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Finite Element Approximation of the Cahn-Hilliard

Equation on Surfaces

Qiang Du∗, Lili Ju† and Li Tian‡

Abstract

In this paper, we consider the phase separation on general surfaces by solving the nonlinear
Cahn-Hilliard equation using a finite element method. A fully discrete approximation scheme
is introduced, and we establish a priori estimates for the discrete solution that does not rely on
any knowledge of the exact solution beyond the initial time. This in turn leads to convergence
and optimal error estimates of the discretization scheme. Numerical examples are also provided
to demonstrate how the scheme can be effectively implemented.

1 Introduction

The Cahn-Hilliard equation introduced in [8] is a very general mathematical model that describes
phase separations. It has found many applications in various fields, such as foams modeling,
solidification processes, dendritic flow, image processing, planet formation and so on [5, 9, 17, 25, 27,
30, 34, 36, 40]. The phase separation processes have been successfully investigated with the Cahn-
Hilliard equation in a wide variety of non-equilibrium systems. There have been many algorithms
and simulations performed using a variety of discretization methods including finite difference, finite
volume, finite element and spectral methods, see, e.g., [2, 3, 9, 10, 21, 23, 24, 28, 30, 31, 38, 39]
and the references cited therein.

Various experimental studies have shown that interesting phase separations could occur on static
or dynamic surfaces, such as phase separation on lipid bilayer membranes, crystal growth on curved
surfaces, and phase separations within thin films, see [1, 4, 20, 35]. Thus, theoretical analysis and
numerical implementation of the phase transition models on general surfaces are attracting more
and more attentions. For instance, a finite volume method for Cahn-Hilliard equations on the
sphere was studied in [37], the numerical approximations of the Ginzburg-Landau model for a
superconducting hollow sphere were studied using a gauge invariant finite volume discretization
on a spherical centroidal Voronoi tesselation [15]. The finite element method has been used For
the discretization of partial differential equations (PDEs) defined on surfaces including the Cahn-
Hilliard equation, finite element methods have been studied in [11, 12, 20].

Development of fully discrete approximation schemes for nonlinear PDEs is important because
these schemes not only directly reduce differential equations to systems of algebraic equations, but
also suggest what kinds of ordinary differential equation solvers are needed for the semi-discrete
approximation schemes. For fully discrete approximations of the Cahn-Hilliard equation that are
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2 MODEL PROBLEM 2

most relevant to the work presented here, let us mention that in [16], Du and Nicolaides proposed
and analyzed a fully discrete approximation scheme for one dimensional Cahn-Hilliard equations.
One of its features is the existence of a Lyapunov functional associated with the approximation
scheme. This leads to some estimates for the discrete solution in a certain Sobolev space. Combining
these with Sobolev imbedding theorem in one space dimension, they are able to prove the pointwise
boundedness of the discrete solution, and consequently, they obtain the Lipschitz property of the
nonlinear term, which guarantees the existence and uniqueness of discrete solution and make the
error analysis possible. This idea was studied further in [26]. We note that a pointwise estimate for
solutions of fully discrete schemes is important for the mathematical analysis, since, as pointed out
in [33], the linear part of the equation does not always control the nonlinear term automatically.
Nevertheless, in higher dimensional spaces, the imbedding theorem used on in [16] is no longer valid
and pointwise boundedness does not follow directly from the existence of the Lyapunov functional.
Thus, new a priori estimates for the discrete solution are needed.

In this paper, we demonstrate well-posedness and convergence of a fully discrete finite element
approximation scheme of the Cahn-Hilliard equation defined on a general surface. Our approach
requires a combination of both standard and nonstandard techniques due to the lack of maximum
principle for fourth-order equations. On one hand, the approach is similar to the usual arguments
for establishing a priori estimates of discrete solutions of PDEs. For example, some estimates for
the discrete potential function are provided first, then we apply the idea of elliptic regularity to
get high order estimates. On the other hand, we present a more delicate analysis of the initial
approximation in our derivation. This type of analysis is an important part of the estimation, but
it appears rarely in the literature on the approximation of non-linear or semi-linear parabolic type
equations. It is done here through some technical discussions on the approximation space.

We now give an outline of this paper: In Sections 2 and 3, we present the model problem on
general surfaces, and the fully discrete finite element approximation scheme. Section 4 contains
some properties of the initial approximation, some estimates on the discrete chemical potential
p, and then the desired pointwise boundedness of the discrete solution. Then we give the error
analysis in Section 5. Finally, some numerical experiments are presented in Section 6.

