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SUMMARY 

An urn contains white and black balls numbered arbitrarily from 1 to d . The tendency of 

white balls to have lower numbers than black balls can be measured by a “ROCn score”. 

Now, let each ball have not one but two numbers on it, in red and green. Sample the balls 

with replacement from the urn into a “bag”, and consider the difference between the 

ROCns in the bag for the two sets of numbers, red and green. The ROCn difference has an 

approximate normal distribution, with mean equaling the difference in the urn. Now, 

bootstrap by sampling balls with replacement from the bag into a “sack”, and consider the 

ROCn difference in the sack. Again, the difference has an approximate normal distribution, 

with mean equaling the difference in the bag. Moreover, the difference has approximately 

the same variance in the bag and sack, the condition required to justify bootstrap inferences 

about sampling from the urn. The results have practical relevance, because researchers use 

the ROCn score to measure the efficacy of database retrieval. They then bootstrap the 

database to assign a P-value to the ROCn difference between two retrieval algorithms.  
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1. INTRODUCTION

Entire computing centers like the National Center for Biotechnology Information, the 

European Molecular Biology Laboratory, and the DNA Data Bank of Japan are presently 

devoted to the collection, storage, retrieval, and analysis of biological information. Much 

effort in bioinformatics is accordingly preoccupied with constructing algorithms for 

information retrieval.  

In most retrieval applications, several competing algorithms are available. To compare 

the algorithms, the amount of information they retrieve from a database must be measured. 

The ROCn  score [10] (pronounced “receiver operating characteristic truncated at n ”, 

defined below, and closely related to the ROC score [8, 20, 21]) has become a popular 

measure of information retrieval in bioinformatics [1, 9, 11-14, 18, 19, 23]. Of two 

competing algorithms, the one with the higher ROCn  might be deemed superior, at least at 

first glance. 

The assembly of a database involves chance events, however (e.g., grant acquisition), 

so chance alone could cause one ROCn  to be higher than another. Moreover, compared to 

its alternatives, the “superior” algorithm might incur extra costs in programming effort, 

running time, or code maintenance. The algorithm might not be preferable, then, unless 

statistical tests confirm that the higher ROCn  is not due to chance alone.  

It has been suggested [22] that the bootstrap [6] can assess chance effects on a measure 

of information retrieval. Accordingly, many workers in bioinformatics routinely bootstrap 

their databases [9, 18]. Bootstrap inferences are sometimes wrong [3, 4], however, and 

their implications for information retrieval have not been investigated.  
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With this motivation, consider an urn containing d  balls, with f  of the balls black and 

the rest white. Every ball, white or black, has a distinct number in red paint upon it, from 1 

to d . The balls’ numbers have no methodical association with their color. The numbers 

implicitly order the black balls, giving each an “index” 1,...,i f=  (so the corresponding 

numbers ( ) ( )1 ...b b f< <  on the black balls are between 1 and d ). Below, we refer to the 

black ball with index i  as “the i -th black ball”.  

Sample D  balls from the urn independently with replacement, and assemble copies of 

the sampled balls into a bag, each copy retaining color and number. If the probability of 

sampling the ball with red number j  is jp  (
1

1d
jj

p
=

=∑ ), the sampled balls in the bag 

follow a ( )1Multinomial ; ,..., dD p p  distribution. Let the variate T  count the white balls in 

the bag; iF , the copies of the i -th black ball; and iT , the white balls in the bag with a 

lower number than the i -th black ball. Denote the corresponding expectations by :t T= E , 

:i if F= E , and :i it T= E . (The symbol “:= ” denotes a definition.) 

(Notation posed considerable difficulties for this article. The database application 

suggested as mnemonics “f” for “false” (black); “t” for “true” (white); and “d” for 

“document” (either white or black). “Urn variables” are usually lower case (e.g., t ); 

corresponding “bag variates”, upper case (e.g., T ). The curved over-strokes on the bag 

variates differentiate them from the Poisson variates that supplant them throughout the 

proofs.)  

Fix any deterministic cut-off c , so the notation below can suppress dependence on c  

where desirable. Define the index 
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  ( )
1

: : min :
j

i
i

n n c j c f
=

⎧ ⎫
= = ≤⎨ ⎬

⎩ ⎭
∑ , (1.1) 

with default :n f= , the total number of black balls in the urn, if the set in Eq (1.1) is 

empty. In the urn, let  

  
1 1

;
1 1

: :
m m

m c m i i m i
i i

r r t f t c f
− −

= =

⎛ ⎞= = + −⎜ ⎟
⎝ ⎠

∑ ∑ . (1.2) 

Define the “non-normalized ROCn” ( );:n c n cr r=  and the corresponding ROCn score (also 

called simply “the ROCn”) ( ) ( );: : /n nc n croc roc r ct= = . Intuitively, the ROCn score measures 

whether white balls have lower numbers than black balls. For example, 0nroc =  if the 

black balls are numbered 1,..., f ; and 1nroc =  if they are numbered 1,...,d f d− + . 

In the bag, define  

  ( ) { }1
: : min : j

ii
N N c j c F

=
= = ≤∑ , (1.3) 

with default :N f= . (Because :i if F= E  for all i , under mild conditions 1 1Nn− ≈  for n  

large.) Let  

  
1 1

;
1 1

: :
m m

m c m i i m i
i i

R R T F T c F
− −

= =

⎛ ⎞= = + −⎜ ⎟
⎝ ⎠

∑ ∑ . (1.4) 

For the bag, define the non-normalized ROCn ( );:N c N cR R=  and the ROCn score 

( ) ( );: : /N c N c NROC ROC R cT= = .  

(The equation ( ): /N NROC R cT=  is the standard formula for the ROCn  [10], although 

the sampling context disguises it somewhat. To produce the standard formula, take c  to be 
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a natural number, and let ( ) ( )1 2 ...B B< <  be the indices of the black balls in the bag, so 

1iF ≥  for ( ) ( )1 , 2 ,...i B B=  and 0iF =  otherwise. Under the hypotheses of the theorems 

below, it is overwhelmingly probable that 1iF =  for ( ) ( )1 ,...,i B B c= , yielding the 

standard formula ( ) ( )1
: /c

N B ii
ROC T cT

=
=∑ .)  

All urn variables in this article are defined explicitly, but some definitions of bag 

variates remain implicit, for brevity. Any implicit definition can be recovered as follows: 

(1) take the definition of the corresponding urn variable; and (2) replace the “fundamental 

urn variables”, { }if  and { }it , with the “fundamental bag variates”, { }iF  and { }iT . Eqs 

(1.1)-(1.4) exemplify the substitution. 

Our interest lies in comparing different ROCn s, so in addition to its red number, every 

ball has a distinct number in green paint upon it, also from 1 to d . The red and green 

numbers have no methodical association with each other or with ball color. In the 

following, quantities pertinent to green numbers are primed. Every unprimed equation has 

(possibly tacitly) a primed counterpart, where the primed quantities reverse the two colors, 

red and green, in the relevant definitions. Like the red numbers, the green numbers impose 

an order on the black balls, indicated by a “green index” 1,...,i f=  (so the corresponding 

green numbers ( ) ( )1 ...b b f′ ′< <  on the black balls again are between 1 and d ). For the 

green numbers in the bag, { }1
: min : j

ii
N j c F

=
′ ′= ≤∑ , e.g., so the corresponding ROCn s 

are ( )1 1

1 1

N N
i i iN Ni i

R T F T c F
′ ′− −

′ ′= =
′ ′ ′ ′ ′= + −∑ ∑  and ( ): /N NROC R cT′ ′

′ ′ ′= .  
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In this notation, our interest lies in the event N NROC ROC′⎡ ⎤′ ≥⎣ ⎦ . The red and green 

numbers do not affect the total number of white balls, so T T ′= , yielding 

  N N N NROC ROC R R′ ′
⎡ ⎤ ⎡ ⎤′ ′≥ = ≥⎣ ⎦⎣ ⎦ . (1.5) 

The simpler quantities NR  and NR ′
′  therefore appear in our theorems. 

Our article is organized as follows. In the Statement of Results in Section 2, Theorem 

2.1 makes the trite observation that for balls within a subset having a small total sampling 

probability, a multivariate-Poisson distribution approximates multinomial sampling from 

the urn. Theorem 2.1 permits a deep analysis of the sampling behavior of the ROCn , 

however. Theorem 2.2 and Theorem 2.3 provide central limit theorems (CLTs) for the bag 

variates NR  and N NR R′
′ − . Theorem 2.4 and Theorem 2.5 show that bootstrapping the bag 

can mimic the Gaussian distributions of the bag variates NR  and N NR R′
′ − . The end of 

Section 2 indicates the theorems’ practical implications. Finally, Sections 3, 4, and 5 prove 

Theorem 2.1, Theorem 2.2, and Theorem 2.3, respectively; Section 6 proves Theorem 2.4 

and Theorem 2.5.  
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2. STATEMENT OF RESULTS 

Theorem 2.1 approximates multinomial sampling with independent Poisson variates. 

(If only one set of numbers is under scrutiny, no mention is made of color, red or green.) 

Theorem 2.1: Sample  D  balls with replacement from an urn, as in the Introduction. 

