p = 1. In the case of (i), we
have E(I) ≤ �(λI)/2 and so M1(s) ≤ 1/2 and therefore the corollary follows. In the case
of (ii), we have M1(s) ≤ M̃(s)/2 and the corollary again follows. �

7



To ensure an order of approximation ≤ C/n using a polygonal curve with n pieces,
Corollary 1 says that it is enough to have γ of finite length in the case of Algorithm A.
In this case C is just the length of γ. For Algorithm B we need to assume slightly more,
namely that M̃ is in L1. In the analogous case (see [6]) of approximating functions g
rather than curves, the difference is between conditions like g ∈ L1 or M∗(g) ∈ L1 where
M∗ is the Hardy-Littlewood maximal operator

M∗(g)(x) := sup
I�x

1

|I|

∫
I

|f(u)| du (3.27)

where the sup is taken over all intervals I containing x. The condition M∗(g) ∈ L1 is
equivalent to g ∈ L log L and is therefore only slightly stronger than g ∈ L1.

Our next example derives a better order of approximation in terms of curvature. Our
starting point is the estimate (2.14) which gives

E(I) ≤ �(γI)

2

∫
{s:γ(s)∈γI}

κ(s) ds. (3.28)

Using this estimate for E , we obtain that

M2(s) ≤
1

2�(γI)

∫
{s′:γ(s′)∈γI}

κ(s′) ds′ ≤ 1

2
M∗(κ)(s), γ(s) ∈ γI . (3.29)

Corollary 2 Let ε > 0.
(i) Let κ be the curvature of γ. If κ ∈ L log L then the polygon λΛ, Λ := Λ(ε) obtained by
applying Algorithm A for this ε has the following approximation property

dH(γ, λΛ) ≤ ε and #(Λ(ε)) ≤
[

C0�(γ)‖κ‖1/2
L log L

ε

]1/2

(3.30)

with C0 an absolute constant.
(ii) If in addition γ is in Lip 1, then, the polygon λΛ, Λ = Λ(ε) obtained from Algorithm
B for this ε satisfies

dH(γ, λΛ) ≤ ε, #(Λ(ε)) ≤
[

C0�(γ)‖γ‖2
Lip 1‖κ‖

1/2
L log L

ε

]1/2

. (3.31)

Proof. We apply Theorem 1 with r = 2, p = 1/2. In the case of (i), we have from
(3.29) and the application of Theorem 1 that

#(Λ(ε)) ≤
√

2
‖M∗(κ)‖1/2

L1/2

ε1/2
≤

√
2�(γ)‖M∗(κ)‖1/2

L1

ε1/2

≤
√

C0�(γ)‖κ‖1/2
L log L

ε1/2
. (3.32)

where the last result is a classical inequality about the Hardy-Littlewood maximal operator
(see [1], p. 250, Theorem 6.7).

8



In the case of (ii), we use our assumption that γ is in Lip 1 to replace |I| by ‖γ‖−1
Lip 1�(γI)

in the definition of M2. This shows that M2(κ)(s) ≤ ‖γ‖2
Lip 1M2(s) which reduces us to

the case already proven. �

If we take ε = 1/n2, we see that these algorithms give an order of approximation C/n2

with polygons having at most n pieces. The assumption in the case of Algorithm A is
that κ ∈ L log L which holds for example whenever κ ∈ Lp with p > 1. In the case of
Algorithm B, we have the same assumption on κ but the additional assumption on γ.
Note that this additional assumption in and of itself would only give approximation order
O(1/n). If we compare either of these two results with nonadaptive processes we see that
the requirement in this corollary are much less demanding. Namely, for a nonadaptive
process we would require that γ have bounded curvature whereas here we are requiring
only a certain integrability of κ.

For our last example, we consider the case of general r with 0 < r ≤ 2 and we use
the second order modulus of smoothness to bound E(I) as amplified in the estimate in
Lemma 1. We discuss only the case of Algoritihm B. By Lemma 1, we can bound the
maximal function Mr by

Mr(γ, s) ≤ M̃r(γ, s) := sup
{I:γ(s)∈γI}

ω2(f, γI)

|I|r . (3.33)

Therefore, we have as an immediate consequence of Theorem 1

Corollary 3 Let ε > 0, 0 < r ≤ 2 and p = 1/r. Whenever, M̃r(γ, s) is in Lp, then
the polygon λΛ output of Algorithm B for this ε satisfies

dH(γ, λΛ) ≤ ε and #(Λ(ε)) ≤ 2ε−1/r‖M̃r(γ, s)‖r
Lp

. (3.34)

One can view the maximal function M̃r(γ, s) as akin to a maximal function of a
fractional derivative of order r of γ. In the case of functions, this viewpoint is amplified
upon in [6] and its connections to Besov regularity is spelled out there. Note that the
regularity condition imposed on γ in this corollary is much weaker than the regularity
that would be needed in a nonadaptive algorithm which would require the curve to be in
Lip r.