2 Model Problem

Before setting up the model, we introduce some basic notations first. Given an open connected
and bounded Ck,α surface S in R

3 with k ∈ N ∪ {0} and 0 ≤ α < 1, we assume that it can be
represented globally by some oriented distance function (level set function) d = d(x) defined in an
open subset Ω in R

3, such that S = {x ∈ Ω | d(x) = 0} with d ∈ Ck,α and ∇d 6= 0 in Ω with ∇
being the standard gradient operator in R

3. Moreover, we assume that on a strip (band)

U = {x ∈ R
3 | d(x) < δ}, for some δ > 0,

around S, there is a unique decomposition for any x ∈ U,

x = p(x) + d(x)~n(p(x)) (2.1)

with p(x) ∈ S and ~n(p(x)) being the unit outward normal to the surface S at p(x). The parameter δ
is usually determined by the surface curvatures if S is sufficiently smooth. Without loss of generality,
we assume that |∇d| ≡ 1 in U. Let ∇s = (∇s,1,∇s,2,∇s,3) = ∇− (~n · ∇)~n denote the tangential
(surface) gradient operator, and ∆s = ∇s ·∇s be the so-called Laplace-Beltrami operator on S. We
use the standard notation for Lq(S) on S, and we define the Sobolev spaces as follows:

W m,q(S) ={u ∈ Lq(S) | u possesses weak tangential derivatives up to order m
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which are in Lq(S)} .

We denote, in addition, that Hm(S) = W m,2(S) on S. To make the space Hm(S) well defined, it is
customary to assume k + α ≥ max{1,m} [29]. To avoid technical complication, we further assume
that S and ∂S are sufficiently smooth (say with k = 4) and ∂S 6= ∅ for the rest of the paper unless
stated otherwise.

To introduce the Cahn-Hilliard equation, we begin with the free energy functional

I(u) =

∫

S

{

H(u(x)) +
σ

2
|∇su(x)|2

}

ds, (2.2)

for any u = u(x) ∈ H1(S) with H being the bulk free energy density, and a positive constant σ > 0
which symbolizes the so-called diffuse interfacial width. Let u = u(x, t) be a function for x on S at
time t which, in the original work of [7, 8], denotes the concentration of one species of the binary
mixture. The chemical potential of the system is then of the form

p =
∂I

∂u
= H′(u) − σ∆su = φ(u) − σ∆su. (2.3)

By assuming a constant unit mobility, we get the dynamic equation

ut = ∆sp, (2.4)

which leads to a simple form of the Cahn-Hilliard equation as

ut = ∆s(φ(u) − σ∆su). (2.5)

As a model case, the function φ is assumed to be of the form:

φ(u) = H′(u) = γ2u
3 + γ1u

2 + γ0u, (2.6)

where γ0, γ1 and γ2 are given constants and γ2 > 0 is assumed. Here we study the homogenous
Dirichlet type boundary value problem for both the concentration and the chemical potential, that
is,

u(x) = 0, for x ∈ ∂S, (2.7)

and
p(x) = 0, for x ∈ ∂S. (2.8)

The initial condition for u is given by

u(x, 0) = u0(x), for x ∈ S. (2.9)

In order to introduce numerical discretization of the above equations, we first uniquely extend
the functions defined on S to U. That is, given a function u defined on S, its extension in U is
given by

ul(x) = u(p(x)), ∀ x ∈ U. (2.10)

The same extension can be done for the unit normal. For simplicity, we still use the same notation
for the extension, that is, for x ∈ U, we simply let ~n(x) = ~n(p(x)).

Let Sh be a polyhedral approximation to S having triangular faces, we assume that for each
point y ∈ S there is at most one point x ∈ Sh such that p(x) = y as suggested in [20], and vertices
of each triangular face of Sh are on S.
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We then do the similar extension from Sh to U. Given a function uh defined on Sh, first project
it onto S by ũh(p(y)) = uh(y) for y ∈ Sh, then we apply (2.10) again to extend ũh to U, i.e.,

uh,l(x) = ũh(p(x)), ∀ x ∈ U. (2.11)

We may equivalently write uh,l(x) = uh(y) for any pair of x ∈ U and y ∈ Sh such that p(x) =
p(y) ∈ S. Note that all extensions of functions to U are constant along normals to S, thus,
extensions of functions defined on S and those on Sh share much the same properties.