Consider any fixed subset of m  balls in the urn, with numbers ( ) ( ){ }: 1 ,...,k k m=M . The 

ball with number ( )k i  has sampling probability ( )k ip . It is sampled ( )k iD  times, so the 

expected number of its copies in the bag is ( ) ( )k i k iD Dp=E . Then, there exist m  

independent Poisson variates ( ) ( )( )1 ,...,k k mD D , with ( ) ( )( )Poissonk i k iD Dp∼ , such that 

( ) ( )( ) ( ) ( )( ){ } ( )1 1 1
,..., ,..., : m

k k m k k m k ii
D D D D p p

=
≠ ≤ =∑MP . 

In this article, “Poisson (re)sampling” refers to using the Poisson variates constructed 

in Theorem 2.1 to approximate multinomial sampling or bootstrap resampling. Because the 

fundamental bag variates ( iF , iT , iF ′ , and iT ′ ) count specific random sets of balls, 

Theorem 2.1 yields “fundamental Poisson variates” ( iF , iT , iF ′ , and iT ′ ) to approximate 

them. “Secondary Poisson variates” (e.g., N  and NR ) can then be defined from iF , iT , 

iF ′ , and iT ′  by dropping curved over-strokes in the formulas for the corresponding bag 

variates, e.g., Eq (1.3) yields { }1
: min : j

ii
N j c F

=
= ≤∑ , and Eq (1.4) yields 

( )1 1

1 1
: m m

m i i m ii i
R T F T c F− −

= =
= + −∑ ∑  and ( )1 1

1 1
: N N

N i i N ii i
R T F T c F− −

= =
= + −∑ ∑ , etc.  

We now prepare to state the CLTs. Consider an infinite sequence of urns 1,2,...k = . 

Let notation and structure for every urn in the sequence follow the Introduction (so the 
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notation usually suppresses k ). Each variable becomes part of a sequence, with its 

dependence on the corresponding urn left implicit, e.g., ( ): k
i if f= , ( ): k

i it t= , ( ): kc c= , 

( ): kn n= , ( ): k
n nr r= , etc. The explicit limit k →∞  appears only occasionally below.  

All asymptotic statements refer to the limit k →∞ , unless stated otherwise. Let 

“ kX ⇒ Φ ” denote the convergence of { }kX  to a ( )Normal 0,1  distribution; and “→P ”, 

convergence in probability. We use the asymptotic notations ∼ , O , and o  (e.g., [7, p.5]), 

and the probabilistic counterparts ∼P , OP , and oP . (For 0kY ≥ , let 1:k k kZ X Y −=  if 0kY > ; 

: 0kZ =  if 0k kX Y= = ; and : sgnk kZ X= ∞⋅  if 0kX ≠  and 0kY = . Then k kX Y∼P  ⇔  

1kZ →P ; ( )k kX O Y= P  ⇔  ( )limsup limsup 0m k kZ m→∞ →∞ > =P ; and ( )k kX o Y= P  ⇔  

0kZ →P ). Although OP  (compactness for kZ  in the topology of distributional 

convergence) is not a standard notation, it is appropriate for our purposes here.  

By definition, the CLTs below involve convergence in distribution. In contrast, the 

probabilistic notations ∼P , OP , and oP  involve convergence in probability. Probabilistic 

notations compress the proofs, however, so to accommodate them, take the random 

samples from each urn ( 1,2,...k = ) to be mutually independent, so a single (product) 

probability space ( ), ,Ω PF  simultaneously supports all the samples from all the urns.  

(Although mutual independence is an unnecessary restriction, it is irrelevant in 

practice. To apply the CLTs below to any particular urn with a large number of balls, the 

urn must be embedded in a hypothetical infinite sequence of urns. The sequence needs to 

satisfy the hypotheses of the CLTs, but other details of its construction are irrelevant to the 

conclusions. Mutual independence can therefore be regarded as one such irrelevant detail.) 
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To extend the notation, let 0 : 0g = , 
1

: i
i jj

g f
=

= ∑ , 0 : 0t = , and 1:i i iu t t −= −  (so 

1
: i

i jj
t u

=
= ∑ ). With n  replacing N , NR  becomes ( )1 1

1 1
: n n

n i i n ii i
R T F T c F− −

= =
= + −∑ ∑ . Define  

  ( ) ( )( )22
1

1 1
: 1

n n

n i i n i n i i
i i

c g u t t t t fσ −
= =

= − + − − +∑ ∑ . (2.1) 

The proof of Theorem 2.2 shows that n nr R= E  and 2 varn nRσ =  (where nR  is the Poisson 

variate corresponding to nR ). The approximation nNR R≈  motivates the CLTs below. 

Define 0 : 0T = . The urn variables ig , iu , and 2
nσ  correspond to the bag variates 

1
: i

i jj
G F

=
= ∑ , 1:i i iU T T −= − , and  

  ( ) ( )( )22
1

1 1
: 1

N N

i i n i n i iN
i i

c G U T T T T F−
= =

Σ = − + − − +∑ ∑ , (2.2) 

Assume that c , nt ,  gn , and nσ  tend to ∞  as k →∞ . Two variants of the following 

condition appear in the theorems, with different values of θ . 

Condition O-θ : Let a sequence of urns satisfy ( )nc o σ=  and ( )n nt o σ= . Assume for 

each k , there exist integers j  and j  with the following properties. First, j →∞ , with 

1,...,: max ii jf f==  and 1,...,: max ii ju u==  (which might not be integral) satisfying 

log logf j →∞ , log logu j →∞ , ( )2 2
n nt f oθ σ= , ( ) ( )1

2log j f O cθ = , and 

( )2 2
nc u oθ σ= . Second, ( )1

2
j jg c g− − →∞ , ( )1

2
j jg g c− − →∞ , ( )j jt g o D+ = , and 

( ) ( )2
2

j njc t t o σ− = . 
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Theorem 2.2 below requires in its hypothesis “Condition O-1”, which is Condition O-θ  

with 1θ ≡  identically for all k . Later, Theorem 2.4 later requires a slightly stronger 

condition, “Condition O- log j ”, which is Condition O-θ  with log jθ = . The end of the 

section discusses the feasibility of the conditions. 

Theorem 2.2: If Condition O-1 holds, nN σΣ ∼P  and ( ) /n nNR r σ− ⇒ Φ  as k →∞ . 

Remark: The proof of Theorem 2.2 shows ( ) ( )lim lim 0k N k NN NR R→∞ →∞≠ = Σ ≠ Σ =P P . 

Thus, N nσΣ P∼  and ( ) /N n nR r σ− ⇒ Φ , as might be expected, because n nr R= E  and 

2 varn nRσ = . 

The first conclusion in Theorem 2.2 ( nN σΣ ∼P ) resembles the second moment 

hypotheses for confirming bootstrap inferences [3]; the other asserts a Gaussian limit for 

NR .  

We now state a CLT for the ROCn  difference N NR R′
′ − . First, we count the balls 

corresponding to the intersection of certain sets of red and green numbers. In the standard 

notation, define the set [ ] { }: 1, 2,...,i i= . Define the permutation [ ] [ ]: f fπ  where 

( )i jπ = , if and only if a black ball has red index i  and green index j . For each pair of 

integers , 0m m′ > , define the set ( ){ }: :1    and   1mm i i m i mπ′ ′= ≤ ≤ ≤ ≤C  of red indices 

and the set ( ) ( ){ }: :1    and   1m m i i m i mπ π′′ ′= ≤ ≤ ≤ ≤C  of green indices. (Usually, 

mm m m′ ′′≠C C . The definitions of mm′C  and m m′′C  involve the same black balls, but the balls 

usually have different sets of red and green indices.) For ( )m n n c= =  and ( )m n n c′ ′ ′= = , 
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the set nn′C  contains the red indices of black balls contributing to both nR  and nR ′′ ; n n′′C  

contains the corresponding green indices. For ( )m N N c= =  and ( )m N N c′ ′ ′= = , the 

random set NN ′C  contains the red indices of black balls contributing to both NR  and NR ′
′ ; 

N N′
′C  contains the corresponding green indices.  

To ease the language, the statement “ball A comes before (after) ball B” provides a 

shorthand for “the number on ball A is less (greater) than or equal to the number on ball 

B”. Let the variate ijV  count the white balls that in red numbering come after the 1i − -st 

black ball but before the i -th black ball, and in green numbering come after the 1j − -st 

black ball but before the j -th black ball. Define :ij ijv V= E  and  

  
( )( )

( )
( ) ( )( )

1 1
1 1

1 1

:

                       
nn nn

n n

nn i j ij
i j

n n

jm i n i n ii
i j i m i i

c g c g v

v f t t t t fπ
π

γ

′ ′

′

′ − −
= =

′

′
∈ = + = + ∈

′= − − +

′ ′+ − −

∑∑

∑ ∑ ∑ ∑
C C

. (2.3) 

Define also 2 2 2: 2nn n n nnσ σ σ γ′ ′ ′′= + − , ( ): /nn nn n nρ γ σ σ′ ′ ′′= , and : limsupk nnρ ρ ′→∞= . If nR  and 

nR ′′  are the Poisson variates corresponding to nR , and nR ′′ , the proof of Theorem 2.3 shows 

that ( )cov ,n n nnR R γ′ ′′ = , so that ( ) 2var n n nnR R σ′ ′′ − =  and the correlation coefficient of nR  

and nR ′′  is nnρ ′ . 

