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Abstract. This paper is a survey of recent results on some problems of supervised learning in

the setting formulated by Cucker and Smale. Supervised learning, or learning-from-examples,
refers to a process that builds on the base of available data of inputs xi and outputs yi,

i = 1, . . . , m, a function that best represents the relation between the inputs x ∈ X and the
corresponding outputs y ∈ Y . The goal is to find an estimator fz on the base of given data
z := ((x1, y1), . . . , (xm, ym)) that approximates well the regression function fρ of an unknown

Borel probability measure ρ defined on Z = X × Y . We assume that (xi, yi), i = 1, . . . , m,
are indepent and distributed according to ρ. We discuss a problem of finding optimal (in the
sense of order) estimators for different classes Θ (we assume fρ ∈ Θ). It is known from the

previous works that the behavior of the entropy numbers εn(Θ, B) of Θ in a Banach space
B plays an important role in the above problem. The standard way of measuring the error
between a target function fρ and an estimator fz is to use the L2(ρX) norm (ρX is the marginal

probability measure on X generated by ρ). The usual in regression theory way to evaluate the
performance of the estimator fz is by studying its convergence in expectation, i.e. the rate of
decay of the quantity E(‖fρ −fz‖2

L2(ρX )
) as the sample size m increases. Here the expectation

is taken with respect to the product measure ρm defined on Zm. A more accurate and more

delicate way of evaluating the performance of fz has been pushed forward in [CS]. In [CS] they
study the probability distribution function

ρm{z : ‖fρ − fz‖L2(ρX ) ≥ η}

instead of the expectation E(‖fρ − fz‖2
L2(ρX )

). In this survey we mainly discuss the optimiza-

tion problem formulated in terms of the probability ditribution function.

1. Introduction. Notations. Settings

This paper is a survey of recent results on supervised learning. Supervised learning, or
learning-from-examples, refers to a process that builds on the base of available data of inputs
xi and outputs yi, i = 1, . . . , m, a function that best represents the relation between the
inputs x ∈ X and the corresponding outputs y ∈ Y . This is a big area of research both in
nonparametric statistics and in learning theory. In this paper we confine ourselves to recent
results obtained in a direction of further development of the settings and results from the
fundamental paper of Cucker and Smale [CS]. In this paper we illustrate how methods of

1This research was supported by the National Science Foundation Grant DMS 0200187
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approximation theory can be used in learning theory. We begin our discussion with a very
brief survey of different settings that are close to the setting of our main interest.

1. Approximation theory. Recovery of functions. Deterministic model: given

z := ((x1, y1), . . . , (xm, ym)) : yi = f(xi), i = 1, . . . ,m, f ∈ Θ.

Recover f ∈ Θ (find an approximant of f). Error of approximation is measured in some
norm ‖ · ‖. Usually it is the Lp norm, 1 ≤ p ≤ ∞, with respect to the Lebesgue measure on
a given domain X.

2. Statistics. Regression theory.
a) Fixed design model: given

z := ((x1, y1), . . . , (xm, ym)) : yi = f(xi) + εi, x1, . . . , xm − fixed,

εi – independent identically distributed (i.i.d.), Eεi = 0, f ∈ Θ.
Find an approximant for f (estimator f̂). The unknown function f is called the regression

function. Error is measured by expectation E(‖f − f̂‖2) of some of the standard norms.
b) Random design model: given

z := ((x1, y1), . . . , (xm, ym)) : yi = f(xi) + εi,

x1, . . . , xm – random, i.i.d.; εi – i.i.d. (independent of xi), Eεi = 0, f ∈ Θ. Find an
estimator f̂ for f . Error is measured by expectation E(‖f − f̂‖2).

c) Distribution-free theory of regression.
Let X ⊂ R

d, Y ⊂ R be Borel sets, ρ be a Borel probability measure on Z = X × Y . For
f : X → Y define the error

E(f) := Eρ(f) :=
∫

Z

(f(x) − y)2dρ.

Consider ρ(y|x) - the conditional (with respect to x) probability measure on Y and ρX -
the marginal probability measure on X (for S ⊂ X, ρX(S) = ρ(S × Y )). Define

fρ(x) :=
∫

Y

ydρ(y|x).

The function fρ minimizes the error E(f). It is known in statistics as the regression function
of ρ. Given: (xi, yi), i = 1, . . . , m, independent identically distributed according to ρ,
|y| ≤ M a.e. Find an estimator f̂ for fρ. Error: E(‖fρ − f̂‖2

L2(ρX)). Assume fρ ∈ Θ. For a
class Θ consider

E(Θ,m, f̂) := sup
fρ∈Θ

E(‖fρ − f̂‖2
L2(ρX))

E(Θ,m) := inf
f̂

E(Θ,m, f̂).
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3. Learning theory. This is a vast area of research with a wide range of different
settings. In this paper we only discuss a development of a setting from [CS]. For results
in other settings we recommend a fundamental book of V. Vapnik [V] and a nice survey
on the classification problem by G. Lugosi [L]. Our setting is similar to the setting of the
distribution-free regression problem. The goal is to find an estimator fz, on the base of
given data z = ((x1, y1), . . . , (xm, ym)) that approximates fρ (or its projection) well with
high probability. We assume that (xi, yi), i = 1, . . . , m are independent and distributed
according to ρ. Similarly to the distribution-free theory of regression we measure the error
in the L2(ρX) norm. This differs the distribution-free theory of regression and our setting of
learning theory from classical nonparametric statistics. One can find a discussion of relations
between the fixed design model, the random design model, and the distribution-free theory
of regression in the recent book [GKKW] (see also [VG], [BM1]). Here we only mention that
the problem of learning theory that we discuss in this paper can be rewritten in the form

yi = fρ(xi) + εi, ε := y − fρ(x),

close to the form of the random design model. However, in our setting we are not assuming
that ε and x are independent. While the theories of fixed and random design models do not
directly apply to our setting, they utilize several of the same techniques we shall encounter
such as the use of entropy and the construction of estimators through minimal risk.

We note that a standard setting in the distribution-free theory of regression (see [GKKW])
involves the expectation as a measure of quality of an estimator. An important new feature
of the setting in learning theory formulated in [CS] is the following. They propose to study
systematically the probability distribution function

ρm{z : ‖fρ − fz‖L2(ρX) ≥ η}

instead of the expectation. There are several important ingredients in mathematical for-
mulation of the learning problem. In our formulation we follow the way that has become
standard in approximation theory and based on the concept of optimal method.

We begin with a class M of admissible measures ρ. Usually, we impose restrictions on ρ
in the form of restrictions on the regression function fρ: fρ ∈ Θ. Then the first step is to find
an optimal estimator for a given class Θ of priors (we assume fρ ∈ Θ). In regression theory
the usual way to evaluate the performance of the estimator fz is by studying its convergence
in expectation, i.e. the rate of decay of the quantity E(‖fρ − fz‖2

L2(ρX)) as the sample size
m increases. Here the expectation is taken with respect to the product measure ρm defined
on Zm. We note that E(fz) − E(fρ) = ‖fz − fρ‖2

L2(ρX). As we already mentioned above a
more accurate and more delicate way of evaluating the performance of fz has been pushed
forward in [CS]. In this paper we concentrate on a discussion of results on the probability
distribution function.

An important question in finding an optimal fz is the following. How to describe the
class Θ of priors? In other words, what characteristics of Θ govern, say, the optimal rate of
decay of E(‖fρ−fz‖2

L2(ρX)) for fρ ∈ Θ? Previous and recent works in statistics and learning
theory (see [B], [BM2], [BM3], [CS], [DKPT1], [DKPT2], [GKKW], [KT1], [KT2], [L], [V],
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[VG]) indicate that the compactness characteristics of Θ play a fundamental role in the
above problem. It is convenient for us to express compactness of Θ in terms of the entropy
numbers. In this survey we discuss the classical concept of entropy and the concept of tight
entropy. We note that some other concepts of entropy, for instance, entropy with bracketing,
proved to be useful in the theory of empirical processes and nonparametric statistics (see
[VG], [BM2], [V]). There is a concept of V C dimension that plays a fundamental role in the
problem of pattern recognition and classification [V]. This concept is also useful in describing
compactness characteristics of sets. We do not discuss this concept here because we have
no new results in this direction.