We use ds(x) and dsh(y) to denote the area elements of S and Sh respectively at the points
x ∈ S and y ∈ Sh. Let

µh(p(x)) =
ds(p(x))

dsh(x)
, (2.12)

for any x ∈ Sh. We then assume, since S and ∂S are sufficiently smooth, that

|1 − µh(x)| ≤ ch2, (2.13)

where h is the mesh size parameter. Moreover, here and in the sequel, c is used to denote a
generic postive constant which is independent of h as h → 0, that is, may take different values but
remain uniformly bounded as the discretization gets refined. We note that the assumption (2.13)
is generally true for regular and quasi-uniform triangulations of a smooth surface S [19].

3 The Fully Discrete Approximation Scheme

Let U denote a finite dimensional subspace of H1(Sh). In the context of finite element approxima-
tions, we take U to be a continuous finite element space with respect to certain triangulation of
the general surface S with mesh size parameter h. In this paper, we take U to be piecewise linear
function space for simplicity. Let (0, T ) be the time interval of interest, which is discretized into
N subintervals, each with a step size ∆t = T/N . The choice of a uniform time step size is not
essential to our following discussion.

For notational convenience, for any v,w ∈ H1
0 (S), and any V h,W h ∈ H1

0 (S), we let

(v,w)s =

∫

S

v(x) · w(x)ds , (V h,W h)sh
=

∫

Sh

V h(x)W h(x)dsh .

To approximate the nonlinear term in the equation, we define the function φ̃ : R
2 → R by

φ̃(x, y) =

{

(H(x) −H(y))/(x − y), if x 6= y ,
φ(x), if x = y ,

(3.1)

where H is as in equation (2.2). With this notation, we obtain the following fully discrete scheme:
find (Uh

n , P h
n−1) ∈ U × U , n = 1, 2, . . . , N , such that for any V h,W h ∈ U :

Uh
0 = uh,l

0 , (3.2)

(δtU
h
n , V h)sh

+ (∇sh
P h

n ,∇sh
V h)sh

= 0, (3.3)

−(P h
n ,W h)sh

+ σ(∇sh
Uh

n+1/2,∇sW
h)sh

+ (φ̃(Uh
n , Uh

n+1),W
h)sh

= 0, (3.4)

where uh,l
0 is an approximation to the initial condition u0 onto Sh given by the H1 projection,

Uh
n+1/2 =

Uh
n + Uh

n+1

2
, and δtU

h
n =

Uh
n+1 − Uh

n

∆t
.
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Similar notations are also used for P h
n .

For (3.2)-(3.4), we can define the Lyapunov functional: ∀ Uh ∈ U , let

Ih(Uh) =

∫

Sh

{

H(Uh) +
σ

2
|∇sh

Uh|2
}

dsh,

thus we have the following lemma:

Lemma 1 For n = 1, 2, . . . , N , we have

Ih(Uh
n+1) − Ih(Uh

n )

∆t
+ ‖∇sh

P h
n ‖

2
0 = 0. (3.5)

Proof: For equations (2.2), (3.3) and (3.4), we have

Ih(Uh
n+1) − Ih(Uh

n ) = σ∆t(∇sh
Uh

n+1/2,∇sh
δtU

h
n )sh

+ ∆t(φ̃(Uh
n , Uh

n+1), δtU
h
n )sh

= ∆t(P h
n , δtU

h
n )sh

= −∆t(∇sh
P h

n ,∇sh
P h

n )sh

= −∆t‖∇sh
P h

n ‖
2
L2(Sh).

Hence, we obtain (3.5) which proves the lemma. �

One can easily verify that Lemma 1 implies the following theorem:

Theorem 1 Let u0(x) ∈ H1
0 (S). Assume that there is a constant c > 0, independent of h, such

that ‖uh,l
0 ‖H1(S) ≤ c‖u0‖H1(S). Then, the solution (Uh

n , P h
n−1) of (3.3) and (3.4) satisfies for n =

1, 2, . . . , N,
‖Uh

n‖H1(Sh) ≤ c, (3.6)

and
n

∑

j=0

∆t‖∇sh
P h

j ‖
2
L2(Sh) ≤ c, (3.7)

where the generic constant c in the above two equations is independent of h, n, ∆t and N .

