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MIKE A. STEEL AND LÁSZLÓ A. SZÉKELY

Abstract. This paper continues our earlier investigations into the inversion
of random functions in a general (abstract) setting. In Section 2 we investigate
a concept of invertibility and the invertibility of the composition of random
functions. In Section 3 we resolve some questions concerning the number of
samples required to ensure the accuracy of parametric maximum likelihood
estimation (MLE). A direct application to phylogeny reconstruction is given.

1. Review of random functions

This paper is a sequel of our earlier papers [11, 12]. We assume that the reader
is familiar with those papers; however, we repeat the most important definitions.

For two finite sets, A and U , let us be given a U -valued random variable ξa for
every a ∈ A. We call the vector of random variables (ξa : a ∈ A) a random function
Ξ : A → U . Ordinary functions are specific instances of random functions.

Given another random function, Γ, from U to V , we can speak about the com-
position of Γ and Ξ, Γ ◦ Ξ : A → V , which is the vector variable (γξa : a ∈ A). In
this paper we are concerned with inverting random functions. In other words, we
look for random functions Γ : U → A in order to obtain the best approximations
of the identity function ι : A → A by Γ ◦ Ξ. We always assume that Ξ and Γ
are independent. This assumption holds for free if either Ξ or Γ is a deterministic
function.

Consider the probability of returning a from a by the composition of two random
functions, that is, ra = P[γξa = a]. The assumption on the independence of Ξ and
Γ immediately implies

(1) ra =
∑
u∈U

P[ξa = u] · P[γu = a].

A natural criterion is to find Γ for a given Ξ in order to maximize
∑

a ra. More
generally, we may have a weight function w : A → R

+ and we may wish to maximize
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∑
a raw(a). This can happen if we give preference to returning certain a’s, or,

if we have a prior probability distribution on A and we want to maximize the
expected return probability for a random element of A selected according to the
prior distribution. The following random function Γ∗ : U → A, defined below, will
do this job: for any fixed u ∈ U ,

(2) γ∗
u = a∗ for sure, if for all a ∈ A, P[ξa∗ = u]w(a∗) ≥ P[ξa = u]w(a).

(In case there is more than one element a∗ that satisfies (2), we may select uniformly
at random from the set of such elements.) This function Γ∗ is called the maximum
a posteriori estimator (MAP) in the literature [3]. The special case when the weight
function w is constant, is known as the maximum likelihood estimation (MLE) [1, 3].

For a, b ∈ A, Ξ : A → U , let

(3) d(a, b) =: d(ξa, ξb) =
∑
u∈U

∣∣∣∣P[ξa = u] − P[ξb = u]
∣∣∣∣,

which is called the variational distance of the random variables ξa and ξb.

A given Ξ : A → U will have an |A| × |U | associated matrix X , such that
xau = P[ξa = u]. Given a Γ : U → V with associated matrix G, the composition
of Γ and Ξ, Γ ◦ Ξ : A → V , will have the associated matrix XGT .

Our motivation for the study of random functions came from phylogeny recon-
struction [5, 9]. Stochastic models define how biomolecular sequences are generated
at the leaves of a binary tree. If all possible binary trees on n leaves come equipped
with a model for generating biomolecular sequences of length k, then we have a
random function from the set of binary trees with n leaves to the ordered n-tuples
of biomolecular sequences of length k. Phylogeny reconstruction can be viewed as
a random function from the set of ordered n-tuples of biomolecular sequences of
length k to the set of binary trees with n leaves. It is a natural assumption that
random mutations in the past are independent from any random choices in the phy-
logeny reconstruction algorithm. Criteria for phylogeny reconstruction may differ
according to what one wishes to optimize. However, in the practice of phylogeny
reconstruction there are no fixed, preconceived models on the possible trees; in-
stead, we also try to find out the model parameters. Our paper [11] introduced
a new abstract model for phylogeny reconstruction: inverting parametric random
functions. Most of the work done on the mathematics of phylogeny reconstruction
can be discussed in this context. This model is more structured than random func-
tions, and hence is better suited to describe details of models of phylogeny and the
evolution of biomolecular sequences.

Assume that for a finite set A, for every a ∈ A, an (arbitrary, finite or infinite)
set Θ(a) �= ∅ is assigned, and moreover, Θ(a) ∩ Θ(b) = ∅ for a �= b. Set B =
{(a, θ) : a ∈ A, θ ∈ Θ(a)} and let π1 denote the natural projection from B to A.
A parametric random function is the collection Ξ of random variables such that

for a ∈ A and θ ∈ Θ(a), there is a (unique) U -valued random variable ξ(a,θ) in Ξ.
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Figure 1. Inversion of non-parametric (a), and parametric (b)
random functions

We are interested in random functions Γ : U → A independent from Ξ so
that γξ(a,θ) best approximates π1 under certain criteria. Call R(a,θ) the proba-
bility P[γξ(a,θ) = a]. Maximum Likelihood Estimation, as it is used in situations
where there is a discrete parameter of interest to estimate, in the presence of other
parameters (such as phylogeny reconstruction), would take the Γ′, for which for
every fixed u, γ′

u = a′ for sure, if

(4) ∀(a, θ) ∈ B ∃θ′ ∈ Θ(a′) P[ξ(a′,θ′) = u] ≥ P[ξ(a,θ) = u].