For a compact subset Θ of a Banach space B we define the entropy numbers as follows

εn(Θ, B) := inf{ε : ∃f1, . . . , f2n ∈ Θ : Θ ⊂ ∪2n

j=1(fj + εU(B))}

where U(B) is the unit ball of Banach space B. We denote N(Θ, ε, B) the covering number
that is the minimal number of balls of radius ε needed for covering Θ. The corresponding
ε-net is denoted by Nε(Θ, B). In the papers [CS], [DKPT1], [DKPT2], [KT1] in the most
cases the space C := C(X) of continuous functions on a compact X ⊂ R

d has been taken
as a Banach space B. This allowed us to formulate all results with assumptions on Θ
independent of ρ. In [KT2] and [BCDDT] we obtain some results for B = L2(ρX). On the
one hand we weaken assumptions on the class Θ and on the other hand this results in the
use of ρX in the construction of an estimator. Thus, we have a tradeoff between treating
wider classes and building estimators that are independent of ρX . We note that in practice
we often do not know the ρX . Thus, it is very desirable to build estimators independent of
ρX . In statistics this type of regression problem is referred to as distribution-free. A recent
survey on distribution-free regression theory is provided in the book [GKKW].

In Sections 2 and 3 of this paper we always assume that the unknown measure ρ satisfies
the condition |y| ≤ M (or a little weaker |y| ≤ M a.e. with respect to ρX) with some fixed
M . Then it is clear that for fρ we have |fρ(x)| ≤ M for all x (for almost all x). Therefore,
it is natural to assume that a class Θ of priors where fρ belongs is embedded into the C(X)-
ball (L∞-ball) of radius M . We make this assumption in all theorems of Sections 2 and 3
without formulating the assumption.

In [DKPT1], [DKPT2], [KT1] the restrictions on a class Θ have been imposed in the
following forms:

(1.1) εn(Θ, C) ≤ Dn−r, n = 1, 2, . . . , Θ ⊂ DU(C).

or

(1.2) dn(Θ, C) ≤ Kn−r, n = 1, 2, . . . , Θ ⊂ KU(C).

Here, dn(Θ, B) is the Kolmogorov width. Kolmogorov’s n-width for the centrally symmetric
compact set Θ in the Banach space B is defined as follows

dn(Θ, B) := inf
L

sup
f∈Θ

inf
g∈L

‖f − g‖B
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where infL is taken over all n-dimensional linear subspaces of B. In [KT2] we impose a
weaker restriction

(1.3) εn(Θ, L2(ρX)) ≤ Dn−r, n = 1, 2, . . . , Θ ⊂ DU(L2(ρX)).

We have already mentioned above that the study of the probability distribution function
ρm{z : ‖fρ − fz‖L2(ρX) ≥ η} is a more difficult and delicate problem than the study of the
expectation E(‖fρ−fz‖2

L2(ρX)). We encounter this difficulty even at the level of formulation
of a problem. The reason for this is that the probability distribution function provides
control of two characteristics: η – the error of estimation and 1−ρm{z : ‖fρ−fz‖L2(ρX) ≥ η}
– the confidence of the error η. Therefore, we need a mathematical formulation of the above
discussed problems of optimal estimators.

We propose (see [DKPT2]) to study the following function that we call the accuracy
confidence function. Let a set M of admissible measures ρ, and a sequence E := {E(m)}∞m=1

of allowed classes E(m) of estimators be given. For m ∈ N, η > 0 we define

ACm(M, E, η) := inf
Em∈E(m)

sup
ρ∈M

ρm{z : ‖fρ − fz‖L2(ρX) ≥ η}

where Em is an estimator that maps z → fz. For an example, E(m) could be a class of all
estimators, a class of linear estimators of the form

fz =
m∑

i=1

wi(x1, . . . , xm, x)yi,

or a specific estimator. In the case E(m) is the set of all estimators, m = 1, 2, . . . , we write
ACm(M, η).

In Section 2 we discuss results on ACm(M, E, η) with M = M(Θ) := {ρ : fρ ∈ Θ}. In
this case we write ACm(M(Θ), E, η) =: ACm(Θ, E, η). Thus Section 2 is devoted to the
study of priors on fρ in the form fρ ∈ Θ. Sometimes this setting is referred to as proper
function learning problem.

It is clear from the definition of E(Θ,m) and ACm(Θ, η) that

(1.4)
∫ ∞

0

ACm(Θ, η1/2)dη ≤ E(Θ,m),

and for ρ, Θ satisfying |y| ≤ M , Θ ⊂ MU(C(X))

(1.5) E(Θ,m) ≤ min
η

(η2 + 4M2ACm(Θ, η)).

One of the important variants of the learning problem formulated in [CS] is the following.
We now do not impose any restrictions on ρ, except |y| ≤ M a.e. and instead of estimating
the regression function fρ we estimate a projection (fρ)W of fρ onto a compact set W of
our choice. Sometimes this setting is referred to as improper function learning problem.
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Similarly to the above case (fρ ∈ Θ) we introduce the corresponding accuracy confidence
function

ACp
m(W, E, η) := inf

Em∈E(m)
sup

ρ
ρm{z : E(fz) − E((fρ)W ) ≥ η2}.

In the case E(m), m = 1, 2, . . . , is a collection of all estimators Em : z → fz ∈ W we drop
E from the notation. We note that in the case of convex W we have for any f ∈ W

‖f − (fρ)W ‖2
L2(ρX) ≤ E(f) − E((fρ)W ).

We discuss related results in Section 3.
In Section 4 we discuss an important statistical problem of how well the empirical error

(risk) of f

Ez(f) :=
1
m

m∑
i=1

(f(xi) − yi)2

can approximate the actual error E(f). This problem is related to the concept of the
Glivenko-Cantelli sample complexity.

Section 5 contains a probabilistic inequality that we use in the discussion in Section 2.
This inequality might be of an independent interest.

By C and c we denote absolute positive constants and by C(·), c(·), and A0(·) we denote
constants that are determined by their arguments. For two nonnegative sequences a =
{an}∞n=1 and b = {bn}∞n=1 the relation (order inequality) an 
 bn means that there is a
number C(a, b) such that for all n we have an ≤ C(a, b) bn; and the relation an � bn means
that an 
 bn and bn 
 an.

2. Prior on fρ in the form fρ ∈ Θ

We begin with the lower estimate of the accuracy confidence function from [DKPT2]. We
shall establish lower bounds in terms of a certain variant of the Kolmogorov entropy of Θ
which we shall call tight entropy. This type of entropy has been used to prove lower bounds
in approximation theory. Also, a similar type of entropy was used by Yang and Barron
[YB] in statistical estimation. The entropy measure that we shall use is in general different
from the Kolmogorov entropy, but, for classical smoothness sets Θ, it is equivalent to the
Kolmogorov entropy and therefore our lower bounds will apply in these classical settings.

For a compact Θ in a Banach space B we define the packing numbers as

P (Θ, δ) := P (Θ, δ, B) := sup{N : ∃ f1, ..., fN ∈ Θ,

with

(2.1) δ ≤ ‖fi − fj‖B , ∀i = j}.
It is well known [P] and easy to check that N(Θ, δ, B) ≤ P (Θ, δ, B). The tight packing
numbers are defined as follows. Let 1 ≤ c1 < ∞ be a fixed real number. We define the tight
packing numbers as

P̄ (Θ, δ) := P̄ (Θ, δ, c1, B) := sup{N : ∃ f1, ..., fN ∈ Θ,
6



with

(2.2) δ ≤ ‖fi − fj‖B ≤ c1δ, ∀i = j}.

It is clear that P̄ (Θ, δ, c1, B) ≤ P (Θ, δ, B).
We let µ be any Borel measure defined on X and let M(Θ, µ) denote the set of all

ρ ∈ M(Θ) such that ρX = µ, |y| ≤ 1. We specify B = L2(µ) and assume that Θ ⊂ L2(µ).
We will use the abbreviated notation P̄ (δ) := P̄ (Θ, δ, c1, L2(µ)).

Let us fix any set Θ and any Borel measure µ defined on X. We set M := M(Θ, µ) as
defined above. We also take 1 < c1 in an arbitrary way but then fix this constant. For any
fixed δ > 0, we let {fi}P̄

i=1, with P̄ := P̄ (δ), be a net of functions satisfying (2.2). To each
fi, we shall associate the measure

dρi(x, y) := (ai(x)dδ1(y) + bi(x)dδ−1(y))dµ(x),

where ai(x) := (1 + fi(x))/2, bi(x) := (1 − fi(x))/2 and dδξ denotes the Dirac delta with
unit mass at ξ. Notice that (ρi)X = µ and fρi = fi and hence each ρi is in M(Θ, µ).

We have the following theorem.

Theorem 2.1 [DKPT2]. Let 1 < c1 be a fixed constant. Suppose that Θ is a subset of
L2(µ) with tight packing numbers P̄ := P̄ (δ). In addition suppose that for δ = 2η > 0,
the net of functions {fi}P̄

i=0 in (2.2) satisfies ‖fi‖C(X) ≤ 1/4, i = 1, . . . , P̄ . Then for any
estimator fz we have for some i ∈ {1, . . . , P̄}

ρm
i {z : ‖fz−fi‖L2(µ) ≥ η} ≥ min(1/2, (P̄ (2η)−1)1/2e−8c2

1mη2−3/e), ∀η > 0, m = 1, 2, . . . .