Theorem 2.3 follows the pattern of Theorem 2.2 and asserts a Gaussian limit for 

N NR R′
′ − . Let the bag variates NN ′Σ , NN ′Γ , and NN ′Ρ  correspond to the urn variables nnσ ′ , 

nnγ ′ , and nnρ ′ . For example,  
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( )( )

( )
( ) ( )( )

1 1
1 1

1 1

:

                         
NN NN

N N

i j ijNN
i j

N N

jm i i iiN N
i j i m i i

c G c G V

V F T T T T Fπ
π′ ′

′

− −′
= =

′

′
∈ = + = + ∈

′Γ = − − +

′ ′+ − −

∑∑

∑ ∑ ∑ ∑
C C

. (2.4) 

As usual, “a.s.” abbreviates “almost surely”. Loosely, the hypothesis 1ρ <  in Theorem 2.3 

below ensures that NR  and NR ′
′  do not correlate perfectly in the limit k →∞ . 

Theorem 2.3: In a sequence of urns, assume the red and green numbers both satisfy the 

hypotheses of Theorem 2.2. In addition, assume that 1ρ < . Then,  nnNN σ ′′Σ P∼  and 

( ) ( ){ } /n n nnN NR R r r σ′ ′′
′ ′− − − ⇒ Φ  as k →∞ . In addition, there is a subsequence of 

1,2,...k = , which can be chosen deterministically, so that limsup NN ρ′Ρ =  a.s.-P  as 

k →∞  along the subsequence.  

Remark: The proof of Theorem 2.3 shows ( )lim 0k NN NN′→∞ ′Σ ≠ Σ =P . As in the remark 

after Theorem 2.2, NN nnσ′ ′Σ P∼  and ( ) ( ){ } /N N n n nnR R r r σ′ ′ ′′ ′− − − ⇒ Φ , where 

( ) 2var n n nnR R σ′ ′′ − = . 

Next, Theorem 2.4 and Theorem 2.5 show that bootstrapping the bags mimics the 

Gaussian approximation for NR  and N NR R′
′ − . To describe the bootstrap, consider the bag 

of ( )kD D=  balls sampled from urn k . Resample D  balls from the bag uniformly, 

independently, and with replacement, to assemble copies of the resampled balls into a 

“sack”, each copy retaining color and (red and green) numbers as above. The resampled 

balls in the sack therefore follow a ( )* *
1Multinomial ; ,..., DD p p  distribution 

( * * 1
1 ... Dp p D−= = = ). As usual, a superscript star denotes a bootstrap quantity. In the sack 
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after resampling has occurred, and for the red numbering, let the variate *
iF  count the 

copies of the i -th black ball; *
iT , the white balls before the i -th black ball. The analogs of 

Eqs (1.1)-(1.4) yield bootstrap variates *N  and *
*
N

R  corresponding to N  and NR ; 

analogously, the green numbers yield bootstrap variates *N ′  and *
*

N
R

′
′ , etc., and from all 

these variates, other secondary bootstrap variates like * *
*
N N ′

Σ  and * *
*
N N ′

Ρ  can be constructed.  

Again to accommodate probabilistic notation, assume that the random samples from 

each pair of containers (urn and bag) are mutually independent ( 1,2,...k = ). Construct a 

single probability space ( )* * *, ,Ω PF  simultaneously supporting all samples: *⇒  connotes 

the corresponding convergence in distribution ( 1,2,...k = ); and so forth for *∼P , etc.  

Theorem 2.4 describes a typical bootstrap convergence. ([3] explain the mode of 

convergence in greater detail.)  

Theorem 2.4: Assume Condition O- log j . Then, there is a subsequence of 1,2,...k = , 

which can be chosen deterministically, so that a.s.- *P , both * *
*

nN
σΣ ∼

P
 and 

( )*
* */N NN

R R− Σ ⇒ Φ  as k →∞  along this subsequence.  

Similarly, Theorem 2.3 has a bootstrap analog. 

Theorem 2.5: In a sequence of urns, assume the red and green numbers both satisfy the 

hypotheses of Theorem 2.4. In addition, assume 1ρ < . Then, there is a subsequence of 

1,2,...k = , which can be chosen deterministically, so that a.s.- *P , * *
*limsup
N N

ρ
′

Ρ = , 
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*
*

nnNN σ ′′Σ ∼P
, and ( ) ( ){ }* *

* * */N N NNN N
R R R R′ ′′
′ ′− − − Σ ⇒ Φ  as k →∞  along this 

subsequence. 

Remark: As the remarks after Theorem 2.2 and Theorem 2.3 suggest, Theorem 2.4 and 

Theorem 2.5 remain true for Poisson variates as well, if all curved over-strokes in them are 

dropped. This remark motivates a “Poisson bootstrap” to approximate the distribution of  

*
NR  on a computer.  

A (sequential) Poisson bootstrap for *
NR : Apply Theorem 2.1 in the context of 

resampling from a bag into a sack, rather than sampling from an urn into a bag. 

Accordingly, let the D  balls sampled into the bag have red numbers ( ) ( )1 ...K K D≤ ≤ . 

To identify specific balls easily, paint them in order (breaking ties arbitrarily) with blue 

numbers from 1 to D . After bootstrapping from the bag, let the variate *
iD  count the 

copies of the ball with blue number i  resampled into the sack ( * 1iD =E ). Because 

Theorem 2.1 approximates { }*
iD  with independent ( )Poisson 1  variates { }*

iD , a computer 

can simulate an approximate bootstrap distribution for *
NR , as follows. Independently in 

the order 1,...,i D= , resample the ball with blue number i  from the bag into the sack with 

a ( )Poisson 1  distribution, but stop when the sack contains at least c  black balls (because 

*
NR  is then determined).  

Remark: Two points are noteworthy. First, Theorem 2.1 bounds the error due to the 

Poisson bootstrap. Second, a sequential Poisson bootstrap can be given for variates other 

than *
NR , if (with high probability) they are determined by resampling a small fraction of 
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the bag’s balls. (For example, the distribution of ( )* *,N NR R ′
′  can be approximated by 

modifying the stopping rule above to include both red and green numbers.) 

We now comment on the relevance of the theorems to applications.  

Our urn model above is the first attempt ever to provide theoretical foundations for 

bootstrapping a database. Our basic hypothesis is that the assembly of a database involves 

random selection from a parent population, namely, the set of all records that could 

possibly enter the database. To see how the model is relevant to databases, consider a 

computer user interested in the database records relevant to some particular query. The 

following dictionary gives the translation from our urn model to the database retrieval 

application: urn = parent population of records; white ball = relevant record; black ball = 

irrelevant record; red number on a ball = a record’s rank under Retrieval Algorithm 1; 

green number on a ball = a record’s rank under Retrieval Algorithm 2; and bag = database 

of records. In applications, the database ROCn  is precisely ( ) ( )1
: /c

N B ii
ROC T cT

=
= ∑ , 

described after Eq (1.4). 

In the language of databases, our urn model explicitly displays the population quantity 

nr  that the non-normalized database ROCn  ( )1

c

N B ii
R T

=
=∑  estimates. Database ROCn s 

and their differences are asymptotically normally distributed around the corresponding 

population quantities (Theorem 2.2 and Theorem 2.3). Moreover, bootstrapping the 

database mimics the corresponding normal distributions (Theorem 2.4 and Theorem 2.5), 

precisely the condition required to justify bootstrap inferences [5]. Although simplistic, our 

model therefore shows that inferences drawn from bootstrapping a database can not be 

summarily dismissed as lacking a statistical meaning.  
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If the utility of the bootstrap inferences is granted (as they are in bioinformatics, for 

better or worse), the theorems above become directly relevant to information retrieval.  

For example, most measures of information retrieval are estimated from a subset of 

database records evaluated by experts. Because human time is limited, the subset is 

typically only a tiny fraction of the database. Thus, Theorem 2.1 and the Poisson bootstrap 

have relevance to measures of information retrieval in general, not just the ROCn .  

In addition, because databases nowadays are large, Poisson bootstraps typically incur 

only a small error. Poisson bootstraps are easier to program than the usual multinomial 

bootstrap. Because they require less computer space and time, they avoid in particular the 

computer storage problems that multinomial resampling of a large database can cause.  

In the CLTs, the Condition O- log j  (despite its formidable appearance) is theoretically 

mild. Space precludes a detailed presentation, but many models of retrieval ranking [16] 

satisfy Condition O- log j , e.g., the “Exponential Model” alluded to by [18], where only 

the balls with numbers ia⎢ ⎥⎣ ⎦  are white, for 1a >  and 1,2,...i =  (the floor function 

{ }: max :x j j x= ∈ ≤⎢ ⎥⎣ ⎦ N ). 

Condition O- log j  also leads to conclusions accepted in practice. The Gaussian 

approximation in Theorem 2.4 has been observed in bioinformatics [9, 18]. Although 

researchers in bioinformatics have recognized NR  as its mean, they bootstrap to estimate 

its variance. Eq (2.2) in Theorem 2.4 replaces the bootstrap estimate with the analytic 

approximation NΣ , which eases computation. The approximation NΣ  has already proved 

adequate in practice [18]. In addition, extensive simulations have confirmed the accuracy 
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of the CLTs in Theorem 2.4 and Theorem 2.5 when applied to data from [18] (results not 

shown). 