In case there is more than one element a′ that satisfies (4), we may select uniformly
at random from the set of such elements. (We avoided using the more natural
looking quantification ∃θ′ ∈ Θ(a′) ∀(a, θ) ∈ B, since P[ξ(a′,θ′) = u] may not take a
maximum value!) We denote by R′

(a,θ) the probability that from the pair (a, θ) the
Maximum Likelihood Estimation Γ′ returns a, i.e.

(5) R′
(a,θ) = P[γ′

ξ(a,θ)
= a].

If a random function Ξ : A → U (Ξ : B → U) is to have k independent
evaluation, we denote the resulting random function by Ξ(k) : A → Uk (Ξ(k) :
B → Uk), and the random variable associated with a will be ξ

(k)
a . We will study

the invertibility of Ξ(k) both in the non-parametric and the parametric setting. For
a Γ : Uk → A random function, we use the notation r

(k)
a = P[γ

ξ
(k)
a

= a] in the

non-parametric case, R
(k)
(a,θ) = P[γ

ξ
(k)
(a,θ)

= a] in the parametric case, and [R(k)]′(a,θ),

if Γ′ is the Maximum Likelihood Estimation.

In Section 2 we will show that in the non-parametric setting several natural def-
initions of invertibility of a random function are, in fact, equivalent. Furthermore,
we determine when composition of invertible random functions is invertible. The
main result of this Section is an explicit bound on how invertibility “improves” as
the variational distances between elements of A have increasing separation from
zero.
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In Section 3 we revisit our study of the worst-case behavior of MLE in [12]. (This
is a very natural question in situations where a prior distribution is not given on
A, or the inverting of the random function is to be carried out only once. Such
a situation arises in phylogeny reconstruction, where, arguably, we do not have a
prior distribution on alternative evolutionary scenarios, and the reconstruction is
not

going to be repeated—there is only one ‘Tree of Life’ that we want to know.) A
certain amount of controversy and debate has surrounded the statistical consistency
of MLE in phylogeny, as described in [5], pp. 270–272. Felsenstein’s claim (from
the early 1970s) of the consistency of MLE in phylogeny for simple (‘identifyable’)
models is correct, but it was only formally established in 1996 by [2]. This result, like
Wald’s earlier result [14], relies on a compactness argument, continuity, and limit
theory, that does not give an explicit bound on k. Other proofs in the biological
literature have generally been less rigorous and led to criticism and debate (see
eg. [4, 6, 7, 10, 15, 16]). One oversight has been to treat the MLE-estimated
continuous parameters (branch lengths) of alternative trees as fix ed rather than as
random variables dependent on the data; such arguments are satisfying for practical
purposes but call for more rigor. The significance of Theorem 5.1 [12] is that it gives
the first explicit bounds for MLE, both in the phylogenetic setting and beyond.
However, this result depended on an unnatural parameter, namely the smallest
positive probability that an image of the object to be reconstructed can have. Here
in Theorem 3.3 we get rid of this dependence, and provide a simple and immediate
application of this new result to phylogeny reconstruction.

We study two examples that show how subtle is MLE for inverting parametric
random functions. The first example shows that Theorem 3.3 is “near optimal”
in one of its parameters. The second example shows that in contrast to the non-
parametric setting, the vanishing of variational distance does not by itself preclude
MLE (or other) estimation for certain random functions.

Our approach is information-theoretic, we focus on the possibility or impossibil-
ity of inverting random functions, and not on the computational complexity issues.
Our results can also be re-stated in the language of decision theory, by talking
about ‘loss functions’ and ‘risk function’ associated to the decision rule.

2. invertibility in the non-parametric setting

Let us say that a random function Ξ : A → U is invertible if there exists a random
function Γ : U → A such that for all a ∈ A, P[γξa = x] takes strict maximum when
x = a, or equivalently,

(6) P[γξa = a] − max
x �=a

{P[γξa = x]} > 0 for all a ∈ A.

Informally, Ξ is invertible, if there is some reconstruction method that is always
more likely to pick the generating object in A than any other element of A.

A sufficient condition for Ξ to be invertible is that there exists a Γ so that for
all a ∈ A, the following two conditions apply:
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(I1) P[γξa = a] > 1
|A| ,

(I2) P[γξa = b] < 1
|A| , for all b �= a.

Note that invertibility implies (I1), and is equivalent to it when |A| = 2, but not
equivalent for |A| ≥ 3.

We say Ξ separates A, if, for each distinct pair a, b ∈ A, the variational distance
d(a, b) of the probability distributions of ξa and ξb is strictly positive.