4 Encoding planar curves

We have begun this paper by motivating our algorithms for the purpose of encoding. We
return to the topic of encoding in this section. We begin by giving a simple encoding of
polygonal curves with n vertices. This encoding will replace the original polygonal curve
λ by a quantized polygonal curve λ̄ which can be represented with a finite bitstream. We
first show that we can do such an encoding so as to preserve the original approximation
accuracy to γ while using O(n log n) bits1. Later in this section we shall briefly describe
a more sophisticated encoding scheme, along the lines of the tree encoding algorithm
of [3] for images that allows a progressive encoding for Algorithm B and would have
improved accuracy. For example, it would allow us to remove the log n factor in many

1Here and later log always denotes logarithms to the base 2.

9



settings. However, we shall not give a rigorous analysis of the properties of this encoding
here.

To start our discussion, we shall assume, for notational convenience only, that all of
the points P on the curve γ satisfy |P | < 1, i.e. the Euclidean distance of P to the origin
is bounded by 1. A simple modification would allow us to replace 1 by any fixed positive
constant M . We can write any real number x with |x| < 1 in its binary expansion

x = (−1)b0

∞∑
i=1

bi2
−i, bi = bi(x) ∈ {0, 1}, i = 0, 1, . . . . (4.35)

For any integer k > 0, we define

Bk(x) := (b0(x), . . . , bk(x)), Qk(x) = (−1)b0(x)

k∑
i=1

bi(x)2−i. (4.36)

It follows that
|x − Qk(x)| ≤ 2−k, k = 1, 2, . . . . (4.37)

We define m := 2	log n
. If λ is a polygonal curve with n vertices lying on γ, we can
encode λ with the bitstream

B(λ) := B0(λ), B1(λ), . . . , Bn(λ). (4.38)

which is a concatenation of the bitstreams B0, B1, . . . , Bn. The bitstream B0 encodes n as
follows. If b1, . . . , b�log n� are the binary bits of n, then B0 is b1, b1, b2, b2, . . . , b�log n�, b�log n�, 0, 1.
The purpose of the repetition of bits is so that the receiver knows when 0, 1 appears that
it signifies the end of the bitstream for determining n. The bitstreams B1, . . . , Bn each
correspond to the vertices P1, . . . , Pn on the curve λ which appear in their natural or-
der. Thus Bk = Bm(xk), Bm(yk) where Pk = (xk, yk). Since the length of each of these
bitstreams is known, the receiver knows when the bits of Pk end and those of the next
vertex begin. After receiving the bitstream B(λ), the receiver can construct the quantized
polygon λ̄ whose vertices are P̄k = (Qm(xk), Qm(yk)). In view of (4.37) we have

dH(γ, γ̄) ≤ 2−m+1/2 ≤
√

2n−2. (4.39)

Thus, if λ approximate γ to accuracy Cn−r, 0 < r ≤ 2 (as was the case in our theorems
which analyze the performance of Algorithm A and Algorithm B), then λ̄ preserves
this same accuracy with C replaced by C +

√
2. The total number of bits in B(λ) is

(2n + 1)m + 2 ≤ Cn log n.
We now turn to giving a sketch of how a progressive encoding method for curves could

be given based on our Algorithm B. This encoding is the analogue for curves of the
image encoding algorithm given in [3]. Let us consider an interval I = AB which occurs
in the master tree T ∗ for this algorithm. We let wI denote the unit vector orthogonal to
AB pointing outward from AB. We recall that if I is refined then this corresponds to
adding a new point P which is on the perpendicular bisector of I and also on γ. We can
write

P =
1

2
(A + B) + dIwI (4.40)

10



and
|dI | ≤ E(I). (4.41)

In going further, we shall assume, for notational convenience only, that E(I) < 1 for all
I ∈ T ∗.

