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Abstract

The Wiener index is one of the main descriptors that correlate a chemical com-
pound’s molecular graph with experimentally gathered data regarding the com-
pound’s characteristics. A long standing conjecture on the Wiener index ([4], [5])
states that for any positive integer n (except numbers from a given 49 element set),
one can find a tree with Wiener index n. In this paper, we prove that every integer
n > 108 is the Wiener index of some short caterpillar tree with at most six non-
leaf vertices. The Wiener index conjecture for trees then follows from this and the
computational results in [8] and [5].

1 Introduction

The structure of a chemical compound is usually modelled as a polygonal
shape, which is often called the molecular graph of this compound. The bio-
chemical community has been using topological indices to correlate a com-
pound’s molecular graph with experimentally gathered data regarding the
compound’s characteristics.

In 1947, Harold Wiener [7] developed a topological index, the Wiener Index.
This concept has been one of the most widely used descriptors in quantitative
structure activity relationships, as Wiener index has been shown to have a
strong correlation with the chemical properties of the chemical compound.
Therefore, in order to construct a compound with a certain property, one may
want to build some structure that has the corresponding Wiener index. From
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this arises the important inverse Wiener problem ([4], [8]): Given a positive
integer n, can we find a structure (graph) with Wiener index n?

Goldman et al. [2] solved the inverse Wiener problem for general graphs: they
showed that for every positive integer n there exists a graph G such that
Wiener index of G is n.

Since the majority of the chemical applications of the Wiener index deal with
chemical compounds that have acyclic organic molecules, whose molecular
graphs are trees, the inverse Wiener problem for trees attracts more atten-
tion and, actually, most of the prior work on Wiener indices deals with trees
([1]). When the graph is restricted to trees, the problem is more complicated.
Gutman and Yeh [4] conjectured that:

Conjecture 1.1 For all but a finite set of integers n, one can find a tree with
Wiener index n.

Lepović and Gutman [5] checked the integers up to 1206 and found that the
following numbers are not Wiener indices of any trees:

2, 3, 5, 6, 7, 8, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 30, 33, 34, 37,
38, 39, 41, 43, 45, 47, 51, 53, 55, 60, 61, 69, 73, 77, 78, 83, 85, 87, 89, 91, 99,
101, 106, 113, 147, 159.

They claimed that the listed were the only“forbidden” integers and posed the
following stronger version of Conjecture 1.1.

Conjecture 1.2 There are exactly 49 positive integers that are not Wiener
indices of trees, namely the numbers listed above.

A recent computational experiment by Ban, Baspamyatnikh and Mustafa [8]
shows that every integer n ∈ [103, 108] is the Wiener index of some caterpillar
tree (see Figure 1). Thus, the conjectures will be proved if one is able to show
that every integer greater than 108 is the Wiener index of a tree.

Ban, Baspamyatnikh and Mustafa [8] conjectured that caterpillar trees with
fixed diameter will represent all sufficiently large integers as their Wiener in-
dices. For such trees, the Wiener index is a quadratic polynomial of the degrees
of the non-leaf vertices, they recalled Lagrange’s Theorem about representing
positive integers as a sum of 4 squares as a related phenomenon.

In this short note, we prove the following

Theorem 1.1 Every integer n > 108 is the Wiener index of a caterpillar tree
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of at most six non-leaf vertices.

Combined with the computational results of [5] and [8], the theorem yields the
trueness of the two conjectures. It also shows that Ban, Baspamyatnikh and
Mustafa’s conjecture is correct: every sufficiently large integer is the Wiener
index of a caterpillar tree.

2 Preliminaries

For a tree T = (V, E), denote by d(vi, vj) the length of the path between two
distinct vertices vi, vj ∈ V . The Wiener index W (T ) is then defined as

W (T ) =
∑

vi,vj∈V

d(vi, vj).

We define a family T of trees each of which is in the form of T (x1, x2, x3, x4, x5, x6)
where

V = {s1, . . . , s6} ∪ (∪6
i=1{ti,1, . . . , ti,xi

}),

E = {(si, si+1), 1 ≤ i ≤ 5} ∪ {(ti,j, si), 1 ≤ j ≤ xi, 1 ≤ i ≤ 6},

where xi, 1 ≤ i ≤ 6, are nonnegative integers.
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Fig. 1. tree T (x1, x2, x3, x4, x5, x6)

To find the Wiener index of such a tree, we quote the following result from
[1]:

Lemma 2.1 Given a tree T = (V, E), one can assign weight w(e) for each
e ∈ E such that W (T ) =

∑
e∈E w(e).