The proof of Theorem 2.1 is given in [DKPT2]. This proof uses the concept of the
Kullback-Leibler information. Given two probability measures dP and dQ defined on the
same space and such that dP is absolutely continuous with respect to dQ, we write dP = gdQ
and define

K(P,Q) :=
∫

ln gdP =
∫

g ln gdQ.

If dP is not absolutely continuous with respect to dQ then K(P,Q) := ∞.

It is obvious that
K(Pm, Qm) = mK(P,Q).

The use of Kullback-Leibler information is well known in statistics and goes back to Kull-
back, Leibler [KL] and Ibragimov, Hasminskii [IH].

As we already mentioned Theorem 2.1 provides lower estimates for classes Θ with known
lower estimates for the tight packing numbers P̄ (Θ, δ). We now show how this theorem can
be used in a situation when we know the behavior of packing numbers P (Θ, δ).
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Lemma 2.1. Let Θ be a compact subset of B. Assume that

C1ϕ(δ) ≤ lnP (Θ, δ) ≤ C2ϕ(δ), δ ∈ (0, δ1],

with a function ϕ(δ) satisfying the following condition. For any γ > 0 there is Aγ such that
for any δ > 0

(2.3) ϕ(Aγδ) ≤ γϕ(δ).

Then there exists c1 ≥ 1 and δ2 > 0 such that

ln P̄ (Θ, δ, c1, B) ≥ C3 lnP (Θ, δ), δ ∈ (0, δ2].

Proof. For δ > 0 we take the set F := {fi}P (Θ,δ)
i=1 ⊂ Θ satisfying (2.1). Considering a lδ-net

with l ≥ 1 for covering Θ we obtain that one of the balls of radius lδ contains at least
P (Θ, δ)/P (Θ, lδ) points of the set F . Denote this set of points by Fl = {fi}i∈Λ(l). Then,
obviously, for any i = j ∈ Λ(l) we have

δ ≤ ‖fi − fj‖ ≤ 2lδ.

Therefore

ln P̄ (Θ, δ, 2l, B) ≥ lnP (Θ, δ) − ln P (Θ, lδ) ≥ C1ϕ(δ) − C2ϕ(lδ).

Specifying γ = C1/(2C2), l = Aγ , and δ2 := δ1/l we continue

≥ C1ϕ(δ)/2 ≥ C1

2C2
lnP (Θ, δ), δ ∈ (0, δ2].

As a corollary of Theorem 2.1 and Lemma 2.1 we obtain the following theorem.

Theorem 2.2. Assume Θ is a compact subset of L2(µ) such that Θ ⊂ 1
4U(C(X)) and

(2.4) εn(Θ, L2(µ)) � n−r.

Then there exist δ0 > 0 and ηm := ηm(r) � m− r
1+2r such that

(2.5) ACm(M(Θ, µ), η) ≥ δ0 for η ≤ ηm

and

(2.6) ACm(M(Θ, µ), η) ≥ Ce−c(r)mη2
for η ≥ ηm.

Proof. Condition (2.4) implies

C1(r)δ−1/r ≤ ln P (Θ, δ) ≤ C2(r)δ−1/r, δ ∈ (0, δ1].

Clearly, the function ϕ(δ) = δ−1/r satisfies the condition (2.3) from Lemma 2.1. Therefore
by Lemma 2.1 we obtain

ln P̄ (Θ, η, c1(r), L2(µ)) ≥ C3(r)η−1/r, η ∈ (0, δ2(r)],

with some c1(r) ≥ 1. It remains to use Theorem 2.1 with ηm a solution of the equation
C3(r)

2
(2η)−1/r − 8c1(r)2mη2 = 0.

It is clear that
ηm � m− r

1+2r .
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Remark 2.1. Theorem 2.2 holds in the case Θ ⊂ (M/4)U(C(X)), |y| ≤ M , with constants
allowed to depend on M .

We note that we do not impose direct restrictions on the measure µ in Theorem 2.2.
However, the assumption (2.4) imposes an indirect restriction. For instance, if µ is a Dirac
measure then we always have εn(Θ, L2(µ)) 
 2−n. Therefore, Theorem 2.2 does not apply
in this case.

Let us make some comments on Theorem 2.2. It is clear that the parameter r controls
the size of the compact Θ. The bigger the r the smaller the compact Θ. In the statement
of Theorem 2.2 the parameter r affects the rate of decay of ηm. The quantity ηm is an
important characteristic of the estimation process. The inequality (2.5) says that there is
no way to estimate fρ from Θ with accuracy ≤ ηm with high confidence (> 1 − δ0). It
seems natural that this critical accuracy ηm depends on the size of Θ (on parameter r). The
inequalities (2.5) and (2.6) give

(2.7) ACm(M(Θ, µ), η) ≥ δ0Ce−c(r)mη2

for all η. The exponent mη2 in this inequality does not depend on the size of Θ. This may
indicate that the form of this exponent is related not to the size of Θ but rather to the
stochastic nature of the problem. Other argument in support of the above observation is
provided by an inequality from Section 5. We will use that inequality to show that in the
case of a compact Θ consisting of only one function we have an analogue of (2.7) in the case
of linear estimators. Let Θ = {1/2}. Suppose that we are looking for a linear estimator

(2.8) fz =
m∑

i=1

wi(x1, . . . , xm, x)yi

of the regression function fρ. Consider the following special case of the measure ρ. Let
ρX = µ be any probabilistic measure on X. We define ρ(y|x) as the Bernoulli measure:

ρ(1|x) = ρ(0|x) = 1/2, x ∈ X.

Then for the above measure ρ we have fρ(x) ≡ 1/2 ∈ Θ. Then

‖fz − fρ‖L2(µ) ≥
∫

X

|fz − fρ|dµ ≥

|
∫

X

(fz − fρ)dµ| = |
m∑

i=1

wi(x1, . . . , xm)yi − 1/2|,

where

wi(x1, . . . , xm) :=
∫

X

wi(x1, . . . , xm, x)dµ.
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Using Theorem 5.1 we get

ρm{z : ‖fz − fρ‖L2(µ) ≥ η} ≥ Probz∈Zm{|
m∑

i=1

wi(x1, . . . , xm)yi − 1/2| ≥ η}

≥ exp(−25mη2 − 6.25
m−1∑
k=1

1/k) ≥ m−6.25 exp(−25mη2 − 1).

Therefore, in the case E(m) is the set of estimators of the form (2.8) we have for Mµ :=
{ρ : fρ = 1/2, ρX = µ}

ACm(Mµ, E, η) ≥ m−6.25 exp(−25mη2 − 1).

We now proceed to upper estimates. In order to prove upper estimates we need to decide
what should be the form of an estimator fz. In other words we need to specify the hypothesis
space H (see [CS], [PS]) where an estimator fz comes from.

The next question is how to build fz ∈ H. In this paper we discuss a standard in statistics
method of empirical risk minimization that takes

fz,H = arg min
f∈H

Ez(f),

where

Ez(f) :=
1
m

m∑
i=1

(f(xi) − yi)2

is the empirical error (risk) of f . This fz,H is called the empirical optimum. We begin with
the following estimate.

Theorem 2.3 [CS], [DKPT1,2]. Assume that Θ satisfies (1.1). Suppose that fρ ∈ Θ.
Then for η ≥ A0(M,D, r)m− r

2(1+r)

(2.9) ρm{z : ‖fz,Θ − fρ‖L2(ρX) ≥ η} ≤ exp(−c(M)mη2).

Let us compare this theorem with Theorem 2.2. First of all we note that the estimator
Ez : z → fz,Θ does not depend on η. Secondly, this estimator provides optimal estimate
for the probability distribution function with the exponent mη2 that matches the exponent
in the lower bound (2.6). However, (2.9) holds for η � m− r

2(1+r) and (2.6) holds for
η � m− r

1+2r . Thus Theorem 2.3 does not cover the range of m− r
1+2r 
 η 
 m− r

2(1+r) .
Also, we should point out that Θ satisfies (1.1) what is stronger than the corresponding
condition (1.3).

The key ingredient of the proof of Theorem 2.3 is the following theorem from [CS]. For
a compact H denote

fH := arg min
f∈H

E(f).
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Theorem 2.4 [CS]. Suppose that either H is a compact and convex subset of C(X) or H
is a compact subset of C(X) and fρ ∈ H. Assume that for all f ∈ H, f : X → Y is such
that |f(x) − y| ≤ M a.e. Then, for all ε > 0

ρm{z : E(fz,H) − E(fH) ≥ ε} ≤ N(H, ε/(24M), C(X))2 exp(− mε

288M2
).