We now proceed to the arduous technical task of proving our theorems. 

3. THE PROOF OF THEOREM 2.1 

Theorem 2.1 holds, because conditioned on the sums ( )1
: m

k ii
D D

=
=∑M  and 

( )1
: m

k ii
D D

=
=∑M  being equal, ( ) ( )( )1 ,...,k k mD D  and ( ) ( )( )1 ,...,k k mD D  share a 

( ) ( )( )1 1
1Multinomial ; ,...,k k mD p p p p− −

M M M  distribution. Because the total ( )1
: m

k ii
D D

=
=∑M  has 

a ( )Binomial ;D pM  distribution, the Chen-Stein method confirms the existence of a 

( )Poisson dM  variate DM  with ( )D D p≠ ≤M M MP  [2, p. 8]. Theorem 2.1 follows. (We 

omit some technical details about augmenting the sample space, so that randomization can 

relate ( ) ( )( )1 ,...,k k mD D  to ( ) ( )( )1 ,...,k k mD D .) 

4. THE PROOF OF THEOREM 2.2 

Recall, the presence of a curved over-stroke indicates a multinomial sampling variate 

(e.g., NR ); its absence, the Poisson counterpart (e.g., NR ). First, Theorem 2.1 shows that 

for our purposes, Poisson and multinomial sampling become equivalent as k →∞ , e.g., 

( ) ( )2 2lim lim 0k N k NN NR R→∞ →∞≠ = Σ ≠ Σ =P P .  

To this end, consider some properties of j  and j  as k →∞ . In particular, 

  ( ) and   1j n j j N j< ≤ < ≤ →P . (4.1) 
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As in renewal theory, because of Eq (1.1), the inequality j n j< ≤  is logically equivalent 

to j jg c g< ≤ . Likewise, to derive ( ) 1j N j< ≤ →P , we need to show 

( ) 1j jG c G< ≤ →P . For future reference, we actually show more, that 

( )1
2

j jG c G− − → ∞P  and ( )1
2

j jG G c− − → ∞P . 

Denote the mean-centering of any random variate or expression X  by 

( ): :X X X X•
= = −E . Some consequences of Chebyshev’s inequality appear so frequently 

that we name them.  

Proposition 4.1 (The Expectation Bound): ( )k kX O X= P E . 

Proof: ( ) 1limsup limsup limsup limsup 0m k k k m kX m X m−
→∞ →∞ →∞ →∞> ≤ =P E . 

For future reference, note the mean-centered expectation bound ( )k kX O X= P E . An 

application of the expectation bound to ( )22 :k kX X=  yields the next proposition. 

Proposition 4.2 (The Variance Bound): ( )2 vark kX O X= P . 

The notation ( )O •P  speeds some proofs, because Proposition 4.1 and Proposition 4.2 

bound probabilities directly with expectations. In a pattern repeated many times below, 

( )k kX O x= P  and ( )k kx o y=  then imply ( )k kX o y= P . 

To show ( )1
2

j jG c G− − → ∞P , for arbitrary m  consider  

  ( ){ } ( ) ( ){ }1 1 1 1 1
2 2 2 2 2

j j j j j j j j jG c G m g G g g c g mg G− − − −− ≤ = − ≥ − −P P . (4.2) 
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Because of the expectation bound, ( )1 1
2 2 1j jg G O− = P , and because of the variance bound, 

( ) ( )1
2 1j j jg G g O− − = P , so ( )1

2
j jg c g− − →∞  implies ( ){ }1

2 0j jG c G m− − ≤ →P  in Eq 

(4.2). Thus, ( )1
2

j jG c G− − → ∞P . A similar argument shows ( )1
2

j jG G c− − → ∞P .  

In Theorem 2.1, let M  be the set of balls before the j -th black ball. Because Eq (4.1) 

implies that ( ) 1N j≤ →P  and n j≤ , neither NR  (with probability approaching 1) nor nr  

depends on balls outside of M . By hypothesis in Theorem 2.2, M  has total sampling 

probability ( ) ( ) 1
1

0m
j jk ii

p t g D−
=

= + →∑ , so Theorem 2.1 implies that the error in Poisson 

sampling from M  vanishes in probability as k →∞ . Thus, the following proof of 

Theorem 2.2 for Poisson sampling applies to multinomial sampling, as well.  

A. Proof of ( ) /N n nR r σ− ⇒ Φ  for Poisson sampling: In Poisson sampling, 

( )Poissoni iF f∼ , so vari i iF F f= =E . In addition, 0 0: : 0t T= =  and 1:i i iu t t −= − , while 

( )1: Poissoni i i iU T T u−= − ∼  counts (in the red numbering) the white balls in the bag after 

the ( 1i − )-st black ball but before the i -th black ball. Moreover, the { }jF  and { }iU  are 

mutually independent, because they count disjoint sets, unlike the { }iT . 

Because n nR r=E ,  

  ( )
1 1

1 1 1

n n n

n i i n i n i i
i i i

R T f T c f T T F
− −

= = =

⎛ ⎞= + − − −⎜ ⎟
⎝ ⎠

∑ ∑ ∑ . (4.3) 

In addition, 
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  ( ) ( )
1

N N

N n N n i i n i
i i n

R R T T c F T T F
= =

⎛ ⎞− = − − + −⎜ ⎟
⎝ ⎠

∑ ∑ . (4.4) 

In Eq (4.4) and below, we extend the meaning of the summation sign with the convention 

that 1

1 1
:n n N

i i ii N i i
X X X−

= = =
= −∑ ∑ ∑ , regardless of the relative magnitudes of n  and N . 

Partial summation yields 

  ( )
11 1

1
1 1 1 1 1

jn n n n

i i n i j i j j
i i j i j

T f T c f U c f U c g
−− −

−
= = = = =

⎛ ⎞⎛ ⎞+ − = − = −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑ ∑ . (4.5) 

Substitution into Eq (4.3) implies Theorem 2.2, if we can show that 

  ( ) ( )1 1
1

1 1

n n

n n n i i n i i
i i

R U c g T T Fσ σ− −
−

= =

⎧ ⎫= − − − ⇒ Φ⎨ ⎬
⎩ ⎭
∑ ∑  (4.6) 

and ( )N n nR R o σ− = P . First, we prove 2var n nR σ=  and 1
n nRσ − ⇒ Φ .  

Two observations are used repeatedly without comment below to expand variances. If 

A  and B  are variates independent of X  and Y , then ( ) ( ) ( )cov , cov ,AX BY A B XY= E . 

If they are also independent of each other then ( )cov , 0AX BY = . The covariance of the 

sums in Eq (4.6) is 0, so 

  

( ) ( )

( ) ( )

1
1 1

2 2
1

1 1
2

var var var
n n

n i i n i i
i i

n n

i i i n i
i i

n

R U c g T T F

c g u f T T

σ

−
= =

−
= =

⎧ ⎫ ⎧ ⎫= − + −⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

= − + −

=

∑ ∑

∑ ∑ E . (4.7) 
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Eq (2.1) gives the last equality, because ( )Poissonn i n iT T t t− −∼  implies 

( ) ( )( )2 1n i n i n iT T t t t t− = − − +E . Now, the proof of 1
n nRσ − ⇒ Φ  derives from the 

following martingale CLT. 

Let X η⎡ > ⎤⎣ ⎦I  denote an indicator function, equaling 1 on the event X η⎡ > ⎤⎣ ⎦  and 0 

otherwise; let ( )var X F  denote the conditional variance ( ) ( ){ }22X X−E EF F . 

Theorem 4.1 [15]: Consider any array ( )kiX  satisfying  the martingale difference 

condition ( )1 2 , 1, ,..., 0ki k k k iX X X X − =E  ( 1, 2,3,...k =  and 1,2,..., ki j= ). As k →∞ , if 

  ( )2
1 2 , 1

1
, ,..., 0

kj

ki ki k k k i
i

X X X X Xη −
=

⎡ > ⎤ →⎣ ⎦∑ PE I , (4.8) 

and 

  ( )1 2 , 1
1

var , ,..., 1
kj

ki k k k i
i

X X X X −
=

→∑ P , (4.9) 

then 
1

: kj
k kii

S X
=

= ⇒ Φ∑ . 

Our proofs require only the following corollary of Theorem 4.1, in the same notation. 

Corollary 4.1: Let ki ki kiX C Z=  ( 1,2,..., ki j= ). Assume that the kiC  are ( )1 , 1, ,k k iX Xσ −… -

measurable random variates, with the kiZ  independent of each other and any kjC  with 

j i≤ . Assume also that the kiZ  have been standardized, so 0kiZ =E  with 2 1kiZ =E . For 

each k , define ( )* 2 4: maxk i ki kiC C Z= E . If var 1kS ≡  identically, with * 0kC →P  and 

2
1

1kj
kii

C
=

→∑ P  as k →∞ , then kS ⇒ Φ . 
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Remark: If 0kiC = , the corresponding kiZ  may be chosen arbitrarily. Our proofs exploit 

this freedom, letting 0kiZ =  without comment if 0kiC = . 