Proof: By summing up (3.5) over n, we get (3.7) and also that Ih(Uh
n ) ≤ c for some generic

constant c. It is easy to establish the coercivity of the functional Ih in H1(Sh) which then gives
(3.6). �

4 Pointwise Boundedness of Discrete Solutions

As stated in [16], one needs to prove the pointwise boundness of Uh
n for any n, such that φ̃(Uh

n , Uh
n+1)

becomes Lipschitz continuous with some Lipschitz constant independent of h, n and ∆t, then the
error estimates of the proposed fully discrete finite element scheme can be analyzed in a standard
manner. Since the imbedding theorem used in [16] is no longer valid in the manifold case, we
see that the pointwise boundedness does not follow directly from the existence of the Lyapunov
functional. Thus, some further estimates are needed.
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4.1 Some technical lemmas

We first present some technical results that are of later use.
For any u ∈ H1

0 (S) ∩ H2(S), we define the projection of u, say Πhu, onto the finite element
space U as follows: let f = −∆su ∈ L2(S), then Πhu is defined by

(∇sh
Πhu,∇sh

W h)sh
= (f l,W h)sh

, ∀ W h ∈ U .

As discussed in [19], one can easily deduce that if u ∈ H2(S), Πhu actually is the discrete solution
of −∆su = f over triangulation Sh and one has the following energy norm error estimate: for
u ∈ H1

0 (S) ∩ H2(S), there exists a generic constant c > 0, such that

‖u − (Πhu)l‖H1(S) ≤ ch‖u‖H2(S). (4.1)

Furthermore, concerning the extension defined earlier, we have

Lemma 2 For any u, v ∈ H1(S), there exist generic constants c1, c2 > 0 such that

c1‖u − v‖H1(S) ≤ ‖ul − vl‖H1(Sh) ≤ c2‖u − v‖H1(S). (4.2)

Proof: From the definition of ‖ · ‖H1(Sh), we have

‖ul − vl‖H1(Sh) =

(
∫

Sh

|ul − vl|2dsh

)1/2

+

(
∫

Sh

|∇sh
(ul − vl)|2dsh

)1/2

=

(
∫

S

1

µh
|u − v|2ds

)1/2

+

(
∫

S

1

µh
|Ph(I − dH)∇s(u − v)|2ds

)1/2

, (4.3)

where Ph(x) = I − ~nh(x) ⊗ ~nh(x), H : R
3 → R

3 denotes the Weingarten map [11].
From the discussions in [19], we know that when h is efficiently small, there always exists a

generic constant c0 > such that

1

c0
≤ µh ≤ c0,

1

c0
≤ Ph(I − dH) ≤ c0,

which implies the existence of generic constants c1, c2 > 0 satisfying (4.2). �

Lemma 3 For ǫ ∈ (0, 1), there exist some generic constants c1, c2 > 0 such that for any U ∈
H1(Sh),

c1‖U
l‖W 1,2+ǫ(S) ≤ ‖U‖W 1,2+ǫ(Sh) ≤ c2‖U

l‖W 1,2+ǫ(S) . (4.4)

Proof: Since the surface is sufficiently smooth, we have U l ∈ H1(S), therefore U l ∈ W 1,2+ǫ(S).
By using the fact (see [19]) that when h is efficiently small, there always exists a generic constant
c > 0 such that

1

c
|∇sU

l| ≤ |∇sh
U | ≤ c|∇sU

l|,

we can easily obtain the conclusion. �

Lemma 4 For ǫ ∈ (0, 1), there exists a generic constant c > 0, such that for any u ∈ H1
0 (S) ∩

H2(S),
‖Πhu‖W 1,2+ǫ(Sh) ≤ c‖u‖H2(S). (4.5)
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Proof: For u ∈ H1
0 (S) ∩ H2(S), by the inverse inequality for finite element functions, the lemmas

3, 2 and the inequality (4.1), we can find generic constant c > 0 satisfying

‖Πhu‖W 1,2+ǫ(Sh) ≤ ‖ul‖W 1,2+ǫ(Sh) + ‖ul − Πhu‖W 1,2+ǫ(Sh)

≤ ‖ul‖W 1,2+ǫ(Sh) + ch
2

2+ǫ
− 2

2 ‖ul − Πhu‖H1(Sh)

≤ ‖ul‖W 1,2+ǫ(Sh) + ch
2

2+ǫ
−1‖u − (Πhu)l‖H1(S)

≤ c‖u‖W 1,2+ǫ(S) + ch
2

2+ǫ ‖u‖H2(S). (4.6)

Now, using the Sobolev imbedding theorem H2(S) →֒ W 1,2+ǫ(S), we have

‖Πhu‖W 1,2+ǫ(Sh) ≤ c‖u‖H2(S)

for some constant c > 0. �

Similarly, we define another projection Λh, onto Sh, as follows: for any u ∈ H1
0 (S),

(Λhu, V h)sh
= (u, V h,l)s, ∀ V h ∈ U , (4.7)

i.e., equivalently,
(Λhu, V h)sh

= (µhul, V h)sh
, ∀ V h ∈ U , (4.8)

then for any V h ∈ U , we have

‖Λhu − V h‖L2(Sh) ≤ ‖µhul − V h‖L2(Sh).