Proof. For a sketchy proof of the lemma, one considers for any e ∈ E the
vertex sets for the two components of T \ {e}, say V1 and V2, lets w(e) =
|V1||V2|, and then Lemma 2.1 follows. �
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In fact, the idea involved in the proof provides a way to calculate W (T ). For
T = T (x1, x2, x3, x4, x5, x6) as shown in figure 1, we have

W (T ) =
5∑

i=1

(
(

i∑
l=1

xl + i)(
6∑

j=i+1

xj + 6 − i)
)

+ (
6∑

i=1

xi + 5)(
6∑

i=1

xi). (1)

Our proof of Theorem 1.1 relies on the well known result on the representation
of integers as a sum of three squares ([3]).

Lemma 2.2 Every integer n �= 4k(8m − 1) (where k ≥ 0 and m > 1 are
integers) is a sum of three integer squares.

3 Proof of Theorem 1.1

In the expression (1), let

x1 + 1 = E − A, x2 + 1 = A, x3 + 1 = B,

x4 + 1 = C − B, x5 + 1 = D − C, x6 + 1 = E − D, (2)

then we get

W (T ) = (9E2 − 14E + 6) − (A2 + B2 + C2 + D2). (3)

With this change of variables, it suffices to prove the following lemma.

Lemma 3.1 Every integer N > 108 − 6 has a representation

N = (9E2 − 14E) − (A2 + B2 + C2 + D2) (4)

with A, B, C, D and E all being integers and satisfying E > D > C > B ≥ 1
and E > A ≥ 1.

Let

α = 1.2, β = 1.208 and γ = 0.36. (5)

For a proof of Lemma 3.1, we consider the possible solutions of (4) satisfying

E ∈ E(N) := (E1(N), E2(N)] and D ∈ D(N) := (γ
√

N − 1, γ
√

N + 1],(6)
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where

E1(N) =
14 +

√
196 + 36αN

18
, E2(N) =

14 +
√

196 + 36βN

18
.

We note that E ∈ E(N) is equivalent to αN < 9E2 − 14E ≤ βN . We also
note that, if N > 108 − 6, then

E2(N) − E1(N) > 12, (7)

E1(N) − (γ
√

N + 1) > 1, (8)

(γ
√

N − 1)2 > βN − (γ
√

N − 1)2 − N, (9)

and

αN − N − (γ
√

N + 1)2 > 0. (10)

These inequalities guarantee that, if N > 108 − 6 and there is a solution to
(4) with E ∈ E(N) and D ∈ D(N) , then such a solution satisfies E > D >
max{A, B, C}.

Suppose N > 108 − 6. We choose D and E in accordance with N(mod4).

(i). N ≡ 0, 1 (mod 4)

Note that D(N) has length 2, we can fix an odd integer in D ∈ D(N). From
(7), we see that E(N) contains at least 12 consecutive integers, among which
there are at least two integers e, e+3 ∈ E(N) satisfying that, if E = e or e+3,
then 3|(9E2 − 14E −D2 −N) but 9 � (9E2 − 14E −D2 −N). We choose from
{e, e + 3} the odd integer for the value of E.

(ii). N ≡ 2, 3 (mod 4)

Similar to case (i), we can fix an even D ∈ D(N), then choose an even E ∈
E(N) such that 3|(9E2 − 14E − D2 − N) but 9 � (9E2 − 14E − D2 − N).

In either case, with our choices of D and E, we always have

9E2 − 14E − D2 − N ≡ 1, 2(mod4) and 3||(9E2 − 14E − D2 − N).(11)
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From Lemma 2.2, we see that 9E2 − 14E −D2 −N is a sum of three squares.
We further claim that 9E2 − 14E −D2 −N is actually the sum of three non-
zero squares, at most two of which are equal. To see this, we first notice that
9E2 − 14E −D2 −N can not be a square or a sum of two (equal or unequal)
square since 3||(9E2−14E−D2−N). Moreover, if 9E2−14E−D2−N = 3a2

for some integer a, then we have a2 ≡ 3(9E2 − 14E − D2 − N) ≡ 2, 3(mod4)
which is impossible.

Thus, we conclude that

9E2 − 14E − D2 − N = a2 + b2 + c2 (12)

with integers 0 < a < b < c, or

9E2 − 14E − D2 − N = 2a2 + b2 (13)

with a, b > 0 and a �= b.

In the first case, we take A = a, B = b and C = c. In the latter case, let
A = a, C = max{a, b} and B = min{a, b}. Together with our choices for E
and D, a solution to (4) found this way satisfies E > D > C > B ≥ 1 and
E > A ≥ 1. �

Remark. With more careful choices of the values of α, β and γ in (5), together
with some tedious discussion on the existence of D and E which satisfy our
requirements (7)–(11) in shorter intervals, our proof for Theorem 1.1 works
for N > 2.9 × 105.
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