The independence properties of the kiZ  and their standardization yield  

  ( )2

1 1 1
var var var 1

k k kj j j

ki ki ki ki ki k
i i i

C C Z C Z S
= = =

⎛ ⎞
= = = =⎜ ⎟

⎝ ⎠
∑ ∑ ∑E . (4.10) 

Thus, if 2
1

var 0kj
kii

C
=

→∑ , then 2
1

1kj
kii

C
=

→∑ P  and ( )2
1

0kj
kii

C
•

=
→∑ P . 

Proof of Corollary 4.1: We verify the conditions of Theorem 4.1 for the kiX  in Corollary 

4.1. Because { }kiX  forms a martingale difference array,  

  

( ) ( )

( )

2
1 , 1 1 , 1

1 1

2 2
1 , 1

1

2

1

var , , , ,

, ,

1

k k

k

k

j j

ki k k i ki k k i
i i

j

ki k k i ki
i

j

ki
i

X X X X X X

C X X Z

C

− −
= =

−
=

=

=

=

= →

∑ ∑

∑

∑ P

E

E E

… …

… , (4.11) 

yielding Eq. (4.9). Chebyshev’s inequality also shows that for arbitrary 0η > , 

  ( )2 2 2 2
ki ki ki ki ki kiC Z C C Z Cη η> ≤ =P E , (4.12) 

so 
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( ){ }

( ){ }

( )

2
1 , 1

1

2 2
1 , 1

1

2 4
1 , 1

1

2 2 *

1

0 , ,

, ,

, ,

0

k

k

k

k

j

ki ki k k i
i
j

ki ki ki ki k k i
i

j

ki ki ki ki k k i
i

j

ki k
i

X X X X

C Z C Z X X

C Z C Z X X

C C

η

η

η

η

−
=

−
=

−
=

−

=

≤ >

= >

≤ >

⎛ ⎞
≤ →⎜ ⎟
⎝ ⎠

∑

∑

∑

∑

…

…

…

P

E I

E I

E P
. (4.13) 

yielding Eq. (4.8). Theorem 4.1 therefore gives Corollary 4.1. 

Corollary 4.1 proves Eq (4.6), as follows. Let 2kj n= . For 1, 2,...,i n= , if 0iu =  

define 0ki kiC Z= = , otherwise ( )
11 2

1ki n i iC c g uσ −
−= −  and 1

2
ki i iZ u U−= . For i j n= +  and 

1,2,...,j n= , if 0jf =  define 0ki kiC Z= = , otherwise ( ) 11 2
ki n n j jC T T fσ −= − −  and 

1
2

ki j jZ f F−= .  

Notice that 1
k n nS Rσ −=  in Eq (4.6), so we only need to verify the hypotheses of 

Corollary 4.1. Because Eq (4.7) shows var 1kS ≡  identically, all hypotheses are present by 

construction except * 0kC →P  and 2
1

1kj
kii

C
=

→∑ P , which we now verify.  

Consider the condition ( )* 2 4: max 0k i ki kiC C Z= →PE . The assumptions in Theorem 2.2 

yield ( ) ( ) ( ){ } ( )22 4 2 2 2
1,2,..., 1,2,..., 1max max 1 3 1 3 0i n ki ki j n n j j nC Z c g u c uσ σ− −
= = −= − + ≤ + →E . 

Moreover, the expectation bound n nT t=E  and the assumptions in Theorem 2.2 yield 

( ) ( ) ( ){ } ( )22 4 2 2 2
1,...,2 1,...,max max 1 3 1 3 0i n n ki ki j n n n j j n nC Z T T f T fσ σ− −

= + == − + ≤ + →PE . 

To derive 2
1

var 0kj
kii

C
=

→∑ , expand ( ) ( ){ }24 2
1 1

var varkj n
n ki n i ii i

C T T fσ
= =

= −∑ ∑ :  
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  ( ) ( ) ( ){ }22 2

1 1 1
var cov ,

n n n

n i i i j n i n j
i i j

T T f f f T T T T
= = =

⎧ ⎫− = − −⎨ ⎬
⎩ ⎭
∑ ∑∑ . (4.14) 

Now, ( )Poissonn i n iT T t t− −∼  and ( ) ( )n j n i i jT T T T T T− = − + − , where the terms in 

parentheses are independent for i j> . The expansion of ( ) ( ){ }2

n i i jT T T T− + −  in Eq 

(4.14), followed by explicit substitution of the corresponding covariances for independent 

Poisson variates, leads to a sum of terms similar to the square of the second sum in Eq 

(2.1), but with the degree of factors involving { }n it t−  reduced by at least 1. The reduction 

in the degree suffices to show ( ){ } ( )2 4
1

var n
n i i ni

T T f o σ
=

− =∑ , as follows. 

Because 1

1 1
0n n

i ii i
c f c f−

= =
− ≤ < −∑ ∑ ,  

  10    and   0n n n nc g f f c g−< − ≤ − < − ≤ . (4.15) 

The Poisson counterparts of Eq (4.15) follow in a similar fashion. Because j n≥ , the 

assumption ( ) ( )1
2log j f O c=  yields ( )1

2
nf O c= . Thus, Eq (4.15) implies that ng c∼ .  

Now,  

  ( ) ( ) ( ) ( )31
2 2

2

1 1 1

n n n

n i i n i i i n n
i i i

t t f t t f f O c oσ σ
= = =

⎧ ⎫
− ≤ − = =⎨ ⎬

⎩ ⎭
∑ ∑ ∑  (4.16) 

by the Cauchy-Schwartz inequality, and similarly, 

  ( ) ( ) ( ) ( )31
2 2

2
1 1

1 1 1

n n n

i i i i i n n
i i i

c g u c g u u O c oσ σ− −
= = =

⎧ ⎫− ≤ − = =⎨ ⎬
⎩ ⎭

∑ ∑ ∑ , (4.17) 



Czabarka and Spouge  Page 25  

  

Frequently below, we bound an expression by expanding it and comparing to 2m
nσ , 

noting then that the degree of a factor { }ic g−  or { }n it t−  in 2m
nσ  has been reduced. We 

can then show that the expression is ( )2m
no σ , by noting the bounds in Eq (4.16) and (4.17). 

This “comparison estimate” obviates many detailed computations. It is most useful for 

mutually independent sets of variates { }iA  and { }iB , when 

( ) ( ) ( ) ( )cov , cov , cov ,i i j j i j i j i j i jA B A B A A B B A A B B= +E E E . In addition, if the { }iB  are 

mutually independent, then ( ) ( )cov , cov ,i i j j i j i jA B A B A A B B= E E . 

The comparison estimate applied to 4
nσ  and the right side of Eq (4.14) shows 

( ){ } ( )2 4
1

var n
n i i ni

T T f o σ
=

− =∑ , finishing the proof of Eq (4.6). 

Having proved 1
n nRσ − ⇒ Φ , we now prove that ( )N n nR R o σ− = P  by showing that 

both terms in N nR R−  from Eq (4.4) are ( )no σP .  

First, j n< , ( ) 1N j≤ →P , and the expectation ( )j jj jT T t t− = −E  yield  

  ( ) ( ) ( )1
2

N n j j nj jT T O T T O t t o cσ −− = − = − =P P P . (4.18) 

Because 
1

0 N
i Ni

F c F
=

≤ − ≤∑  in Eq (4.4), we next want to prove that ( )1
2

NF o c= P . The 

following useful proposition is the key. 

Proposition 4.3: Consider positive integer random variates J  and deterministic bounds j  

satisfying ( )lim 0k J j→∞ > =P , with j →∞ . Let ( )Poissoni iλΛ ∼  be (possibly 
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dependent) variates with 1,2,...,: max i j iλ λ==  and log log jλ →∞ . Then 

( )1,2,...,: max logi J i o jλ=Λ = Λ = P .  

Proof: Let 1,2,...,: maxj i j i=Λ = Λ . For ( )Poisson λΛ ∼ , ( ) ( ){ }exp exp 1eθθ λΛ = −E . For 

log 0jε >  and ( )0 log log jθ ε= , 

  

( ) ( )

( ) ( ){ }
( ) ( ){ }

( ) ( ){ }
( ){ }

0

1

0 1

0

0

0

log log

inf exp 1 log

inf exp 1 log

exp 1 log

exp log 1 1 0

j

j i
i

j

i
i

j j

e j

j e j

j e j

j

θ

θ

θ

θ

θ

ελ ελ

λ ελ θ

λ ελ θ

λ ελ θ

ελ θ

=

≥
=

≥

Λ ≥ ≤ Λ ≥

≤ − −

≤ − −

≤ − −

⎡ ⎤≤ − − − →⎣ ⎦

∑

∑

P P

 (4.19) 

by Chernoff’s bound [17, p. 39]. Proposition 4.3 follows, because 

( ) ( ) ( )log log 0jj j J jελ ελΛ ≥ ≤ Λ ≥ + > →P P P .  