Proposition 2.1. The following properties are equivalent for an Ξ : A → U
random function:

(i) Ξ separates A
(ii) For all ε > 0 there is a value of kε so that for all k ≥ kε there is a random

function Γ§ : Uk → A for which P[γ§
ξ
(k)
a

= a] > 1 − ε.

(iii) Ξ is invertible
(iv) For some k ≥ 1, Ξ(k) is invertible.

Proof. The equivalence between (i) and (ii) follows easily from results in our earlier
papers [11] and [12] and standard arguments. We will show that (iv) ⇒ (ii) and
that (i) ⇒ (iii). Since (iii) ⇒ (iv) is trivial this will establish the claimed four-way
equivalence.

Proof of (iv) ⇒ (ii) Suppose that Ξ(k) is invertible. Select Γ to satisfy (6) for
Ξ(k). For positive integer m, generate km independent samples in U according to Ξ.
Define Γ§ : Uk → A as follows: select the elements of A that are reconstructed most
often according to Γ and choose one of them uniformly at random. By standard
probability arguments, the probability that the correct element a will be selected
by this process converges to 1 as m tends to infinity.

Proof of (i) ⇒ (iii) Suppose that Ξ : A → U separates A. Let X denote the
associated matrix of Ξ, and let ai, i ∈ A denote the rows of X . Recall that ai gives
the distribution of ξi. We will describe the inverse random function Γ : U → A
with its associated matrix, i.e. in the form of a |U | × |A| matrix G, whose rows
represent the distribution of the element of U corresponding to the row.

We write G = V + 1
|A|J and will give V explicitly. (If we were to take V = 0,

then (6) yields uniformly = 0 instead of the desired > 0). We denote the columns
of V by vi, i ∈ A. We define each vector vi as follows:

vi =
ai

|ai| −
1
|A|

|A|∑
j=1

aj

|aj | ,
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where |.| is the usual euclidean vector norm. Then it can be checked that this choice
of V provides a solution to the following system:

∀i∀j �= i ai · vi − ai · vj − εij = 0;∑
l∈A

vl = 0;

∀i∀j �= i εij > 0.

and these are precisely the conditions (6) requires for invertibility. �

2.1. Composition of invertible functions. A natural question is whether the
composition of invertible functions is also invertible. The next result shows that in
general the answer is ‘no’, though we can provide a precise characterization based
on the rank of an associated matrix.

Theorem 2.2. Let Υ : U → Z be a random function matrix Y , and let Y + denote
the extension of Y by an all-1 row. If rank(Y +) = |U |, then for all Ξ : A → U
invertible random functions, the composition Υ ◦ Ξ : A → Z is invertible, and if
rank is less than |U |, then there exist invertible random functions Ξ : A → U such
that Υ ◦ Ξ : A → Z is not invertible.

Proof. Assume first that Υ◦Ξ is not invertible, i.e. there exist a �= b ∈ A, such that
the distributions υξa and υξb

are identical. Then we have the following homogeneous
system of linear equations, where the coefficients are the numbers P[υu = z] and
1’s, and the variables are the xu’s:∑

u∈U

P[υu = z]xu = 0 for all z ∈ Z.(7)

∑
u∈U

xu = 0.(8)

The matrix Y + is the matrix of the system of homogeneous linear equations (7)-(8).
Observe that xu = P[ξa = u] − P[ξb = u] solves the system (7)-(8). If the rank of
Y + is |U |, then it has only trivial solution, i.e. for all u ∈ U xu = 0. This amounts
to ξa and ξb having the same distribution, contrary to the assumption of Ξ being
invertible.

Assume now that Y + has rank less than |U |. Then the system (7)-(8) has a
non-trivial solution xu. Set P =

∑
u: xu>0 xu and N =

∑
u: xu<0 xu. Clearly

P = −N > 0. Take A = {a, b}, P[ξa = u] = xu

P if xu ≥ 0, and 0 otherwise; and
P[ξb = u] = xu

N if xu ≤ 0, and 0 otherwise. It is clear that this Ξ is invertible, as it
separates a and b. However, according to the argument above (7), the distributions
υξa and υξb

are identical. �

2.2. Explicit bounds. From Proposition 2.1, if Ξ separates A then there is a
random function Γ : U → A for which

P[γξa = a] − 1
|A| > 0.

We now consider putting an explicit lower bound on the right hand side of this
inequality. That is, we show that for a specific continuous positive function h :
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R → R (dependent only on |A|) the following holds: Suppose that d(a, b) > δ for
all a, b ∈ A, a �= b. Then there is a random function Γ : U → A for which

P[γξa = a] − 1
|A| > h(δ)

for all a ∈ A. Note that we cannot insist the Γ be MLE (maximum likelihood
estimation), even when |A| = 2. To see this, let A = {1, 2}, U = {u1, u2} and
let ξ1 take the value u1 with probability 1, and let ξ2 take the values u1, u2 with
probabilities 2

3 and 1
3 , respectively; then if Γ = Γ∗ is MLE, we have P[γξ2 = 2] = 1

3 .