Theorem 2.5 [DKPT1,2]. Let Θ satisfy (1.2). Suppose that fρ ∈ Θ. Then there exists
an estimator fz such that for η ≥ A0(M,K, r)(lnm/m)

r
1+2r

ρm{z : ‖fz − fρ‖L2(ρX) ≥ η} ≤ exp(−c(M)mη2).

Theorem 2.5 allows us to build estimators with better accuracy than in Theorem 2.3:
with error � (lnm/m)

r
1+2r instead of error � m− r

2(1+r) . This is done under assumption (1.2)
instead of (1.1). We note that condition (1.2) is stronger than (1.1). By Carl’s inequality
[C] (1.2) implies (1.1). We now describe the construction of estimator fz from Theorem 2.5.
Let a sequence {Ln} be a sequence of optimal (near optimal) subspaces for Θ, dimLn = n.
Then for any f ∈ Θ there is a ϕn ∈ Ln such that ‖f − ϕn‖C(X) ≤ 2Dn−r. It is clear that
‖ϕn‖C(X) ≤ 3D. We now consider the set Vn := 3DU(C(X)) ∩ Ln. In other words we take
as a hypothesis space the set Vn. We construct an estimator for fρ ∈ Θ by

fz := fz,Vn = arg min
f∈Vn

Ez(f)

with n := [( m
ln m )

1
1+2r ]. This construction has an advantage over the choice fz = fz,Θ in

Theorem 2.3. Building fz,Vn we optimize over a ball in a finite dimensional space Ln instead
of optimizing over Θ. We note that the set H, smaller than Θ, that is used as a hypothesis
space is known in statistics under the name sieve [G], [BM2]. In the proof of Theorem 2.5
we also use Theorem 2.4.

Theorem 2.6 [KT1]. Let Θ satisfy (1.1). Suppose that fρ ∈ Θ. Then there exists an
estimator fz such that for η ≥ A0(M,D, r)m− r

1+2r

ρm{z : ‖fz − fρ‖L2(ρX) ≥ η} ≤ exp(−c(M)mη2).

Comparing this theorem with Theorem 2.2 we see that Theorem 2.6 provides both the
optimal rate of accuracy � m− r

1+2r and the best estimate of probability distribution function
with the exponent mη2. The only thing in Theorem 2.6 that does not match the assumptions
of Theorem 2.2 is the following. In Theorem 2.6 we asume that Θ satisfies (1.1) that means
we impose restrictions in the uniform norm but not in the L2(ρX) norm as in Theorem 2.2.
Thus, Theorem 2.6 provides an optimal result in the case of Θ such that

εn(Θ, C(X)) � εn(Θ, L2(µ)) � n−r

11



for some measure µ.
The construction of fz in Theorem 2.6 uses ε-nets of Θ in the uniform norm. We choose

ε = A
1/2
0 m− r

1+2r and define Vε to be a ε-net of Θ in the C(X) norm. We construct an
estimator for fρ ∈ Θ by

fz := fz,Vε = arg min
f∈Vε

Ez(f).

The set Vε is not convex and we cannot claim that fρ ∈ Vε. Therefore Theorem 2.4 does
not apply for this set. In [KT1] we used the following theorem in the proof of Theorem 2.6.

Theorem 2.7 [DKPT1,2]. Let H be a compact subset of C(X). Assume that for all f ∈ H,
f : X → Y is such that |f(x) − y| ≤ M a.e. Then, for all ε > 0

ρm{z : E(fz,H) − E(fH) ≥ ε} ≤ N(H, ε/(24M), C(X))2 exp(− mε

C(M,R)
)

under assumption E(fH) − E(fρ) ≤ Rε.

Theorem 2.8 [KT2]. Assume that Θ satisfies (1.3) with r > 1/2. Suppose also fρ ∈ Θ.
Let mη4 ≥ 1. Then there exists an estimator fz such that

ρm{z : ‖fz − fρ‖L2(ρX) ≥ η} ≤ C(M, r) exp(−c(M)mη4).

Theorem 2.9 [KT2]. Let Θ satisfy (1.3). Suppose that fρ ∈ Θ. Assume that r ∈ (0, 1/2)
and mη2+1/r ≥ C1(M,D, r). Then there exists an estimator fz such that

ρm{z : ‖fz − fρ‖L2(ρX) ≥ η} ≤ C(M,D, r) exp(−c(M,D, r)mη2+1/r).

Assume that r = 1/2 and mη4/(1 + (log(M/η))2) ≥ C1(M,D). Then there exists an
estimator fz such that

ρm{z : ‖fz) − fρ‖L2(ρX) ≥ η} ≤ C(M,D) exp(−c(M,D)mη4/(1 + (log(M/η))2)).

Theorems 2.8 and 2.9 are close to Theorem 2.2 in formulation of assumptions. In both
cases we impose restrictions in the L2(ρX) norm. Combination of Theorems 2.2 and 2.9
gives the optimal rate of accuracy � m− r

1+2r for classes M(Θ, µ) with

(2.10) εn(Θ, L2(µ)) � n−r, r ∈ (0, 1/2).

In the case r > 1/2 Theorems 2.2 and 2.8 do not match. It is an interesting open problem:
find optimal rate of accuracy for classes M(Θ, µ) such that εn(Θ, L2(µ)) � n−r in the case
r > 1/2.

The above discussed fact that in the case r ∈ (0, 1/2) for any measure µ the behavior
(2.10) of the entropy numbers determines the optimal rate of accuracy � m− r

1+2r in the
estimation problem indicates that it is natural to classify classes of priors by the behavior
of their entropy numbers.

12



We now describe the construction of the estimator from Theorem 2.9. Contrary to the
estimators from Theorems 2.3, 2.5, and 2.6 the estimator in Theorem 2.9 depends on η.
Here we take fz = fz,Nη(Θ) with Nη(Θ) := Nη(Θ, L2(ρX)). Proofs of Theorems 2.8 and
2.9 are somewhat more direct than the proofs of Theorems 2.3, 2.5, and 2.6. In the proofs
of Theorems 2.8 and 2.9 we use the Bernstein concentration measure inequality and apply
the chaining technique (boot strapping technique, peeling device). We now formulate the
Bernstein inequality. If ξ is a random variable (a real valued function on a probability space
Z) then denote

E(ξ) :=
∫

Z

ξdρ; σ2(ξ) :=
∫

Z

(ξ − E(ξ))2dρ.

The Bernstein inequality says: if |ξ(z) − E(ξ)| ≤ M a.e. then for any ε > 0

(2.11) Probz∈Zm{| 1
m

m∑
i=1

ξ(zi) − E(ξ)| ≥ ε} ≤ 2 exp(− mε2

2(σ2(ξ) + Mε/3)
).

We complete the discussion of Theorem 2.9 by a theorem that is a corollary of Theorem
2.2, Remark 2.1, and Theorem 2.9.

Theorem 2.10. Let µ be a Borel measure on X. Assume r ∈ (0, 1/2) and Θ is a compact
subset of L2(µ) such that

εn(Θ, L2(µ)) � n−r.

Then there exist δ0 > 0 and η−
m ≤ η+

m, η−
m � η+

m � m− r
1+2r such that

ACm(M(Θ, µ), η) ≥ δ0 for η ≤ η−
m

and
C1(Θ,M)e−c1(Θ,M)mη2 ≤ ACm(M(Θ, µ), η) ≤ C2(Θ,M)e−c2(Θ,M)mη2+1/r

for η ≥ η+
m.

The above theorems give the upper estimates in the following style. For a given class M
there exist η+

m(M) and positive constants C, c, a such that for η ≥ η+
m(M)

ACm(M, η) ≤ Ce−cmηa

.

Theorem 2.1 and 2.2 give the lower estimates of the following type. For a given M there
exist δ0(M) > 0 and η−

m(M) > 0 such that for η ≤ η−
m(M) one has

ACm(M, η) ≥ δ0(M).

These inequalities indicate that the behavior of the accuracy confidence function changes
dramatically within the critical interval [η−

m(M), η+
m(M)]. It drops from a constant δ0(M)

to an exponentially small quantity C exp(−cmη+
m(M)a). One may also call the interval

[η−
m(M), η+

m(M)] the interval of phase transition. Clearly, good estimates for η−
m(M) and

η+
m(M) are of great importance. We introduce more terminology in this regard. Suppose

for a given class M there exist a function ϕ(M,m) and two constants C1(M), C2(M) such
that

C1(M)ϕ(M,m) ≤ η−
m(M) ≤ η+

m(M) ≤ C2(M)ϕ(M,m).

Then we call the function ϕ(M,m) the critical rate of accuracy. The following theorem is
a corollary of Theorem 2.10.