Then we can prove the following lemma:

Lemma 5 For ǫ ∈ (0, 1), there exists a generic constant c > 0 such that for any u ∈ H1
0 (S) ∩

W 1,2+ǫ(S),
‖Λhu‖H1(Sh) ≤ c‖u‖W 1,2+ǫ(S). (4.9)

Proof: By the best approximation property and the inverse theorem in finite element space [6],
we can always find Uh ∈ U satisfying the following inequality:

‖Λhu‖H1(Sh) ≤ ‖ul‖H1(Sh) + ‖ul − Uh‖H1(Sh) + ‖Λhu − Uh‖H1(Sh)

≤ c‖ul‖W 1,2+ǫ(Sh) + c‖ul − Uh‖W 1,2+ǫ(Sh) + ch−1‖Λhu − Uh‖L2(Sh)

≤ c‖ul‖W 1,2+ǫ(Sh) + ch−1‖µhul − Uh‖L2(Sh)

≤ c‖ul‖W 1,2+ǫ(Sh) + ch−1‖ul − Uh‖L2(Sh) + ch−1‖(1 − µh)ul‖L2(Sh)

≤ c‖ul‖W 1,2+ǫ(Sh) + c‖ul‖H1(Sh)

≤ c‖ul‖W 1,2+ǫ(Sh)

≤ c‖u‖W 1,2+ǫ(S). �

At last, we state a property of function H in the following lemma.

Lemma 6 There exists a constant k > 0 such that

H(x) −H(y) − φ(y)(x − y) ≥ −k(x − y)2, ∀ x, y ∈ R.
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Proof: For any x ∈ R, we have

H′′(x) = φ′(x)

= 3γ2x
2 + 2γ1x + γ0

≥ γ0 −
1

3γ2
γ2
1 .

By the mean value theorem, we can always find a positive constant k > 0 such that

H(x) −H(y) − φ(y)(x − y) ≥ −k(x − y)2 (4.10)

for any x, y ∈ R. �

4.2 Estimates on the initial approximation

In order to get energy type estimates for the discretization scheme, first we consider the approxi-
mation of the initial condition, especially the initial chemical potential.

Let Uh
0 = Πhu0, ph

0 = Λhp0 where p0 = φ(Uh,l
0 ) − σ∆su0. Then we have

Lemma 7 There exists a constant c > 0 such that

‖ph
0‖H1(Sh) ≤ c.

Proof: Under the assumption on u0(x), we have from Lemma 5

‖Uh
0 ‖W 1,2+ǫ(Sh) ≤ c, ‖Λh∆su0‖H1(Sh) ≤ c,

where the constant c is independent of h. Since

W 1,2+ǫ(Sh) →֒ L∞(Sh),

we then get
‖Uh

0 ‖W 0,∞(Sh) ≤ c.

This implies that ‖φ′(Uh
0 )‖W 0,∞(Sh) is bounded, and so is ‖φ′(Uh

0 )∇sh
Uh

0 ‖W 0,2+ǫ(Sh) for arbitrary
ǫ ∈ (0, 1). Thus,

‖φ(Uh
0 )‖W 1,2+ǫ(Sh) ≤ c,

where c does not depend on h.
Using Lemma 5 again, we also have

‖Λhφ(Uh
0 )‖H1(Sh) ≤ c,

and by the definition of ph
0 , we get that

‖ph
0‖H1(Sh) ≤ c,

for a generic constant c independent of h. �

By the definition of p0, for any v ∈ H1(S), we have

−(p0, v)s + σ(∇su0,∇sv)s + (φ(Uh,l
0 ), v)s = 0, (4.11)
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Using the definition of Πh and under the assumption that u0 ∈ H2(S), we have that for any
V h ∈ U ,

σ(∇sh
Uh

0 ,∇sh
V h)sh

= ((p0 − φ(Uh,l
0 ))l, V h)sh

= (pl
0, V

h)sh
− (φ(Uh

0 ), V h)sh
, (4.12)

Using the definition of Λh, the following equation also holds

−(ph
0 , V h)sh

+ σ(∇sh
Uh

0 ,∇sh
V h)sh

+ (φ(Uh
0 ), V h)sh

= 0. (4.13)

Next we want to show the boundedness of P h
0 , which is a important component of the discrete

solution to the fully discrete scheme (3.2)-(3.4) when n = 1.