Theorem 2.3. For every random function Ξ : A → U , with |A| > 1, there exists a
Γ : U → A, such that

(9) min
a∈A

ra ≥ 1
|A| +

1
2|A|(|A| − 1)

min
a∈A

∑
b∈A

d(a, b).

In particular, if for all a �= b ∈ A, d(a, b) ≥ δ, then mina∈A ra ≥ 1
|A| + δ

2|A| .

Proof. Recall the characterization of the random inverse function maximizing mina∈A ra

from Theorem 5 [11]: mina∈A ra = minμ

∑
u∈U maxa∈A μ(a)P[ξa = u], where μ is a

probability distribution on A. In the rest of the proof μ refers to this minimizing
distribution. (Note that Theorem 5 in [11] contains an annoying typo, it shows
maximization for μ instead of minimization). We are going to use the following
Lemma.

Lemma 2.4. Let us be given real numbers b1, b2, ..., bn. Assume that∑
1≤i<j≤n

|bi − bj| ≥ (n − 1)ε.

Then maxj [bj − 1
n

∑n
i=1 bi] ≥ ε

n .

Proof. Without loss of generality we may assume b1 ≥ b2 ≥ ... ≥ bn. The conditions
of the Lemma can be rewritten as the conditions of the following primal linear
program:

b2 − b1 ≤ 0
b3 − b2 ≤ 0

...

bn − bn−1 ≤ 0∑
i<j

bi − bj ≤ −(n − 1)ε

max(
1
n

∑
i

bi) − b1.

Recall the Duality Theorem of linear programming [8]: max{cT x : Mx ≤ b} =
min{yT b : y ≥ 0, ytM = c}, if both optimization problems have feasible solutions.
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The dual linear program is as follows:

(n − 1)xn − x1 = −n − 1
n

xi − xi+1 + (n − 2i − 1)xn =
1
n

for i = 1, 2, ..., n− 2;

xn−1 + (1 − n)xn =
1
n

x1, x2, ..., xn ≥ 0
min−(n − 1)εxn.

It is easy to see that the for the dual problem a feasible solution is the following
setting: xi = 1 − i(i−1)

n(n−1) for i = 1, 2, ..., n − 1, and xn = 1
n(n−1) ; with value − ε

n .
This implies that ε

n ≤ maxj bj − 1
n

∑n
i=1 bi for any feasible solution of the primal

problem. �

We are going to apply Lemma 2.4 in the following setting. Fix an arbitrary
u ∈ U , and for i ∈ A, let bi = μ(i)P[ξi = u]. The lemma yields

max
a∈A

(
μ(a)P[ξa = u] − 1

|A|
∑
i∈A

μ(i)P[ξi = u]

)
(10)

≥ 1
|A|(|A| − 1)

∑
1≤i<j≤|A|

∣∣μ(i)P[ξi = u] − μ(j)P[ξj = u]
∣∣.(11)

Observe the identity

(12)
∑
u∈U

1
|A|

∑
i∈A

μ(i)P[ξi = u] =
1
|A|

∑
i∈A

μ(i)
∑
u∈U

P[ξi = u] =
1
|A| .

Now identity (12) implies (13) and inequalities (10-11) imply inequality (14):

min
a∈A

ra =
1
|A| +

∑
u∈U

max
a∈A

{
μ(a)P[ξa = u] − 1

|A|
∑
i∈A

μ(i)P[ξi = u]

}
(13)

≥ 1
|A| +

1
|A|(|A| − 1)

∑
u∈U

∑
1≤i<j≤|A|

∣∣μ(i)P[ξi = u] − μ(j)P[ξj = u]
∣∣.(14)

Fix an arbitrary a, b ∈ A, and set Q =
∑

u∈U

∣∣μ(a)P[ξa = u]−μ(b)P[ξb = u]
∣∣. Define

U+ =
{

u ∈ U : P[ξa = u] > P[ξb = u]
}

,

U= =
{

u ∈ U : P[ξa = u] = P[ξb = u]
}

,

U− =
{

u ∈ U : P[ξa = u] < P[ξb = u]
}

.

Define further A+ =
∑

u∈U+ P[ξa = u], A− =
∑

u∈U− P[ξa = u],

B+ =
∑

u∈U+ P[ξb = u], B− =
∑

u∈U− P[ξb = u]. Observe that

d(a, b) =
∑
u∈U

∣∣P[ξa = u] − P[ξb = u]
∣∣= A+ − B+ + B− − A−.
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On the other hand,

A+ + A− = 1 −
∑

u∈U=

P[ξa = u] = 1 −
∑

u∈U=

P[ξb = u] = B+ + B−.

From the last two equations we conclude that d(a, b) = 2(A+−B+) = 2(B−−A−).
We finish the proof by setting a lower bound on Q with a case analysis.