13



Theorem 2.11. Let r ∈ (0, 1/2). Assume Θ is a compact subset of L2(µ) such that

εn(Θ, L2(µ)) � n−r.

Let M(Θ, µ) := {ρ : fρ ∈ Θ, ρX = µ, |y| ≤ M}. Then the critical rate of accuracy exists
for M(Θ, µ) and has the order

ϕ(M(Θ, µ),m) � m− r
1+2r .

Results of this section show that from a theoretical point of view the entropy numbers
εn(Θ, L2(ρX)) is the right characteristic of a class Θ in the problem of estimating the regres-
sion function fρ. However, the above discussion indicates certain difficulties with the use of
the entropy numbers εn(Θ, L2(ρX)). As we have mentioned the estimator fz from Theorem
2.9 has been built using the η-net of Θ in the L2(ρX) norm. In many cases the measure ρX

is unknown. Therefore, we would like to construct an estimator that does not depend on ρX

and provides good estimation for all ρX . This is the main goal of distribution-free theory
of regression. One of the ways out of the above problem with the use of the characteristic
εn(Θ, L2(ρX)) is to go through the uniform norm, i.e. to use the characteristic εn(Θ, C(X)).
Clearly, this narrows the set of classes of priors Θ we can work with. Theorem 2.6 shows
that we can construct an estimator fz that does not depend on ρX and does an optimal
(in the sense of order) job for classes satisfying (1.1). From a theoretical point of veiw this
estimator is very good. However, it is clear that we have a problem with direct practical
implementation of this estimator because it is built on the base of an ε-net of Θ. The
estimator from Theorem 2.5 is better in the sense of implementation. It is constructed by
least squares method in the finite dimensional subspace Ln. Thus in addition to theoretical
problem of finding optimal rates of estimation we have a practical problem of implemen-
tation of optimal (near optimal) estimators. We want to understand what characteristics
of prior classes Θ are suitable for the task of convenient practical implementation. It is
somewhat clear that the description of Θ in terms of the entropy numbers does not fit this
goal. Indeed, at this point it looks unfeasible to implement algorithms based on ε-nets of
function classes.

Interesting results in this direction on building estimation schemes with nice implemen-
tation properties have been obtained in the recent paper [BCDDT]. The most important
property of those estimation schemes is universality. It is a very important property of an
estimation algorithm. We do not discuss the universality property in this paper and refer
the reader to the papers [DKPT1], [DKPT2], [BCDDT], [KT2] where this property has been
discussed in detail.

We present here a result from [KT2] in a style of Theorem 2.5 with a description of Θ
in the L2(ρX) norm instead of the C(X) norm. Let B(X) be a Banach space with the
norm ‖f‖B(X) := supx∈X |f(x)|. Let {Ln}∞n=1 be a given sequence of n-dimensional linear
subspaces of B(X) such that Ln is also a subspace of each L∞(µ), where µ is a probability
measure on X, n = 1, 2, . . . . Assume that n-dimensional linear subspaces Ln have the
following property: for any probability measure µ on X one has

(2.12) ‖Pµ
Ln

‖B(X)→B(X) ≤ K, n = 1, 2, . . .
14



where Pµ
L is the operator of L2(µ) projection onto L. For a finite dimensional linear subspace

L ⊂ L2(ρX) and f ∈ L2(ρX) we denote by d(f, L)L2(ρX) the L2(ρX) distance between f
and L.

Theorem 2.12 [KT2]. Assume that a sequence {Ln}∞n=1 satisfies (2.12). For given m,
r > 0 there exists an estimator fz such that for any ρ satisfying

d(fρ, Ln)L2(ρX) ≤ Dn−r, n = 1, 2, . . . ,

we get for η ≥ A0(M,K, r)(lnm/m)
r

1+2r

ρm{z : ‖fρ − fz‖L2(ρX) ≥ η} ≤ exp(−c(M)mη2).

The above theorem can be used, in particular, in the following situation. Let X be a
compact subset of R

d. Let Pn denote the set of all partitions of X into n disjoint Borel
subsets. Let pn ∈ Pn, n = 1, . . . . Define Ln as a subspace of all functions that are piecewise
constant on the partition pn. The subspaces Ln satisfy (2.12) with K = 1.

Thus we can obtain simpler estimators when we replace assumptions on Θ in terms
of entropy numbers (a characteristic of nonlinear approximation) by assumptions on Θ in
terms of approximation by linear subspaces (a characteristic of linear approximation). It
is known from works in approximation theory (see surveys [D], [T]) and statistics ([DJ],
[KP]) that nonlinear approximation is more flexible than linear approximation and provides
optimal means of approximation and estimation. The most important in this regard form of
nonlinear approximation is the n-term approximation with regard to a given basis or more
generally with regard to a dictionary. We present one result in this direction from [DKPT1].
We will consider n-term approximations with regard to a given system Ψ. Assume that the
system Ψ = {ψj}∞j=1 is the (VP)-system, i.e. satisfies the condition:

(VP) There exist three positive constants Ai, i = 1, 2, 3, and a sequence {nk}∞k=1, nk+1 ≤
A1nk, k = 1, 2, . . . such that there is a sequence of the de la Vallée-Poussin type operators
Pk with the properties

Pk(ψj) = λk,jψj ,

λk,j = 1 for j = 1, . . . , nk; λk,j = 0 for j > A2nk,

‖Pk‖C(X)→C(X) ≤ A3, k = 1, 2, . . . .

Denote

σn(f,Ψ) := inf
k1,...,kn;c1,...,cn

‖f −
n∑

j=1

cjψkj‖C(X),

and
σn(Θ,Ψ) := sup

f∈Θ
σn(f,Ψ).
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Theorem 2.13. Let fρ ∈ Θ and let Θ satisfy the following two conditions.

σn(Θ,Ψ) ≤ C1n
−r, Θ ⊂ C1U(C(X)).

En(Θ,Ψ) := sup
f∈Θ

inf
c1,...,cn

‖f −
n∑

j=1

cjψj‖C(X) ≤ C2n
−b,

where Ψ is the (VP)-system. Then there exists an estimator fz such that for
η ≥ A0(M, r, b)(lnm/m)

r
1+2r

ρm{z : ‖fz − fρ‖L2(ρX) ≥ η} ≤ exp(−C(M, r)mη2).

We note that the trigonometric system and wavelets are the (VP)-systems.
We now give a concrete example of a class of priors Θ to demonstrate how the general

theory developed in this section works. Let X = [0, 1]d and W s
p , s ∈ N, 1 ≤ p ≤ ∞, be the

Sobolev class (the unit ball of the Sobolev space): the set of all functions g ∈ Lp(X) whose
distributional derivatives Dνg, ‖ν‖�1 ≤ s, are also in Lp(X) and

∑
‖ν‖�1≤s

‖Dνg‖Lp(X) ≤ 1.

Then it is known [BS] that for s > d/p one has

εn(W s
p , C) � n−r, r := s/d,

and
εn(W s

p , L2) � n−r.

Then by Theorem 2.6

ACm(W s
p , η) ≤ e−c1(M)mη2

, η ≥ η+
m � m− r

1+2r .

By Theorem 2.2 and Remark 2.1 with µ - Lebesgue measure we get

ACm(W s
p , η) ≥ δ0, η ≤ η−

m � m− r
1+2r

ACm(W s
p , η) ≥ Ce−c2(M)mη2

, η ≥ η−
m.

These results give a very accurate discription of the accuracy confidence function ACm(W s
p , η).

We complete this section by a remark concerning the quantities E(Θ,m) that give the rate
of accuracy of optimal estimation in the sense of expectation. We have already mentioned
in the Introduction (see (1.4), (1.5)) how the accuracy confidence function ACm(Θ, η) can
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be used for estimating E(Θ,m) from below and from above. We now develop the ideas of
(1.4) and (1.5) to obtain the right order of

E(Θ,m)q := inf
f̂

sup
fρ∈Θ

Eρm(‖fρ − f̂‖q
L2(ρX)), 0 < q < ∞.

Suppose that a class Θ is such that there exists a critical rate ϕ(Θ,m) := ϕ(M(Θ),m) of
accuracy for this class and for any q ∈ (0,∞) we have ACm(Θ, η+

m) 
 ϕ(Θ,m)q. Then on
one hand for any fz

Eρm(‖fρ − fz‖q
L2(ρX)) ≥

∫ ∞

0

ACm(Θ, η1/q)dη ≥ δ0(η−
m)q � ϕ(Θ,m)q.

On the other hand for η = η+
m there exists fz such that

Eρm(‖fρ − fz‖q
L2(ρX)) ≤ (η+

m)q + (2M)qACm(Θ, η+
m) 
 ϕ(Θ,m)q.