Because Eq (4.1) shows that ( ) 0N j> →P , Proposition 4.3 with J N=  and j j=  

yields ( ) ( ){ } ( )1
2

1,2,...,max logN ii jF O F o j f o c== = =P P P , because log logf j →∞ . For 

the first term of N nR R−  in Eq (4.4), therefore, 

  ( )( ) ( )N n N N n N nT T c G T T F o σ− − ≤ − = P . (4.20) 

For the second term of N nR R− , Eq (4.15) gives 

  1 1 1

N

i N n n N n n
i n

F G c G c g F G f− − −
=

≤ − + − + − ≤ + +∑ . (4.21) 
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The variance bound ( )21 1
11 1

n n
i i ni i

F f g− −

−= =
= =∑ ∑E  yields ( ) ( )1 1

2 2
1 1n nG O g O c− −= =P P , so 

 (4.22) ( ) ( ) ( )1

N N

i n i N n i N n N n n n
i n i n

T T F T T F T T F G f o σ−
= =

− ≤ − ≤ − + + =∑ ∑ P . 

B. Proof of N nσΣ ∼P .  

Our proof is a centering argument with three steps, namely: (1) ( )2 2 2
N n no σΣ −Σ = P ; (2) 

( )2 2 2
n n no σΣ − Σ = PE ; and (3) ( )2 2 2

n n noσ σΣ − =E . The first step is as follows: 

  

( ) ( )( )

( )( )

( ) ( )( )

( ) ( ) ( ){ }

22 2
1

1 1

1

2
1

1 1

1

1

                                              1

1

                      1 2

N N

N n i i N i N i i
i n i

n

n i n i i
i

N N

i i N i N i i
i n i n

n

N n N n n i i
i

c G U T T T T F

T T T T F

c G U T T T T F

T T T T T T F

−
= + =

=

−
= + = +

=

Σ −Σ = − + − − + −

− − +

= − + − − + +

− − + + −

∑ ∑

∑

∑ ∑

∑

, (4.23) 

so 

  
( )

( )( ) ( )

22 2
1

1

1

                    1 2

N

N n i i
i n

n

N n N n N N n n i i
i

c G U

T T T T G T T T T F

−
= +

=

Σ −Σ ≤ − +

− − + + − −

∑

∑
. (4.24) 

The variance bound yields ( ) ( )1 1
2 2

1 1 1n n nG g O g O c− − −− = =P P , so ( )1
2

1n nc g f O c−− ≤ =  

implies ( )1
2

1nc G O c−− = P . With ( )1
2

1N Nc G F O c−− ≤ = P , we have ( ) ( )2
1ic G O c−− = P  

for [ ] [ ]\i N n∈  or [ ] [ ]\i n N∈ . In the first term of Eq (4.24), 

( ) ( ) ( ) ( )1
2

2 2
11

N
i i N n n ni n

c G U O c T T o c oσ σ−= +
− = − = =∑ P P P  because ( )nc o σ= . Eq (4.18) 
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shows the second term ( )( ) ( )( ){ } ( )21 1N n N n N j j nj jT T T T G O c T T T T o σ− − + = − − + =P P . 

Moreover, Eqs (4.16) and (4.18) together show that the third term 

( ) ( ) ( )1
2 2

1

n
N n n i i N n n ni

T T T T F O T T c oσ σ
=

− − = − =∑ P P . 

The variance bound on each term of 2
nΣ  in Eq (2.1) shows ( ) ( )2 2 2 2:n n n no σ

•
Σ = Σ − Σ = PE , 

as follows. After expansion of the variances ( ){ }2
11

var n
i ii

c G U−=
−∑ , 

( ){ }2

1
var n

n i ii
T T F

=
−∑  and ( ){ }1

var n
n i ii

T T F
=

−∑ , the comparison estimate after Eq (4.16) 

applies to each variance and 4 2 2
n n nσ σ σ= . 

To show ( )2 2 2
n n noσ σΣ − =E , apply the comparison estimate after Eq (4.16) again:  

  ( ) ( ) ( )2 2 2

1 1 1

n n n

n n i i n i i n n n i i n
i i i

g u t t f g t t t f oσ σ
= = =

Σ − = + − ≤ + − =∑ ∑ ∑E . (4.25) 

Eq (4.25) concludes the proof of Theorem 2.2 

5. THE PROOF OF THEOREM 2.3 

To begin, we extend the notations in Section 2 describing the balls common to 

specified sets of red and green numbers. Recall Section 2’s definitions of π , nn′C , and 

n n′′C . Let [ ]: \nn nnn′ ′=D C  be the relative complement of nn′C  within [ ] { }: 1, 2,...,n n= ; 

similarly, [ ]: \n n n nn′ ′′ ′ ′=D C . Thus, nn′C  depends on common balls; nn′D , on disparate. 

Recall also Section 2’s definition of ijV  and :ij ijv V= E . The variate ijV  counts a set of balls 

in the bag, so it has a Poisson analog ijV , whose expectation ij ijV v=E . Similarly, under 
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Poisson sampling, let iW  count the white balls that come in the red numbering after the 

1i − -st black ball but before the i -th black ball that also come in the green numbering after 

the n′ -th black ball. As usual, let i iw W= E . Symmetry gives ij jiV V ′= ; conservation, 

1

n
i ij ij

U V W
=

= +∑ . Similar relations govern the expectations. 

A proof of Theorem 2.3 for Poisson sampling proves it for multinomial sampling, as 

well. The only change to the start of Section 3 is to let M  in Theorem 2.1 be the union of 

two sets of balls: (1) those coming in the red numbering before the j -th black ball; and (2) 

those coming in the green numbering before the j′ -th black ball. 

A. Proof of ( ) ( ){ } /N N n n nnR R r r σ′ ′ ′′ ′− − − ⇒ Φ  for Poisson sampling: Recall that 

n nR r=E and n nR r′ ′=E . Our proof follows the pattern of the proof of Theorem 2.2, but first 

we show that ( )n nnOσ σ ′=  and ( )n nnOσ σ′ ′′ = . Because Section 3 shows that 

( )N n nR R o σ− = P  and ( )N n nR R o σ′ ′ ′′ ′ ′− = P , all that then remains is to show that 

( )1
nn n nR Rσ −
′ ′′ − ⇒ Φ . 

To show ( )n nnOσ σ ′= , note that ( )221 2 1rx x r+− + ≥ −  for 0x ≥ , where 

{ }: max 0,r r+ = . Thus,  

  ( ){ }
22 2

2liminf liminf 1 2 liminf 1 0nn nn n n
nnk k k

n n n n n

σ γ σ σ ρ
σ σ σ σ σ

+′ ′ ′ ′
′

→∞ →∞ →∞
′

⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞′ ′⎪ ⎪= − + ≥ − >⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟′⎝ ⎠⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
, (5.1) 

where the final inequality follows from the assumption 1ρ < . Thus, ( )n nnOσ σ ′= , and by 

symmetry, ( )n nnOσ σ′ ′′ = . 
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Next, we show that ( )cov ,n nR R ′′  equals nnγ ′ . The { }iF  and { }iF ′  are independent of the 

{ }iU  and { }iU ′ , so Eq (4.6) yields 

  
( ) ( ) ( )

( ) ( )

1 1
1 1

1 1

cov , cov ,

                                                  cov ,

n n

n n i i j j
i j

n n

n i i n j j
i j

R R U c g U c g

T T F T T F

′

′ − −
= =

′

′
= =

⎧ ⎫
′ ′ ′= − − +⎨ ⎬

⎩ ⎭
⎧ ⎫

′ ′ ′− −⎨ ⎬
⎩ ⎭

∑ ∑

∑ ∑
. (5.2) 

To calculate the first term on the right in Eq (5.2), recall: ij jiV V ′= , iW , and iW ′  have 

expectations ij jiv v′= , iw , and iw′ ; they are independent Poisson variates, independent also 

of the { }iF  and { }iF ′ . The symmetry ij jiV V ′=  and the conservation law 
1

n
i ij ij

U V W
=

= +∑  

imply ( ) 2
i j ij ijU U V v′ = =E E . Therefore  

  ( ) ( ) ( )( )1 1 1 1
1 1 1 1

cov ,
n n n n

i i j j i j ij
i j i j

U c g U c g c g c g v
′ ′

− − − −
= = = =

⎧ ⎫
′ ′ ′− − = − −⎨ ⎬

⎩ ⎭
∑ ∑ ∑∑ . (5.3) 

To calculate the second term in Eq (5.2), note that var i iF f= , so 

  ( ) ( ) ( ) ( )( ){ }
1 1

cov ,
nn

n n

n i i n j j i n i n i
i j i

T T F T T F f T T T Tπ
′

′

′
= = ∈

⎧ ⎫
′ ′ ′ ′ ′− − = − −⎨ ⎬

⎩ ⎭
∑ ∑ ∑

C

E , (5.4) 

The equation ( ) ( )cov ,i j i j ijU U U U v′ ′= =E  yields ( )i j ij i jU U v u u′ ′= +E . Thus, 

  

( )( ){ } ( )

( )

( )( )

1 1

1 1

1 1

n n

n i n j a b
a i b j

n n

ab a b
a i b j

n n

ab n i n j
a i b j

T T T T U U

v u u

v t t t t

′

′
= + = +

′

= + = +

′

′
= + = +

′ ′ ′− − =

′= +

′ ′= + − −

∑ ∑

∑ ∑

∑ ∑

E E

. (5.5) 
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Eqs (5.2)-(5.5) together show ( )cov ,nn n nR Rγ ′ ′′=  in Eq (2.3).  