Given λ, and the initial set V0 of vertices, we shall associate a sequence of trees Tk,
k = 0, 1, . . ., with each Tk a growing of Tk−1. The tree T0 consists of the root nodes of the
master tree T ∗. To describe Tk, k ≥ 1, let Λk be the set of all I ∈ T ∗ for which |dI | > 2−k.
Then Tk is defined to be the smallest subtree of T ∗ which contains Λk. We shall also use
the notation ∆k := Tk \ Tk−1, k ≥ 1. The set ∆k of nodes tells how to grow Tk−1 into Tk.

Given any finite binary tree T , it can be encoded with at most 2#(T ) bits (see e.g.
[3]). Given that Tk−1 has already been encoded, we can encode Tk with ≤ 2#(∆k) bits.
We denote the bitstream to do this encoding by Bt

k. We remark that it is shown in [3]
that the encoding of these trees is done in such a way that the receiver knows when the
encoding of the tree is complete. He also then knows the size of Tk and of ∆k.

We shall use the following notation. Given a set Λ ⊂ T ∗, we denote by Bj(Λ) the
bitstream consisting of the j-th binary bit bj(dI) of the dI , I ∈ Λ with the natural
ordering2 . Similarly, we denote by Bj(V0) the bitstream consisting of the j- th bit of the
vertices in V0 in the order they appear on the curve. There are two bits in Bj(V0) for each
vertex in V0 corresponding to the two coordinates.

We can now describe our progressive encoding. The first bits we send identify the
number n0 of initial vertices. We do this in exactly the same way we encoded n in our
first encoding algorithm. The next bits we send are B0(V0) followed by B1(V0). Since the
receiver knows n0 = #(V0), he knows when each of the bitstreams end. Note that also,
after receiving these bits the receiver has an approximation to the root nodes of T ∗. He
knows the number of these root nodes exactly but since he only knows an approximation
to the initial vertices he can only find the root intervals approximately. The next bits we
send are the B0(T0) and B1(T0) which gives the receiver the first approximation to the
dI , I ∈ T0.

We are now at the point where a general recursive structure generates the remainder
of the bitstream. For each k ≥ 1 we shall send in order the following bitstreams

Bt
k, B0(∆k), Bk(V0), Bk(T0), Bk(∆1), . . . , Bk(∆k) (4.42)

Let us make some observations about what this portion of the bitstream gives. First it
tells us how to grow the tree Tk−1 into the tree Tk. Secondly, this bitstream together with
the previous bitstreams allow the receiver to construct an approximation to each of the
initial vertices and the dI for I in T0 ∪ · · · ∪Tk to accuracy 2−k. Note that we do not need
the bits b0(dI), . . . , bk−1(dI), for I ∈ ∆k because by the definition of this set |dI | < 2−k+1

so these bits are zero.

References

[1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, N.
Y., 1988.

2The natural order when transversing elements from a binary tree is first by depth in the tree and
then from left to right at a given depth.

11



[2] P. Binev and R. DeVore, Fast computation in adaptive tree approximation,
Numerische Math. 97 (2004), 193–217.

[3] A. Cohen, W. Dahmen, I. Daubechies, and R. DeVore, Tree approximation
and encoding, ACHA 11 (2001), 192–226.

[4] R. DeVore, A note on adaptive approximation, Approximation Theory and its
Application 3 (1987), 74–78.

[5] R. DeVore and G.G. Lorentz, Constructive Approximation, Springer,
Grundlehren, vol. 303, 1993.

[6] R. DeVore and X. M. Yu, Degree of adaptive approximation, Math. Comp 55
(1988), 625–635.

[7] A. Solé, V. Caselles, G. Sapiro, and F. Arándiga, Morse description and
geometric encoding of digital elevation maps, preprint.

[8] H. Whitney, On functions with bounded n-th differences, J. Math. Pures Appl. 36
(1957), 67–95.

Peter Binev

Department of Mathematics
University of South Carolina
Columbia, SC 29208
U.S.A.
E-mail: binev@math.sc.edu

Wolfgang Dahmen

Institut für Geometrie und Praktische Mathematik
RWTH Aachen
Templergraben 55
52056 Aachen
Germany
E-mail: dahmen@igpm.rwth-aachen.de

Ronald DeVore

Department of Mathematics
University of South Carolina
Columbia, SC 29208
U.S.A.
E-mail: devore@math.sc.edu

Nira Dyn

School of Mathematical Sciences
Tel Aviv University
Tel Aviv 69978
Israel
E-mail: niradyn@post.tau.ac.edu

12