In particular, this implies that for any 0 < q < ∞ we have for 1 ≤ p ≤ ∞, s > d/p

(2.13) E(W s
p ,m)q � m− qr

1+2r , r := s/d.

In the case q = 2 the lower estimate in (2.13) has been obtained by Stone [S] in 1982. The
corresponding upper estimate and a discussion can be found in [GKKW].

3. No prior on fρ

In this section we briefly discuss the following setting. We now do not impose any
restriction on the unknown measure ρ, except our standard assumption |y| ≤ M . In such
a situation we, clearly, cannot estimate fρ with a nontrivial error estimate. Instead of
estimating fρ we now estimate the L2(ρX) projection of fρ onto a compact W that we may
choose. This setting is a more general setting than the one from Section 2. Indeed, if we
know that fρ ∈ Θ then fΘ = (fρ)Θ = fρ. Therefore, the results of this section apply with
W = Θ. This remark motivates us to impose restrictions on W in the same style as we did
in Section 2. We begin with the upper estimates. For a compact in L2(ρX) set W denote
by fW := (fρ)W the L2(ρX)-projection of fρ onto W . In other words

fW := arg min
f∈W

E(f).

Let us denote

Sr := Sr(X) := {W : εn(W, C(X)) ≤ Dn−r, n = 1, 2, . . . , W ⊂ DU(C(X)}.
Theorem 3.1 [CS], [DKPT1]. Assume that W ∈ Sr. Then for
η ≥ A0(M,D, r)m− r

2(1+2r)

ρm{z : E(fz,W ) − E(fW ) ≥ η2} ≤ exp(−c(M)mη4).
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Theorem 3.2 [KT1]. Assume that W satisfies (1.1). Then we have the following estimates

ρm{z : E(fz,W ) − E(fW ) ≥ η2} ≤ C(M,D, r) exp(−c(M)mη4),

provided r > 1/2, mη4 ≥ 1;

ρm{z : E(fz,W ) − E(fW ) ≥ η2} ≤ C1(M,D) exp(−c(M,D)mη4/(1 + (log(M/η))2)),

provided r = 1/2, mη4/(1 + (log(M/η))2) ≥ C2(M,D);

ρm{z : E(fz,W ) − E(fW ) ≥ η2} ≤ C1(M,D, r) exp(−c(M,D, r)mη2/r),

provided r ∈ (0, 1/2), mη2/r ≥ C2(M,D, r).

In Theorems 3.1 and 3.2 we choose the fz,W as the estimator. Theorem 3.2 gives the
following upper estimate for the accuracy confidence function. For W ∈ Sr, r > 1/2 we
have

(3.1) ACp
m(W, η) ≤ C(M,D, r) exp(−c(M)mη4) for η ≥ m−1/4.

Let us compare this estimate with the corresponding estimate for ACm(Θ, η). Theorem 2.6
gives for Θ ∈ Sr

(3.2) ACm(Θ, η) ≤ exp(−c(M)mη2) for η � m− r
1+2r .

The estimates (3.1) and (3.2) differ in two ways. First, the accuracy � m− r
1+2r in (3.2)

depends on r and better for r > 1/2 than the accuracy � m−1/4 in (3.1) that does not
depend on r. Second, the exponent mη2 from (3.2) in the bound for the probability distri-
bution function is better than the corresponding exponent mη4 from (3.1). The following
proposition shows that we cannot improve (3.1).

Proposition 3.1. There exists two positive constants c1, c2 and a class W consisting of
two functions 1 and −1 such that for every m = 2, 3, . . . and m−1/4 ≤ η ≤ 1/2 there are
two measures ρ0 and ρ1 such that for any estimator fz ∈ W for one of ρ = ρ0 or ρ = ρ1 we
have

ρm{z : E(fz) − E(fW ) ≥ η2} ≥ c1 exp(−c2mη4).

In the case η = m−1/4 this proposition has been proved in [KT1]. The proof in the general
case m−1/4 ≤ η ≤ 1/2 is similar. Proposition 3.1 indicates that there is a phenomenon of
saturartion for collections Sr for r > 1/2.

In the case r ∈ (0, 1/2) Theorem 3.2 gives the following estimate

(3.3) ACp
m(W, η) 
 exp(−c(M,D, r)mη2/r) for η � m−r/2.

Similarly to the above comparison of (3.1) and (3.2) we see that (3.3) is weaker than (3.2).
The following proposition from [KT1] shows that the accuracy bound in (3.3) cannot be
improved on the whole collection Sr.
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Proposition 3.2 [KT1]. For any r ∈ [0, 1/2] and for every m ∈ N there is W ⊂
U(L∞([0, 1]) satisfying εn(W,L∞) ≤ n−r for n ∈ N such that for every estimator fz ∈ W
there is a ρ such that

ρm{z : E(fz) − E((fρ)W ) ≥ m−r/4} ≥ 1/7.

We now present two results in the case of W satisfying a weaker condition (1.3) instead
of (1.1).

Theorem 3.3 [KT2]. Assume that W satisfies (1.3) with r > 1/2.
Let mη2(1+max(1/r,1)) ≥ A0(M,D, r) ≥ 1. Then there exists an estimator fz ∈ W such that

ρm{z : E(fz) − E(fW ) ≥ η2} ≤ C1(M,D, r) exp(−c1(M)mη4).

Theorem 3.4 [KT2]. Assume that W satisfies (1.3) with r ∈ (0, 1/2).
Let mη2(1+1/r) ≥ A0(M,D, r) ≥ 1. Then there exists an estimator fz ∈ W such that

ρm{z : E(fz) − E(fW ) ≥ η2} ≤ C(M,D, r) exp(−c(M,D, r)mη2+1/r).

We now give an idea of proofs of the upper estimates of this section. This idea provides
a motivation for our interest in the problem discussed in the next section. Let W be a
hypothesis space. Then we have

E(fz,W ) − E(fW ) = E(fz,W ) − Ez(fz,W ) + Ez(fz,W ) − Ez(fW ) + Ez(fW ) − E(fW )

≤ E(fz,W ) − Ez(fz,W ) + Ez(fW ) − E(fW ).

Thus we want to estimate
sup
f∈W

|E(f) − Ez(f)|.

4. Estimates for Lz(f)

One of important questions discussed in [CS], [DKPT1], [DKPT2], [KT1], [KT2] is to
estimate the defect function Lz(f) := Lz,ρ(f) := E(f) − Ez(f) of f ∈ W . If ξ is a random
variable (a real valued function on a probability space Z) then denote as above

E(ξ) :=
∫

Z

ξdρ; σ2(ξ) :=
∫

Z

(ξ − E(ξ))2dρ.

In this section it will be convenient for us to assume that

(4.1) for all f ∈ W, f : X → Y is such that |f(x) − y| ≤ M a.e.
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Theorem 4.1 [CS]. Let W be a compact subset of C := C(X). Assume that ρ, W satisfy
(4.1). Then, for all η > 0

(4.2) ρm{z : sup
f∈W

|Lz(f)| ≥ η} ≤ N(W, η/(16M), C)2 exp
(
− mη2

8(4σ2 + M2η/3)

)
.

Here σ2 := σ2(W ) := supf∈W σ2((f(x) − y)2).

Remark 4.1. In general we cannot guarantee that the set {z : supf∈W |Lz(f)| ≥ η} is ρm-
measurable. In such a case the relation (4.2) and further relations of this type are understood
in the sense of outer measure associated with the ρm. For instance, for (4.2) this means
that there exists ρm-measurable set G such that {z : supf∈W |Lz(f)| ≥ η} ⊂ G and (4.2)
holds for G.

In [CS] this theorem has been derived from Bernstein’s inequality (2.11). We note
that other variants of this theorem can be found in the literature (see, for instance, [Po],
[GKKW]). Theorem 4.1 contains a factor N(W, η/(16M), C) that may grow exponentially
for classes W satisfying (1.1): N(W, η, C) ≤ 2(D/η)1/r+1. A stronger (in a certain sense)
estimate than (4.2) has been obtained in [KT1] under assumption that W satisfies (1.1).

Theorem 4.2 [KT1]. Assume that ρ, W satisfy (4.1) and W is such that

(4.3)
∞∑

n=1

n−1/2εn(W, C) < ∞.

Then for mη2 ≥ 1 we have

ρm{z : sup
f∈W

|Lz(f)| ≥ η} ≤ C(M, ε(W )) exp(−c(M)mη2)

with C(M, ε(W )) that may depend on M and ε(W ) := {εn(W, C)}; c(M) may depend only
on M .

Theorem 4.3 [KT1]. Assume that ρ, W satisfy (4.1) and W is such that
∞∑

n=1

n−1/2εn(W, C) = ∞.