• If μ(b) = μ(a), Q = μ(a)d(a, b).
• If μ(b) > μ(a),

Q ≥ μ(a)
∑

u∈U−
P[ξb = u] − P[ξa = u] =

1
2
μ(a)d(a, b).

• If μ(b) < μ(a),

Q ≥ μ(a)
∑

u∈U+

P[ξa = u] − P[ξb = u] =
1
2
μ(a)d(a, b).

In all cases, we have Q ≥ 1
2μ(a)d(a, b). Returning to (14), we find

(15)
∑

1≤i<j≤|A|

∑
u∈U

|μ(i)P[ξi = u] − μ(j)P[ξj = u]| ≥ 1
2

∑
a∈A

μ(a)
∑
b∈A

d(a, b),

and through (13), (14) and (15), we have

min
a∈A

ra ≥ 1
|A| +

1
2|A|(|A| − 1)

∑
a∈A

μ(a)
∑
b∈A

d(a, b)

≥ 1
|A| +

1
2|A|(|A| − 1)

min
a∈A

∑
b∈A

d(a, b).

�

3. The parametric setting: Maximum Likelihood Estimation (MLE)

In this section we reconsider the question of how many i.i.d. samples are required
in order for parametric maximum likelihood to accurately recover elements of a
finite set.

Assume B = {(a, θ) : a ∈ A, θ ∈ Θ(a)}, and Ξ : B → U is a parametric random
function, where A and U are finite sets. Define

U+ := {u : P[ξ(a,θ) = u] > 0},(16)
α := α(a,θ) = min

u∈U+
{P[ξ(a,θ) = u]},(17)

and assume

(18) d := d(a,θ) = inf
b�=a,θ′∈Θ(b)

∑
u∈U

|P[ξ(a,θ) = u] − P[ξ(b,θ′) = u]| > 0.

In our earlier work, Theorem 5 in [12], we showed that for

(19) k ≥ f(α, d) log(
2|U+|

ε
),
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k samples suffice to reconstruct a ∈ A, from (a, θ) with probability at least 1 − ε
using MLE, more formally, for Ξ(k) : B → Uk, [R(k)]′(a,θ) ≥ 1− ε. Our function f in
(19) tends to infinity when either (or both) α → 0 or d → 0. This dependence on d is
reasonable (though not always necessary, see Section 3.2), however the dependence
on α is not clear, and raises two questions.

Q1 Is there an bound on k (like (19)) but which depends only on |U+|, ε and d
and not on α?

Q2 Moreover, can the function f in (19) be replaced by afunction of just d and
ε (and not α and U+) so that the resulting function is still a valid bound
for k?

In this section we show that the answer to the first question is ‘yes’ (Theorem 3.3)
while the answer to the second is ‘no’ (Example 3.1).

We begin by introducing some further notation. For any two probability dis-
tributions p, p′ on a set U let dKL(p, p′) =

∑
u∈U :pu>0 pu log(pu

p′
u
) ∈ [0,∞) ∪ {∞}

denote the Kullback-Leibler distance of p and p′, and recall the standard inequality:

(20) dKL(p, p′) ≥ 1
2
d(p, p′)2,

where d(p, p′) denotes as usual the variational distance,
∑

u∈U |pu − p′u|. We will

also use d2(p, p′) =
(∑

u∈U |pu − p′u|2
)1/2

.

Lemma 3.1. Let X1, X2, . . . , Xk be a sequence of i.i.d. random variables taking
values in a finite set U . Assume further that if Xi takes a value with probability
zero, then it never takes this value. For each u ∈ U , let p̂u := 1

k

∑k
i=1 I(Xi = u) (the

normalized multinomial counts) and let pu = P[X1 = u]. Let U+ := {u : pu > 0}.
Then,

(i) P[dKL(p̂, p) ≥ δ] ≤ |U+|
kδ ,

(ii) P[d(p̂, p) ≥ δ] ≤ |U+|
kδ2 .

Proof. Part (i) Let Δ̂u = p̂u−pu. For u ∈ U+, set Q̂u = 0 if p̂u = 0, while if p̂u > 0
set

Q̂u := p̂u log(
p̂u

pu
) = (pu + Δ̂u) log(1 +

Δ̂u

pu
)

≤ (pu + Δ̂u) · Δ̂u

pu
= Δ̂u +

Δ̂2
u

pu
.(21)

Recall Markov’s inequality, which states that if X is non-negative random variable,
and a > 0, then

(22) P[X ≥ a] ≤ E[X ]
a

.
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Note that E[(p̂u − pu)2] = V ar[p̂u] = pu(1−pu)
k , and applying (22) to

X =
∑

u∈U+

Δ̂2
u

pu
≥ 0

and noting that E[X ] = |U+|−1
k gives P[X ≥ δ] ≤ |U+|

kδ . By definition, dKL(p̂, p) =∑
u:p̂u �=0 Q̂u =

∑
u∈U+ Q̂u and this is less or equal to X (by (21), and the identity∑

u∈U+ Δ̂u = 0), which leads to the required inequality.