To show ( )1
nn n nR Rσ −
′ ′′ − ⇒ Φ , we show that ( )1

1
kj

nn n n ki ki ki
R R C Z Sσ −

′ ′ =
′ − = =∑  and then 

use Corollary 4.1. Let 3 2kj nn n n′ ′= + + . For ( )1i j n m′= − +  with 1,2,...,j n=  and 

1,2,...,m n′= , if 0jmv = , let 0ki kiC Z= = , otherwise let ( ) 1
21

1 1ki nn j m jmC g g vσ −
′ − −′= −  and 

1
2

ki jm jmZ v V−= . For i nn j′= +  and 1,2,...,j n′= , if 0jw′ =  define 0ki kiC Z= = , otherwise 

( ) 1
21

1kj nn j jC c g wσ −
′ −′ ′= −  and 1

2
kj j jZ w W−′ ′= . For i nn n j′ ′= + +  and 1,2,...,j n= , if 0jw =  

define 0ki kiC Z= = , otherwise ( ) 1
21

1ki nn j jC c g wσ −
′ −= − −  and 1

2
ki j jZ w W−= . For 

i nn n n j′ ′= + + +  and 1,2,...,j n′= , if n nj ′′∈D  and 0jf ′ > , define 

( ) 1
21

ki nn n j jC T T fσ −
′ ′′ ′ ′= − − , and 1

2
ki j jZ f F−′ ′= , otherwise 0ki kiC Z= = . For 

2i nn n n j′ ′= + + +  and 1,2,...,j n= , if nnj ′∈C  and 0jf > , define 

( ) ( )( ){ } 1
21

ki nn n j n jjC T T T T fπσ −
′ ′′ ′= − − −  and 1

2
ki j jZ f F−= , otherwise 0ki kiC Z= = . Finally, for 

2 2i nn n n j′ ′= + + +  and 1,2,...,j n= , if nnj ′∈D  and 0jf > , define 

( ) 1
21

ki nn n j jC T T fσ −
′= −  and 1

2
ki j jZ f F−= , otherwise 0ki kiC Z= = . Now, 

  
( ) ( ) ( )

( ) ( ) ( )( ){ } ( )

1 1 1 11
1 1 1 1

                

k

n n nn nn

n n n n
j

nn ki ki j m jm j j j ji
j m j j

n j j n j n j n j jj
j j j

C Z g g V c g W c g W

T T F T T T T F T T Fπ

σ

′ ′ ′

′ ′

− − − −=
= = = =

′ ′
′∈ ∈ ∈

⎧ ⎫
′ ′ ′= − + − − −⎨ ⎬

⎩ ⎭

′ ′ ′ ′ ′− − + − − − + −

∑ ∑∑ ∑ ∑

∑ ∑ ∑
D C D

. (5.6) 

We now check that ( )1
k nn n nS R Rσ −

′ ′′= −  by showing the common value in Eq (5.6) is 

n nR R′′ − . Because of the conservation law, 
1

n
i ij ij

U V W
=

= +∑  and the symmetry ij jiV V ′= , 
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the first three terms in Eq (5.6) equal ( ) ( )1 11 1

n n
i i i ii i

c g U c g U
′

− −= =
′ ′− − −∑ ∑  in n nR R′′ − . 

Because the last three terms equal ( ) ( )1 1

n n
n j j n j jj j

T T F T T F
′

′= =
′ ′ ′− − + −∑ ∑  in n nR R′′ − , 

( )1
1

: kj
k ki ki nn n ni

S C Z R Rσ −
′ ′=

′= = −∑ . 

Again, we only need to verify the hypotheses of Corollary 4.1. Because Eqs (5.2)-(5.5) 

together show that var 1kS ≡  identically, all hypotheses are present by construction except 

* 0kC →P , and 2
1

1kj
kii

C
=

→∑ P , which we now verify.  

Consider the condition ( )* 2 4: max 0k i ki kiC C Z= →PE . For nnj ′∈C ,  

  
( ) ( )( ){ } ( )

{ }( )

2
2

2 2 2
1,...,

1 3

                       max , 1 3max 0

nn n j n jj

nn n n j n j

T T T T f

T T f

πσ

σ

−
′ ′

−
′ ′ =

′ ′− − − +

′≤ + →P

. (5.7) 

For the other contributions to *
kC , the inequalities ij iv u≤  and i iw u≤  lead to the same 

bounds found in the proof of Theorem 2.2. Thus, * 0kC →P .  

Finally, consider 2
1

1kj
kii

C
=

→∑ P . Let ( ) ( )2 2
1

2kj
ki nn n n nni

C Y Y Yσ
•

−
′ ′ ′=

′= + −∑ , where 

( )2

1
: n

n n i ii
Y T T f

=
= −∑ , ( )2

1
: n

n n i ii
Y T T f

′

′ ′=
′ ′ ′ ′= −∑ , and ( ) ( )( ):

nn
nn n i n iii

Y T T T T fπ′
′ ′∈

′ ′= − −∑ C
. 

Because the end of Section 3 shows that ( )4var n nnY o σ ′=  and ( )4var n nnY o σ ′′ = , and 

because the following shows that ( )4var nn nnY o σ′ ′= , the variance bound yields 

( )2
1

0kj
kii

C
•

=
→∑ P , or equivalently, 2

1
1kj

kii
C

=
→∑ P . 
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To show ( )4var nn nnY o σ′ ′= , bound as follows the terms 

( ) ( )( ) ( ) ( )( ){ }: cov ,ij n i n n j ni jc T T T T T T T Tπ π′ ′′ ′ ′ ′= − − − −  from the expansion of var nnY ′ . Write 

n i n i n iT T t t T T− = − + − , etc., and expand the factors in the covariance. Consider centered 

moments of ( )PoissonX x∼ : 2X x=E , 3X x=E  and 4 23X x x= +E . Observe: all these 

centered moments are non-negative, and the last two have powers of x  two less than the 

corresponding power of X . Each term (both plus and minus) in the expansion of the 

covariance ijc  is therefore bounded by a bounded number of terms, each of which is either 

2
nt  or the product of nt  with either one or two factors from ( )n it t− , ( )( )n it tπ′′ ′− , ( )n jt t− , or 

( )( )n jt tπ′′ ′− . After multiplication by i jf f , the sum of the terms is ( )2 2
n nO σ σ ′′ , because 

( ) ( )1

n
i ni

f O c o σ
=

= =∑ , ( )n nt o σ= , ( ) ( )3
2

1

n
n i i ni

t t f o σ
=

− =∑ , and 

( ) ( )( )
nn

n i n i n nii
t t t t fπ σ σ

′
′ ′∈
′ ′ ′− − ≤∑ C

, etc.  

Because 2
1

1kj
kii

C
=

→∑ P  and ( )1
nn n nR Rσ −
′ ′′ − ⇒ Φ , the first part of Theorem 2.3 is 

proved.  

B. Proof of NN nnσ′ ′Σ ∼P , with limsupk NN ρ′→∞ Ρ =  a.s.-P  along a subsequence. 

Assume for a moment that ( )NN nn n noγ σ σ′ ′ ′′Γ − = P . Because N nσΣ P∼  and N nσ′ ′Σ P∼ , 

we have ( )1NN nn oρ′ ′Ρ − = P , i.e., 0NN nnρ′ ′Ρ − →P . We can therefore select a subsequence 

of 1, 2,...k = , so that 0NN nnρ′ ′Ρ − →  a.s.-P . Along the subsequence, 
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limsup limsupk NN k nnρ ρ′ ′→∞ →∞Ρ = =  a.s.-P . Moreover, we also have NN nnσ′ ′Σ ∼P , as 

follows. Eq (5.1) yields ( )n nnOσ σ ′=  and ( )n nnOσ σ′ ′′ =  , so 

  

( ) ( ) ( )
( ) ( ) ( )
( )

2 2 2 2 2 2

2 2 2 2 2 2

2

2

1 1 2

NN nn N n N n NN nn

n n N n n N NN nn

nno

σ σ σ γ

σ σ σ σ γ

σ

′ ′ ′ ′ ′ ′

− −
′ ′ ′ ′ ′

′

Σ − = Σ − + Σ − − Γ −

= Σ − + Σ − − Γ −

= P

. (5.8) 

We therefore only need to show ( )NN nn n noγ σ σ′ ′ ′′Γ − = P , which we do with the usual 

centering argument with three steps, namely: (1) ( )NN nn n no σ σ′ ′ ′′Γ −Γ = P ; (2) 

( )nn nn n no σ σ′ ′ ′′Γ − Γ = PE ; and (3) ( )nn nn n noγ σ σ′ ′ ′′Γ − =E . For notational convenience, let 

nnξ ′ , nnα ′ , and nnβ ′  denote the first, second, and third terms on the right side of Eq (2.3); 

NN ′Ξ , NN ′Α , and NN ′Β , the corresponding first, second, and third terms on the right side of 

Eq (2.4). 