For η > 0 define J := J(η/M) as the minimal j satisfying ε2j (W, C) ≤ η/(8M) and

SJ :=
J∑

j=1

2(j+1)/2ε2j−1(W, C).

Then for m, η satisfying m(η/SJ)2 ≥ 480M2 we have

ρm{z : sup
f∈W

|Lz(f)| ≥ η} ≤ C(M, ε(W )) exp(−c(M)m(η/SJ)2).

We formulate two corollaries of Theorem 4.3.
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Corollary 4.1 [KT1]. Assume ρ, W satisfy (4.1) and εn(W, C) ≤ Dn−r, r ∈ (0, 1/2).
Then for m, η satisfying mη1/r ≥ C1(M,D, r) we have

ρm{z : sup
f∈W

|Lz(f)| ≥ η} ≤ C(M,D, r) exp(−c(M,D, r)mη1/r).

Corollary 4.2 [KT1]. Assume ρ, W satisfy (4.1) and εn(W, C) ≤ Dn−r, r ∈ (0, 1/2).
Then for m, η, δ ≥ η/(8M) satisfying mη2δ1/r−2 ≥ C1(M,D, r) we have

ρm{z : sup
f∈Nδ(W )

|Lz(f)| ≥ η} ≤ C(M,D, r) exp(−c(M,D, r)mη2δ1/r−2)

where Nδ(W ) is a minimal δ-net of W in the C norm.

In [KT2] we have proved that it is impossible to have even a weaker analogue of Theorem
4.2 if we use the L2(ρX) norm instead of the uniform norm C. However, it turned out
that we can prove an L2(ρX) analogue of Theorem 4.2 for the δ-net Nδ(W ) of W in the
L2(ρX) norm instead of W for δ2 ≥ η. The following proposition shows that if we consider
entropy of W in L2[0, 1) rather than in C[0, 1] then even a fast decay of εn(W,L2(ρX))
(say, εn(W,L2(ρX)) = o(n−r) for every r > 0) does not guarantee nontrivial estimates for
supf∈W |Lz(f)|. We assume that Y = [−1, 1], and thus, the functions f ∈ W and fρ are
uniformly bounded.

Proposition 4.1 [KT2]. Let N be a non-increasing mapping (0,+∞) → [1,+∞) such
that

lim
u→0+

log N(u)/ log(1/u) = +∞.

Then there exist a set W ⊂ U(L∞[0, 1)) and a ρ such that

N(W, ε, L2(ρX)) ≤ N(ε)

and for every m
ρm{z : sup

f∈W
|Lz(f)| ≤ 1/2} = 0.

Theorem 4.4 [KT2]. Assume that ρ, W satisfy (4.1) and W is such that

∞∑
n=1

n−1/2εn(W,L2(ρX)) < ∞.

Let mη2 ≥ 1. Then for any δ satisfying δ2 ≥ η we have for a minimal δ-net Nδ(W ) of W
in the L2(ρX) norm

ρm{z : sup
f∈Nδ(W )

|Lz(f)| ≥ η} ≤ C(M, ε(W )) exp(−c(M)mη2).

21



Theorem 4.5 [KT2]. Assume that ρ, W satisfy (4.1) and

∞∑
n=1

n−1/2εn = ∞, εn := εn(W,L2(ρX)).

Let η, δ be such that δ2 ≥ η. Define J := J(δ) as the minimal j satisfying ε2j ≤ δ and

SJ :=
J∑

j=1

2(j+1)/2ε2j−1 , J ≥ 1; S0 := 1.

Then for m, η satisfying m(η/SJ)2 ≥ 36M2 we have

ρm{z : sup
f∈Nδ(W )

|Lz(f)| ≥ η} ≤ C(M, ε(W )) exp(−c(M)m(η/SJ)2),

where Nδ(W ) is a minimal δ-net of W in the L2(ρX).

Corollary 4.3 [KT2]. Assume ρ, W satisfy (4.1) and εn(W,L2(ρX)) ≤ Dn−r, r ∈
(0, 1/2). Then for m, η, δ2 ≥ η satisfying mη2δ1/r−2 ≥ C1(M,D, r) we have

ρm{z : sup
f∈Nδ(W )

|Lz(f)| ≥ η} ≤ C(M,D, r) exp(−c(M,D, r)mη2δ1/r−2),

where Nδ(W ) is a minimal δ-net of W in the L2(ρX).

On the base of the above discussion we propose to study the following function that we
call the accuracy confidence function for the defect function. Let a function class W and a
set M of admissible measures ρ be given. For m ∈ N, η > 0 we define

ACd
m(W,M, η) := sup

ρ∈M
ρm{z : sup

f∈W
|Lz,ρ(f)| ≥ η}.

We note that the above function is related to the concept of the Glivenko-Cantelli sample
complexity of a class Φ with accuracy η and confidence δ:

SΦ(ε, δ) := min{n : ∀m ≥ n, ∀ρ

ρm{z = (z1, . . . , zm) : sup
φ∈Φ

|
∫

Z

φdρ − 1
m

m∑
i=1

φ(zi)| ≥ η} ≤ δ}.

In order to see that we define zi := (xi, yi), i = 1, . . . , m; φ(x, y) := (f(x) − y)2; Φ :=
{(f(x) − y)2, f ∈ W}. One can find a survey of recent results on the Glivenko-Cantelli
sample complexity in [M].

Theorem 4.2 asserts that for W satisfying (4.3) and for M satisfying (4.1) we have

ACd
m(W,M, η) ≤ C(M, ε(W )) exp(−c(M)mη2), η ≥ m−1/2.
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Corollary 4.1 says that for W satisfying (1.1) with r ∈ (0, 1/2) and for M satisfying (4.1)
we have

ACd
m(W,M, η) ≤ C(M,D, r) exp(−c(M,D, r)mη1/r), η � m−r.

It turns out that in some applications it is more convenient to have an estimate of the
ACd

m-function for a minimal δ-net of W instead of W itself. Corollary 4.2 gives the following
estimate under assumption that W satisfies (1.1) with r ∈ (0, 1/2), M satisfies (4.1) and
δ ≥ η/(8M):

ACd
m(Nδ(W, C),M, η) ≤ C(M,D, r) exp(−c(M,D, r)mη2δ1/r−2).

Let now µ be a fixed probability measure on X. Assume W is such that

∞∑
n=1

n−1/2εn(W,L2(µ)) < ∞.

Consider M(W,µ) := {ρ satisfying (4.1) : ρX = µ}. Then Theorem 4.4 claims that for
any µ we have for δ2 ≥ η ≥ m−1/2

ACd
m(Nδ(W,L2(µ)),M(W,µ), η) ≤ C(M, ε(W )) exp(−c(M)mη2).

Corollary 4.3 states that for W satisfying εn(W,L2(µ)) ≤ Dn−r, r ∈ (0, 1/2) we have for
δ2 ≥ η

ACd
m(Nδ(W,L2(µ)),M(W,µ), η) ≤ C(M,D, r) exp(−c(M,D, r)mη2δ1/r−2).

5. Lower estimates for the Bernoulli scheme

We consider in this section the following estimation problem. Let y be a random variable
such that

Prob{y = 1} = Prob{y = 0} = 1/2.

Then E(y) = 1/2. We begin our discussion with the standard estimator fm := m−1
∑m

i=1 yi.
Then it is well known that

Prob{|fm − 1/2| ≥ ε} = 2−m

⎛
⎝ ∑

|k−m/2|≥mε

Ck
m

⎞
⎠ ,

where Ck
m are the binomial coefficients. It is easy to check that

C1e
−c1mε2 ≤

∑
|k−m/2|≥mε

Ck
m ≤ C2e

−c2mε2

with positive absolute constants C1, C2, c1, c2.
The main goal of this section is to prove that fm is optimal in a certain sense among all

linear estimators. We will prove the following theorem.
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Theorem 5.1. For any ε ∈ [0, 1/2], m ≥ 2, and w = (w1, . . . , wm) we have

Prob{|
m∑

i=1

wiyi − 1/2| ≥ ε} ≥ exp

(
−cmε2 − c

4

m−1∑
k=1

1
k

)

with c = 25.

We begin with a technical lemma.

Lemma 5.1. Let ε ∈ (0, β], 9n ≥ ε−2, wn ∈ [0, 1/n]. Then for ε1 := (ε−wn/2)(1−wn)−1,
ε2 := (ε + wn/2)(1 − wn)−1 one has for c = 25, β = (ln 2)1/2/5

(5.1) exp(−c(n − 1)ε21) + exp(−c(n − 1)ε22) ≥ 2 exp(−cnε2 − c

4(n − 1)
).