Theorem 2 Let ∆t be sufficiently small, i.e. ∆t < σ/k2, where k is as stated in Lemma 6, then

‖∇sh
P h

0 ‖
2
L2(Sh) ≤

(

1 −
k∆t

2σ

)−1

‖∇sh
ph
0‖

2
L2(Sh).

Proof: Let η = (Uh
1 − Uh

0 )/∆t. By (3.4), it holds that for any V h ∈ U ,

−(P h
0 , V h)sh

+
σ

2
(∇sh

(Uh
1 + Uh

0 ),∇sh
V h)sh

+ (φ̃(Uh
0 , Uh

1 ), V h)sh
= 0.

Subtracting the above equation from (4.13) and setting V h = η, we then obtain

(P h
0 − ph

0 , η)sh
=

σ

2
(∇sh

(Uh
1 − Uh

0 ),∇sh
η)sh

+ (φ̃(Uh
0 , Uh

1 ) − φ(Uh
0 ), η)sh

=
∆t

2
σ(∇sh

η,∇sh
η)sh

+
1

∆t

∫

Sh

[H(Uh
1 ) −H(Uh

0 ) − φ(Uh
0 )(Uh

1 − Uh
0 )]dsh

≥
∆tσ

2
‖∇sh

η‖2
L2(Sh) − k∆t‖η‖2

L2(Sh),

where the last step is a result of Lemma 6.
From equation (3.3), it follows that for any V h ∈ U ,

(η, V h)sh
= −(∇sh

P h
0 ,∇sh

V h)sh
.

Letting V h = η and using Cauchy’s inequality, we have

‖η‖2
L2(Sh) ≤

σ

2k
‖∇sh

η‖2
L2(Sh) +

k

2σ
‖∇sh

P h
0 ‖

2
L2(Sh).

Thus, we obtain

(P h
0 − ph

0 , η)sh
≥

∆tσ

2
‖∇sh

η‖2
L2(Sh) − k∆t

σ

2k
‖∇sh

η‖2
L2(Sh) − k∆t

k

2σ
‖∇sh

P h
0 ‖

2
L2(Sh)

= −
k2∆t

2σ
‖∇sh

P h
0 ‖

2
L2(Sh).

With (3.3), we get
(η, P h

0 − ph
0)sh

= −(∇sh
P h

0 ,∇sh
[P h

0 − ph
0 ])sh

,

and so

‖∇sh
P h

0 ‖
2
L2(Sh) = (∇sh

P h
0 ,∇sh

ph
0)sh

+ (∇sh
P h

0 ,∇sh
[P h

0 − ph
0 ])sh
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≤ ‖∇sh
P h

0 ‖L2(Sh)‖∇sh
ph
0‖L2(Sh) − (η, P h

0 − ph
0)sh

≤ ‖∇sh
P h

0 ‖L2(Sh)‖∇sh
ph
0‖L2(Sh) +

k2∆t

2σ
‖∇sh

P h
0 ‖

2
L2(Sh).

Since ∆t < σ/k2, we then get for a = 1/2 − k2∆t/(4σ) > 0,

‖∇sh
P h

0 ‖L2(Sh)‖∇sh
ph
0‖L2(Sh) ≤ a‖∇sh

P h
0 ‖

2
L2(Sh) +

1

4a
‖∇sh

ph
0‖

2
L2(Sh),

which leads to

‖∇sh
P h

0 ‖
2
L2(Sh) ≤ a‖∇sh

P h
0 ‖

2
L2(Sh) +

1

4a
‖∇sh

ph
0‖

2
L2(Sh) +

k2∆t

2σ
‖∇sh

P h
0 ‖

2
L2(Sh).

We then obtain

‖∇sh
P h

0 ‖
2
L2(Sh) ≤

1

4a2
‖∇sh

ph
0‖

2
L2(Sh),

or equivalently,

‖∇sh
P h

0 ‖L2(Sh) ≤

(

1 −
k2∆t

2σ

)−1

‖∇sh
ph
0‖L2(Sh). (4.14)

This completes the proof of the theorem. �

Finally, utilizing the boundary condition, we may apply the Poincare inequality, Lemma 7 and
Theorem 2 to obtain:

Corollary 1 There exists a generic constant c > 0, independent of h, ∆t and N , such that for
sufficiently small ∆t,

‖P h
0 ‖H1(Sh) ≤ c. (4.15)

4.3 Estimates on the discrete chemical potential

In this section, we derive estimates for the discrete chemical potential function P h
n when n ≥ 1.