Part (ii) By the Cauchy-Schwartz inequality, d2(p̂, p) ≤ d2
2(p̂, p) · |U+| and so,

P
[
d(p̂, p) ≥ δ

]≤ P
[
d2
2(p̂, p) ≥ δ2/|U+|]≤ |U+|

δ2
E
[
d2
2(p̂, p)

]
,

by Markov’s inequality (22). Now,

E[d2
2(p̂, p)] = E[

∑
u∈U

(p̂u − pu)2] =
∑
u∈U

V ar[p̂u] =
∑
u∈U

1
k

pu(1 − pu) ≤ 1
k

.

�

Corollary 3.2. Under the assumptions of Lemma 3.1, if δ < 1, ε > 0 and k ≥
2|U+|

εδ2 , then with probability at least 1−ε, the inequalities dKL(p̂, p) < δ and d(p̂, p) <
δ simultaneously hold.

Theorem 3.3. Assume B = {(a, θ) : a ∈ A, θ ∈ Θ(a)}, and Ξ : B → U is a
parametric random function, where A and U are finite sets. Recall definition (16)
and condition (18). Provided k ≥ c1|U+|

εd4
(a,θ)

with c1 = 2
(2−√

3)2
, the probability that

MLE correctly returns a from Ξ(k) is at least 1 − ε, i.e. [R(k)]′(a,θ) ≥ 1 − ε.

Proof. Let p be the probability distribution on U induced by ξ(a,θ), c = 2 −√
3, E

be the event that d(p̂, p) ≤ c · d(a,θ). For the probability distribution q induced by
ξ(b,θ′) where b �= a, by the triangle inequality we have

d(p̂, q) ≥ |d(p, q) − d(p̂, p)|.
Now, by assumption d(p, q) ≥ d(a,θ), and so, conditional on E, d(p̂, q) ≥ (1−c)d(a,θ).
Invoking the inequality (20) gives

dKL(p̂, q) ≥ 1
2
d(p̂, q)2 ≥ 1

2
(1 − c)2d2

(a,θ).

Thus, conditional on E we have:

(23)
∑

u∈U+

p̂u log qu ≤
∑

u∈U+

p̂u log p̂u − 1
2
(1 − c)2d2

(a,θ).

For x ∈ A, ω ∈ Θ(x), consider

(24) L(x, ω) =
∑

u∈U+

p̂(u) log P[ξx,ω = u].

L(x, ω) is 1
k times the natural logarithm of the probability that the observed se-

quence of U -elements came from (x, ω). Therefore L(x, ω) ≤ 0 is proportional to
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the log-likelihood of (x, ω). Now consider the log likelihood ratio

ΔL := L(a, θ) − L(b, θ′) =
∑

u∈U+

p̂u log(pu/qu).

Conditional on E we have, by (23),

(25) ΔL ≥ −
∑

u∈U+

p̂u log(
p̂u

pu
) +

1
2
(1 − c)2d2

(a,θ) =
1
2
(1 − c)2d2

(a,θ) − dKL(p̂, p).

So if we select δ = c · d2
(a,θ) in Corollary 3.2 we can ensure that with probability at

least 1− ε that event E occurs and also (since 1
2 (1− c)2 = c) that dKL(p̂, p) < δ =

c · d2
(a,θ) = 1

2 (1 − c)2d2
(a,θ), and so, by (25) we have ΔL > 0. The value of k that

Corollary 3.2 requires is precisely that given in the statement of this theorem. This
completes the proof. �

Remarks

• Theorem 3.3 also implies that for MLE in the non–parametric setting, the
number k of i.i.d. samples required to reconstruct an element a ∈ A cor-
rectly with probability at least 1 − ε is bounded above by a function that
depends just on |U+|, ε and da := minb�=a d(a, b). In [11] an upper bound on
k was also derived, however it depended just on |A|, ε and da. Comparing
these results suggests an interesting question: Is there an upper bound for
k (in the non-parametric setting) which depends just on da and ε?

• We show below that the linear dependence of k on |U+| in Theorem 3.3
is best possible in the sense that no sublinear dependence is possible. It
is possible however that the exponent of 4 for d in Theorem 3.3 might be
reduced.

3.1. Construction to show that k must grow linearly with |U+|. We now
show that Theorem 3.3 cannot be improved by replacing the dependence of k on
|U+| with a sublinear function (like the logarithmic dependence on |U |+ in Theorem
5.1 [12]), even when d(a,θ) and ε are held constant.

Let A = {a, b}, with Θ(a) = {∗}, and

Θ(b) = {θ = (λ1, . . . , λn) :
n∑

i=1

λi = 1, ∀i λi ≥ 0}.