Proof. We consider separately two cases: I wn ∈ [0, 1/(2n)] and II wn ∈ (1/(2n), 1/n].
Case I. Using the convexity of function e−x we obtain for any C > 0

(5.2) exp(−C(n − 1)ε21) + exp(−C(n − 1)ε22) ≥ 2 exp(−C(n − 1)(ε21 + ε22)/2).

Next,

ε21 + ε22 = (1 − wn)−2((ε − wn/2)2 + (ε + wn/2)2) = (1 − wn)−2(2ε2 + w2
n/2).

Using the inequality
n − 1

(1 − wn)2
≤ n for wn ∈ [0, 1/(2n)]

we get

(5.3) (n − 1)(ε21 + ε22)/2 ≤ nε2 + 1/(16n).

Substituting (5.3) into (5.2) we obtain (5.1).
Case II. We rewrite

S := exp(−c(n − 1)ε21) + exp(−c(n − 1)ε22)

= exp(−c(n − 1)ε21)
(
1 + exp(−c(n − 1)(ε22 − ε21)

)
.

We have an identity
ε22 − ε21 = 2wnε(1 − wn)−2.

Denote an := (n − 1)(1 − wn)−2. We have

(5.4) 1 − 1/n ≤ an/n ≤ n/(n − 1).
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Let us estimate δ := nε2 − (n − 1)ε21. We have

δ = ε2
( n

n − 1
(1 − wn)2 − 1

)
an + anwnε − anw2

n/4.

Using
n

n − 1
(1 − wn)2 − 1 =

(1 − wn)2

1 − 1/n
− 1 ≥ 1 − wn − 1 = −wn

we get
δ ≥ anwnε − anwnε2 − anw2

n/4.

Therefore
S ≥ exp(−cnε2 − canw2

n/4)2 cosh(canwnε) exp(−canwnε2).

We note that by (5.4)
anw2

n ≤ ann−2 ≤ (n − 1)−1.

Thus we proceed to estimating cosh(Aε) exp(−Aε2) with A := canwn. By (5.4) and by our
assumption wn > 1/(2n) we get

(5.5) A ≥ c(1 − 1/n)/2 ≥ c/3, n = 3, . . . .

It is easy to check that for the function f(x) := cosh(Ax)− exp(Ax2) we have f(0) = 0 and
f ′(x) ≥ 0 for x2 ≤ (ln 4)/A in the case A ≥ 8. The latter inequality A ≥ 8 follows from
(5.5). Therefore,

cosh(Aε) exp(−Aε2) ≥ 1 if ε2 ≤ ln 4/A.

By (5.4) we have A ≤ cn/(n−1) and, hence, for c = 25 and n ≥ 2 we have β2 = (1/5)2 ln 2 ≤
ln 4/A for all A of the form A = canwn. This completes the proof of the lemma.

Lemma 5.2. For any ε ∈ [0, 1/2], m ≥ 2, and w1 ≥ w2 ≥ · · · ≥ wm ≥ 0,
∑m

i=1 wi = 1 we
have

(5.6) |{Λ ⊆ [1,m] :
∑
i∈Λ

wi ≥ 1/2 + ε}| ≥ 2m exp(−cmε2 − c

4

m−1∑
k=1

1
k

)

with c = 25.

Proof. Denote
L(ε,m,w) := {Λ ⊆ [1,m] :

∑
i∈Λ

wi ≥ 1/2 + ε}.

Then for any ε ∈ [0, 1/2], m, w we have |L(ε,m,w))| ≥ 1. Therefore, (5.6) obviously holds
for m ≤ 6, ε ∈ [0, 1/2] and for any m > 6, ε ∈ [β, 1/2], β = (ln 2)1/2/5.

We first establish Lemma 5.2 for ε ∈ [0, (9m)−1/2]. We will use a simple property of the
Rademacher functions {ri(t)}.
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Lemma 5.3. Let
∑n

i=1 |ci| = 1. Then

mes{t : |
n∑

i=1

ciri(t)| ≤ 2(9n)−1/2} ≤ 1 − 5/(9n).

Proof. Denote

g :=
n∑

i=1

ciri and E := {t : |g(t)| ≤ 2(9n)−1/2}.

Then we have on the one hand

(5.7) ‖g‖2
2 =

n∑
i=1

c2
i ≥ 1/n.

On the other hand

(5.8) ‖g‖2
2 ≤ (4/(9n)|E| + (1 − |E|).

Compapring (5.7) and (5.8) we get

|E| ≤ 1 − 5/(9n).

We continue the proof of Lemma 5.2 in the case ε ∈ [0, (9m)−1/2]. We observe that

(5.9) 2−m|L(ε,m,w)| = mes{t :
m∑

i=1

wi(ri(t) + 1)/2 ≥ 1/2 + ε}

= mes{t :
m∑

i=1

wiri(t) ≥ 2ε}.

Using Lemma 5.3 we obtain

2−m|L((9m)−1/2,m,w)| ≥ 5/(9m).

This inequality combined with the following simple inequality

6
m−1∑
k=1

1
k
≥ ln(2m), m = 2, 3, . . . ,

gives us (5.6) in the case ε ∈ [0, (9m)−1/2].
It remains to consider the case ε ∈ [(9m)−1/2, β]. The proof of this case goes by induction.

As we have already mentioned (5.6) holds for m ≤ 6. So, we assume that (5.6) holds for
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m − 1 and derive from it (5.6) for m. Denoting w′ := (w1, . . . , wm−1), w1 := w′(1 − wm)−1

we get

(5.10) L(ε,m,w) = {{m} ∪ Λ,Λ ∈ L(ε − wm,m − 1, w′)} ∪ L(ε,m − 1, w′).

Next,
L(ε − wm,m − 1, w′) = L((ε − wm/2)(1 − wm)−1,m − 1, w1),

L(ε,m − 1, w′) = L((ε + wm/2)(1 − wm)−1,m − 1, w1).

Using the notations ε1 := (ε − wm/2)(1 − wm)−1, ε2 := (ε + wm/2)(1 − wm)−1 we obtain
from (5.10)

|L(ε,m,w)| = |L(ε1,m − 1, w1)| + |L(ε2,m − 1, w1)|.
By the induction assumption we get from here

|L(ε,m,w)| ≥ 2m−1 exp(− c

4

m−2∑
k=1

1
k

)
(
exp(−c(m − 1)ε21) + exp(−c(m − 1)ε22)

)
.

We want to apply Lemma 5.1 with n = m. The assumptions of Lemma 5.1 ε ∈ (0, β],
m ≥ (3ε)−2 follow from ε ∈ [(9m)−1/2, β]. Therefore, by Lemma 5.1 we obtain

|L(ε,m,w)| ≥ 2m exp(−cmε2 − c

4

m−1∑
k=1

1
k

).

This completes the proof of Lemma 5.2.

Theorem 5.2. For any ε ∈ [0, 1/2], m ≥ 2, and w = (w1, w2, . . . , wm) we have

|{Λ ⊆ [1,m] : |
∑
i∈Λ

wi − 1/2| ≥ ε}| ≥ 2m exp(−cmε2 − c

4

m−1∑
k=1

1
k

)

with c = 25.

Proof. Denote
L′(ε,m,w) := {Λ ⊆ [1,m] : |

∑
i∈Λ

wi − 1/2| ≥ ε}.

Similarly to (5.9) we have

(5.11) 2−m|L′(ε,m,w)| = mes{t : |
m∑

i=1

wi(ri(t) + 1)/2 − 1/2| ≥ ε}.

Denoting s :=
∑m

i=1 wi we continue (5.11)

= mes{t :
m∑

i=1

wiri(t) ≥ 1 − s + 2ε} + mes{t :
m∑

i=1

wiri(t) ≤ 1 − s − 2ε}
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= mes{t :
m∑

i=1

|wi|ri(t) ≥ 1 − s + 2ε} + mes{t :
m∑

i=1

|wi|ri(t) ≤ 1 − s − 2ε} =: M1 + M2.

Denote a :=
∑m

i=1 |wi| and ui := |wi|/a. In the case a ≥ 1, s ≥ 1 we have

M1 = mes{t :
m∑

i=1

uiri(t) ≥ (1 − s)/a + 2ε/a} ≥ mes{t :
m∑

i=1

uiri(t) ≥ 2ε}.

We get the required estimate by Lemma 5.2. In the case a ≥ 1, s ≤ 1 we get in the same
way as above

(5.12) M2 ≥ mes{t :
m∑

i=1

uiri(t) ≤ −2ε}.

By Lemma 5.2 we complete the case.
Let 0 < a < 1. Then using s ≤ a we get

(1 − s)/a − 2ε/a ≥ −2ε

and, therefore, (5.12) holds also in this case. It remains to use Lemma 5.2.
Theorem 5.2 is now proved.

Theorem 5.1 is an immediate corollary of Theorem 5.2.
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