Let us use the notation

δ2tU
h
n =

Uh
n+2 − Uh

n

2∆t
=

δtU
h
n+1 + δtU

h
n

2
, ∀ n ≥ 0 .

From the discrete approximation scheme (3.3) and (3.4), it holds that for n = 0, 1, 2, . . . ,N − 1,

(δ2tU
h
n , V h)sh

+ (∇sh
P h

n+1/2,∇sh
V h)sh

= 0, ∀ V h ∈ U , (4.16)

−(δtP
h
n ,W h)sh

+ σ(∇sh
δ2tU

h
n ,∇sh

W h)sh
+ (δtφ̃n,W h)sh

= 0, ∀ W h ∈ U , (4.17)

where φ̃h = φ̃(Uh
n+1, U

h
n ) and

δtφ̃n =
φ̃(Uh

n+1, U
h
n ) − φ̃(Uh

n , Uh
n−1)

∆t
.

Theorem 3 There exists a constant c > 0, independent of h, ∆t, n and N , such that when ∆t is
sufficiently small, it holds

‖∇sh
P h

n ‖L2(Sh) ≤ c, ∀ n = 1, 2, . . . ,N − 1. (4.18)
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Proof: Take V h = δtP
h
n , W h = δ2tU

h
n in (4.16) and (4.17), then it holds

‖∇sh
P h

n+1‖
2
L2(Sh)

− ‖∇sh
P h

n ‖
2
L2(Sh)

2∆t
= −(δ2tU

h
n , δtP

h
n )sh

= −σ(∇sh
δ2tU

h
n ,∇sh

δ2tU
h
n )sh

− (δtφ̃n, δ2tU
h
n )sh

.

For the last term of the above equation,

δtφ̃n = δ2tU
h
n · [

γ2

2
(Uh

n+1 + Uh
n + Uh

n−1)
2 +

γ2

2
((Uh

n+1)
2 + (Uh

n )2 + (Uh
n−1)

2)

+ γ1(U
h
n+1 + Uh

n + Uh
n−1) + γ0], (4.19)

so we get

δtφ̃n · δ2tU
h
n ≥ (γ0 −

γ2
1

2γ2
) · (δ2tU

h
n )2,

which leads us to

‖∇sh
P h

n+1‖
2
L2(Sh)

− ‖∇sh
P h

n ‖
2
L2(Sh)

2∆t
≤ −σ‖∇sh

δ2tU
h
n‖

2
L2(Sh) + c‖δ2tU

h
n‖

2
L2(Sh), (4.20)

for some constant c > 0.
Let V h = δ2tU

h
n in (4.16), and take use of the Cauchy inequality, we get that for some λ > 0,

‖δ2tU
h
n‖

2
L2(Sh) ≤ λ‖∇sh

δ2tU
h
n‖

2
L2(Sh) +

1

4λ
‖∇sh

P h
n+1/2‖

2
L2(Sh) .

Combining the above two inequalities, we easily obtain

‖∇sh
P h

n+1‖
2
L2(Sh)

− ‖∇sh
P h

n ‖
2
L2(Sh)

2∆t
≤ (cλ − σ)‖∇sh

δ2tU
h
n‖

2
L2(Sh) +

c

4λ
‖∇sh

P h
n+1/2‖

2
L2(Sh). (4.21)

Taking λ = σ/2c, the above inequality then becomes

1

∆t
(‖∇sh

P h
n+1‖

2
L2(Sh) − ‖∇sh

P h
n ‖

2
L2(Sh)) + σ‖∇sh

δ2tU
h
n‖

2
L2(Sh)

≤
c2

2σ
(‖∇sh

P h
n+1‖

2
L2(Sh) + ‖∇sh

P h
n ‖

2
L2(Sh)).

Thus,

1

∆t
(‖∇sh

P h
n+1‖

2
L2(Sh) − ‖∇sh

P h
n ‖

2
L2(Sh)) ≤

c2

2σ
(‖∇sh

P h
n+1‖

2
L2(Sh) + ‖∇sh

P h
n ‖

2
L2(Sh)).

Multiplying ∆t to both sides of the above inequality, and summing the results over n from 0 to
m − 1 for any integer m > 1, we get

‖∇sh
P h

m‖2
L2(Sh) ≤ ‖∇sh

P h
0 ‖

2
L2(Sh) +

c2

σ

(

∆t
m

∑

n=0

‖∇sh
P h

n ‖
2
L2(Sh)

)

.