First, we apply the Cauchy-Schwartz inequality to NN nn′ ′Γ −Γ , where by definition, 

NN NN NN NN′ ′ ′ ′Γ = Ξ + Α +Β . To bound NN nn′ ′Ξ −Ξ , rearrange the sums as  

  
1 1 1 1 1 1 1 1 1 1

N N n n N N N n n N

i j i j i n j n i n j i j n

′ ′ ′ ′ ′

′ ′= = = = = + = + = + = = = +
− = + +∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑  (5.9) 

Now, { }2 2 2min ,ij i j i jV U U U U′ ′≤ ≤ , so Eq (5.9) and the Cauchy-Schwartz inequality yield  

  
( )( )

( ) ( ) ( ) ( )
1 1 1

2 2 2

1 1
1 1 1 1

2 2 2 2 2 2 2 2 2 2      

N N n n

NN nn i j ij
i j i j

N n N n N n n n N n n n

c G c G V

o σ σ

′ ′

′ ′ − −
= = = =

′ ′ ′ ′ ′ ′

⎛ ⎞
′Ξ −Ξ = − − − ≤⎜ ⎟

⎝ ⎠

′ ′ ′ ′ ′ ′Σ −Σ Σ −Σ + Σ −Σ Σ + Σ Σ −Σ =

∑∑ ∑∑

P

, (5.10) 

because N nσΣ ∼P , with ( )2 2 2
N n no σΣ −Σ = P  from Eq (4.24) et seq. 
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To bound NN nn′ ′Α − Α  and NN nn′ ′Β −Β , we have ( )1 1

n n
jm n ij i m i

V T T
π

′

= + = +
≤ −∑ ∑  and 

1NN nn

N

i i i n′ ′∈ ∈ = +
− ≤∑ ∑ ∑C C

. The Cauchy-Schwartz inequality then yields  

  ( ) ( )
1 1 12 2 22 2

NN nn N n N n n n nG G o c oσ σ σ′ ′ ′′Α − Α ≤ Σ −Σ − = =P P , (5.11) 

because the centering proof of N nσΣ ∼P  shows ( )2 2 2
N n no σΣ −Σ = P . We also have 

( )
1 1

2 22 2 2 2
NN nn N n N n n no σ σ′ ′ ′ ′ ′′ ′ ′Β −Β ≤ Σ −Σ Σ −Σ = P . 

Second, we show ( )nn nn n no σ σ′ ′ ′′Γ − Γ = PE . For the first term nn′Ξ  of nn′Γ , we prepare 

the comparison estimate again: 

  
( )( ) ( ) ( ){ }

( )( ) ( )( ){ }

22
1 1 1 1

1 1 1 1

1 1 1 1
1 1 1 1

var

                        cov ,

n n n n

i j ij i j ij
i j i j

n n n n

i i j j ii jj
i i j j

c G c G V c G c G v

c G c G c G c G v v

′ ′

− − − −
= = = =

′ ′

′ ′ ′ ′− − − −
′ ′= = = =

⎧ ⎫
′ ′− − = − − +⎨ ⎬

⎩ ⎭

′ ′− − − −

∑∑ ∑∑

∑∑∑∑

E
.(5.12) 

We bound the covariance in Eq (5.12) with the same method used for bounding ijc  

above. Write 1 1 1i i iG g G− − −= + , etc., and expand the factors in the covariance. Each term 

(both plus and minus) resulting from the covariance in Eq (5.12) is therefore bounded by a 

finite number of terms, each of which is either 2c  or the product of c  with either one or 

two factors from ( )1ic g −− , ( )1ic g ′−′− , ( )1jc g −− , or ( )1jc g ′−′− . After multiplication by 

ij i jv v ′ ′  and summation, all terms are ( )2 2
n no σ σ ′′ , because 

1

n
ij ij

v u
′

=
≤∑ , 

( ) ( )3
2

11

n
i i ni

c g u o σ−=
− =∑ , ( )1 1

n n
ij n ni j

v t o σ
′

′′= =
≤ =∑ ∑ , and 

( )( )1 11 1

n n
i j ij n ni j

c g c g v σ σ
′

′ ′ ′− −′= =
′ ′− − ≤∑ ∑ , etc.  
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The double sum in Eq (5.12) is similarly bounded. Note  

  ( ) ( ){ } ( )( ){ } ( )( ){ }
2

22
1 1 1 1 1 1vari j i j i jc G c G c G c G c G c G− − − − − −

⎡ ⎤′ ′ ′− − = − − + − −⎣ ⎦E E ,(5.13) 

where the variance can be bounded as a special case of the covariance in Eq (5.12). The 

expectation on the right of Eq (5.13) equals ( )( )
1, 1

1 1
i j

i j ll
c g c g f

− −
− − ∈

′− − +∑ C
. The new 

terms of degree four satisfy ( ) ( ) ( )22 2 2 2 2
1 11 1

n n
i j ij n n ni j

c g c g v c oσ σ σ
′

′− −= =
′ ′− − ≤ =∑ ∑ . 

Because the common value in Eq (5.12) is bounded by ( )2 2
n no σ σ ′′ , ( )nn n no σ σ′ ′′Ξ = . 

For the second term nn′Α  of nn′Γ , the expectation ( ):nn nn n n n nt g oα σ σ′ ′ ′′= Α ≤ =E  yields 

( )nn n no σ σ′ ′′Α = P . 

For the third term nn′Β  of nn′Γ , the same techniques that applied to nnY ′  above also 

show that ( )2 2var nn n no σ σ′ ′′Β = . Because ( )nn n no σ σ′ ′′Β = P , we have shown 

( )nn n no σ σ′ ′′Γ = P . 

Finally,  

  ( ) ( )( )1 1
1 1

cov , cov ,
nn

n n

nn nn i j ij n i n ii
i j i

G G v T T T T fπγ
′

′

′ ′ ′− −
= = ∈

′ ′ ′Γ − = + − −∑∑ ∑
C

E . (5.14) 

A trite calculation shows that both terms actually equal ( )nn n noα σ σ′ ′′= . The proof of 

Theorem 2.3 is complete. 
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6. PROOFS OF THEOREM 2.4 AND THEOREM 2.5 

To prove Theorem 2.4, this section first demonstrates the hypotheses of Theorem 2.2 

with the sequence of bags replacing the sequence of urns, each asymptotic hypothesis 

being replaced by an equivalent or stronger hypothesis in probability (i.e., with ( )o •  or 

( )O •  replaced by ( )o •P ; or ∼ , by ∼P ). This demonstration suffices to prove Theorem 

2.4, because we can then select a subsequence of 1,2,...k = , so that each asymptotic 

hypothesis in probability can be replaced by the corresponding a.s. hypothesis. Theorem 

2.2 applied to the bootstrap distributions then shows that a.s., ( )*
* */N NN

R R− Σ ⇒ Φ  

along this subsequence. We then extend the same method of proof to Theorem 2.5. 

Now, we verify that the bags in Theorem 2.4 satisfy in probability the asymptotic 

hypotheses for the urns in Condition O-1 of Theorem 2.2. First, the controlling 

asymptotic parameters tend to ∞ , as follows. Trivially, c →∞ . Because n nT t=E  and 

( )var n nT O t= , we have n nT t →∞P∼  and similarly, n nG g →∞P∼ . Theorem 2.2 yields 

NΣ → ∞P , because it concludes that nN σΣ P∼ , so any hypotheses in probability can 

replace nσ  by NΣ . 

Second, the hypotheses about f  and u  hold in probability for the corresponding bag 

variates 1,...,: max ii jF F==  and 1,...,: max ii jU U== . Recall that { }iF  and { }iU  are integral. 

A comparison of multinomial and Poisson sampling yields 
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( ) ( )1
1 1 exp 1 1j c

ii
F f e−

=
≥ > − − ≥ − →∑P , so log logF j → ∞P . Similarly, 

log logU j → ∞P .  

Third, because of Proposition 4.3, with log jθ = , each of the three hypotheses 

( )2 2
n nt f oθ σ= , ( ) ( )1

2log j f O cθ = , and ( )2 2
nc u oθ σ=  in Condition O- log j  of 

Theorem 2.4 yields an equivalent or stronger hypothesis in probability for Condition O-1 

of Theorem 2.2. Fourth, Eq (4.1) et seq. show ( )1
2

j jG c G− − → ∞P  and 

( )1
2

j jG G c− − → ∞P . Moreover, t j + g j = o D( ) implies ( )j jT G o D+ = P . Finally, j n< , 

( ) 1N j≤ →P , and ( )j jj jT T t t− = −E  in the expectation bound yield  

  ( ) ( ){ } ( ){ } ( ) ( )2 22 2 2
n j j nj jN Nc T T O c T T O c t t o oσ− = − = − = = ΣP P P P . (6.1) 

In the bags, j  and j  therefore have in probability the properties required by the 

hypotheses of Theorem 2.2, so Theorem 2.4 follows 

The same type of proof applies to Theorem 2.5. Theorem 2.3 proves limsup NN ρ′Ρ =  

a.s.-P  for some subsequence of 1,2,...k = . For this subsequence of bags, the hypothesis 

: limsup 1NN ′Ρ = Ρ <  a.s.- *P  holds. For a subsequence from this subsequence of bags, 

Theorem 2.5 then follows from Theorem 2.3 for the sequence of urns. 
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