Let U = {0, 1, . . . , n}. Fix δ > 0 and consider the random function Ξ defined as
follows.

P[ξ(a,∗) = u] =

{
δ, if u = 0;
1−δ
n , if u ∈ {1, . . . , n};

P[ξ(b,(λ1,...,λn)) = u] =

{
2δ, if u = 0;
λu(1 − 2δ), if u ∈ {1, . . . , n}.
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We assume that k ≤ n, otherwise we have nothing to prove. For u = (u1, . . . , uk) ∈
Uk, let x(u) = |{i ∈ {1, . . . , k} : ui = 0}|. We have:

L1 := sup
θ∈Θ(a)

P[ξ(k)
(a,θ) = u] = δx(u)

(
1 − δ

n

)k−x(u)

,

and

(26) L2 := sup
θ′∈Θ(b)

P[ξ(k)
(b,θ′) = u] ≥ (2δ)x(u)

(
1 − 2δ

k − x(u)

)k−x(u)

,

since we are free to select θ ∈ Θ(b) to be the uniform distribution on {1, . . . , n} for
those i for which ui �= 0. We will select δ sufficient small that

(27) 2(1 − 2δ)δ/2 > 1.

Now, suppose we generate u randomly from (a, ∗). Note that the value of d(a,∗) is
at least δ, since

d((a, ∗), (b, θ′)) ≥ |P[ξ(a,∗) = 0] − P[ξ(b,θ′) = 0]| = δ.

Then MLE will (incorrectly) reconstruct b whenever R := L2/L1 > 1. We will
show that this occurs with probability atleast 1− ε, if k is less than 1

2 |U+|, for any
δ satisfying (27) and any sufficiently large |U+|.

Note that by replacing L2 by its lower bound (26), we can write R ≥ Y k where

Y = 2ρ

[
n

k
· (1 − 2δ)
(1 − δ)(1 − ρ)

]1−ρ

,

where ρ := x(u)/k. Now, if k ≤ 1
2n, then since ((1 − δ)(1 − ρ))−(1−ρ) ≥ 1,

Y ≥ 2(1 − 2δ)1−ρ.

Now, for δ, ε fixed, there exists a value of k, for which, with probability at least
1 − ε, we have ρ > 1

2δ. Thus for this value of k, and any n > 2k inequality (27)
gives

Y ≥ 2(1 − 2δ)δ/2 > 1,

and so R > 1; that is MLE will make an incorrect decision. Thus, we must have
k ≥ 1

2n = 1
2 (|U+| − 1) in order to avoid this.

3.2. Example to show that parametric MLE can still succeed when varia-
tional distance vanishes on each element of A. In the non-parametric setting,
given a random function Ξ : A → U , suppose that d(a, b) = 0 for two elements
a, b ∈ A. Then for any random function Γ : U → A it is easily shown (eg. by
Theorem 3.1 of [12]) that

(28) min{P[γξa1
= a1], P[γξa2

= a2]} ≤ 1
2
.

That is, if the probability distribution induced by a1 and a2 is the same, no method
can recover both a1 and a2 more accurately than by a toss of a fair coin. We can
ask if a similar result holds for parametric MLE. That is, suppose that A = {a1, a2}
and for a value θ1 ∈ Θ(a1), and θ2 ∈ Θ(a2) we have

(29) d(a1,θ1) = d(a2,θ2) = 0,
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where d(a,θ) is defined as in (18). Note that Theorem 3.3 does not give a finite
bound on k for MLE to accurately reconstruct a1 or a2. However it turns out that
for certain random functions satisfying (29), if parametric MLE is used to estimate
a1 and a2 from k independent trials, then for any parameter (ai, θi) chosen, and for
even k, the probability that the selection is correct is always strictly greater than
1
2 , moreover in all but one choice of the parameter settings (for a1) the probability
the selection is correct tends to 1 as k → ∞ (in the other setting it tends to 1

2
from above). For this example th ere is a more pedestrian approach for estimating
a1 or a2 from the k independent trials, for which the probability of making the
correct reconstruction tends to 1 as k tends to infinity, for all parameter settings
(in contrast to MLE which has problems at one particular parameter settings – this
illustrates again the care required in consistency arguments for MLE). Note also

that in this example, with any parameters θ1, θ2, d

(
(a1, θ1), (a2, θ2)

)
> 0 holds.

Let A = {a1, a2}, U = {(1, 0), (1, 1), (2, 0), (2, 1)}, Θ(a1) = [π/4, 3π/4), and
Θ(a2) = (π/4, 3π/4]. For t ∈ Θ(a1), let P[ξ(a1,t) = (1, �2t/π�)] = sin2 t, P[ξ(a1,t) =
(2, �2t/π�)] = cos2 t; and for t ∈ Θ(a2), let P[ξ(a2,t) = (1, �2t/π�)] = cos2 t,
P[ξ(a2,t) = (2, �2t/π�)] = sin2 t.

The key observation for the argument that follows is that sin2 t > cos2 t in
(π/4, 3π/4), while in the endpoints sin2 t = 1/2 = cos2 t. It is easy to see that

limt→π
4

+ d

(
(a1, π/4), (a2, t)

)
= 0, and hence d(a1,π/4) = 0. A similar argument

shows that d(a2,3π/4) = 0. It is also easy to see that the distributions of all ξ(ai,t)

random variables are different. The only possible problem would be the distribu-
tions of ξ(a1,π/4) and ξ(a2,3π/4)– however in this case we have the second coordinates
in the elements of U to separate these distributions. There is a pedestrian way to
guess where an element of U came from. Count the ones and twos in the first
coordinates after k independent trials. If there are more ones, then select a1, if
there are more 2’s then select a2, while in the case of a tie, if �2t/π� = 0, then
select a1, otherwise select a2. (note that �2t/π� = 0 is constant over the trials).
MLE pretty much does the same, the only thing that requires more careful analy-
sis is whether MLE correctly returns (a1, π/4) and (a2, 3π/4). Focus on (a1, π/4),
as the other problem is analogous. Let # 1 and # 2 denote the number of ones
and twos in the first coordinates in ξ

(k)
(a1,π/4). Let p be the probability of the event

X1 = “# 1 > # 2”; by symmetry it is also the probability of the event X2 = “#
1 < # 2”, and let q be the probability of the event X3 = “# 1 = # 2”. Note
that MLE correctly returns a1 for events X1 and X3 (but not for X2), and hence
[R(k)]′(a1,π/4) ≥ p + q = 1+q

2 > 1
2 . The claim holds for X3 for the following reason.

The probability that ξ
(k)
(a1,π/4) yields the particular observed k-sequence conditional

on X3 is 2−k, while the probability that (a2, θ2) generated the particular observed
k-sequence conditional on event X3 is pk/2(1 − p)k/2 for some p �= 1/2, and this
second probability is strictly smaller than 2−k.

Informally, the reason for this phenomena is that the parameter space associated
to ai is tuned for ‘fitting’ data that is produced by the pair (ai, θi).
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Despite this somewhat surprising result, one can easily derive a parametric ana-
logue of (28) for any random function Ξ : B → U (where B = {(a, θ) : θ ∈
Θ(a)} as usual) under the stronger condition that d((a1, θ1), (a2, θ2)) = 0 where
d((a1, θ1), (a2, θ2)) is the variational distance between the distributions of the U–
valued random variables ξ(a1,θ1) and ξ(a2,θ2). In this case, for any random function
(not just parametric MLE) Γ → U that is independent of Ξ it is easily shown that

min{P[γξ(a1,θ1) = a1], P[γξ(a2,θ2) = a2]} ≤ 1
2
.

Of course this bound applies also for k i.i.d. trial experiments.

3.3. Application of Theorem 3.3. As a simple illustration of the use of Theo-
rem 3.3, we describe an application to the reconstruction of phylogenetic trees from
binary sequences according to a simple Markov process(the CFN model). Such
processes are central to much of molecular biology (see eg. [5]). Let A denote
the three binary phylogenetic trees that have leaf set X = {1, 2, 3, 4}. For a tree
T = (VT , ET ) ∈ A, Θ(a) is the set of functions p : ET → [0, 0.5] which assign to
each edge e of T an associated substitution probability. Under the CFN model a
state is assigned uniformly at random to a leaf (eg. leaf 1) and states are assigned
recursively to the remaining vertices of the tree by (independently) changing the
state (0 to 1 or 1 to 0) across each edge e of T with probability p(e). This gives a
(marginal) probability distribution on each of the 16 site patterns c : X → {0, 1}
(further details concerning this model can be found in [12] or [9]). Thus if we gen-
erate k site patterns i.i.d. from the pair (T, p) we can ask how large k must be in
order for MLE to accurately reconstruct T . To ensure that d(T,p) > 0 one must
impose the following condition on p.

(P) For each of the four edges e of T incident with a leaf we have p(e) ≤ g < 1
2 ;

and for the central edge e of T , p(e) ≥ f > 0.

From [13] (Lemma 6.3) we have d(T,p) ≥ H(f, g) > 0 for a continuous func-
tion H . Note that condition (P) can allow arbitrarily small values for α(T,p) : (=
minu∈U+{P[ξ(T,p) = u]} even when f and g take fixed values (since condition (P)
allows two adjacent edges incident with leaves of T to both have arbitrarily small
p(e) values, and the probability of any site pattern that assigns these two leaves
different states can therefore be made as close to zero as we wish). Consequently,
the main result from [12] does not provide any (finite) estimate for the site patterns
required for MLE to correctly reconstruct a tree. However we may applying Theo-
rem 3.3 in this setting, and since |U+| ≤ 16, we obtain an explicit upper bound on
the number of site patterns required to reconstruct each phylogenetic tree on four
leaves correctly with probability at least 1 − ε.
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