Using Theorem 1, it holds that there is a constant c > 0, independent of h, n, ∆t and N , such
that

‖∇sh
P h

m‖2
L2(Sh) ≤ ‖∇sh

P h
0 ‖

2
L2(Sh) + c.

Combining this with Corollary 1, the proof of theorem is then complete. �
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4.4 Pointwise boundedness of the discrete solution

In this section, we aim to prove the pointwise boundedness for the discrete solution {Uh
n , n =

1, 2, . . . , N}.

Theorem 4 For ǫ ∈ (0, 1), there exists a generic constant c > 0, independent of h, n, ∆t and N ,
such that

‖Uh
n+1/2‖W 1,2+ǫ(Sh) ≤ c, ∀n = 0, 1, . . . ,N − 1 .

Proof: With (3.4), we have that for n = 0, 1, . . . ,N − 1 and any W h ∈ U ,

σ(∇sh
Uh

n+1/2,∇sh
W h)sh

= (P h
n − φ̃(Uh

n , Uh
n+1),W

h)sh
= (Fn,W h)sh

,

where Fn = P h
n − φ̃(Uh

n , Uh
n+1).

Using Theorem 3 and the Poincare inequality, we get

‖P h
n ‖L2(Sh) ≤ c.

Moreover, (3.6) indicates that
‖Uh

n‖L2(Sh) ≤ c,

which leads to
‖φ̃(Uh

n , Uh
n+1)‖L2(Sh) ≤ c, ∀ n = 0, 1, . . . ,N − 1.

Then we have for n = 0, 1, . . . , N − 1,

‖Fn‖L2(Sh) ≤ c ,

which is equivalent to
‖F l

n‖L2(S) ≤ c.

For a fixed n, let ũ be the solution of the equation

−∆sũ = F l
n/σ

over S with the homogeneous Dirichlet boundary condition, we can show that such ũ exists and
satisfies the following property

‖ũ‖H2(S) ≤ c‖F l
n‖L2(S).

Using the weak form of the above equation

σ(∇sũ,∇sw)s = (F l
n, w)s, ∀w ∈ H1(S),

as well as the definition of Πh(·), we can find that

Uh
n+1/2 = Πhũ.

Therefore, by Lemma 4, we get for n = 0, 1, . . . ,N − 1,

‖Uh
n+1/2‖W 1,2+ǫ(Sh) = ‖Πhũ‖W 1,2+ǫ(Sh)

≤ c‖ũ‖H2(S)

≤ c‖F l
n‖L2(S)

≤ c,

where c is independent of h, n, ∆t and N . �

Based on the above theorem, we will prove the pointwise boundedness of Uh
n+1/2.
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Corollary 2 There exists a constant c > 0, independent of h, n, ∆t and N , such that

‖Uh
n+1/2‖L∞(Sh) ≤ c, ∀ n = 0, 1, . . . ,N − 1. (4.22)

Proof: This is straight from the Sobolev imbedding Theorem (W 1,2+ǫ(Sh) →֒ L∞(Sh), for ǫ > 0)
and Theorem 4. �

Now, let us prove the the pointwise boundedness for the discrete solution under some stability
conditions.

Theorem 5 Let ∆t be sufficiently small, i.e.

∆t < σ/k2, (4.23)

and
∆t/h2 ≤ c0, (4.24)

where c0 is a certain constant. Then, there exists a constant c > 0 which depends on the initial
condition u0 but is independent of h, n, ∆t and N , such that

‖Uh
n‖W 0,∞(Sh) ≤ c, ∀ n = 1, 2, . . . ,N. (4.25)

Proof: In (3.3), set V h = ∂tU
h
n , we have

‖δtU
h
n‖

2
L2(Sh) ≤ ‖∇sh

δtU
h
n‖L2(Sh)‖∇sh

P h
n ‖L2(Sh). (4.26)

By Theorem 3, we get the following inequality

‖δtU
h
n‖

2
L2(Sh) ≤ c‖∇sh

δtU
h
n‖L2(Sh). (4.27)

Using the inverse inequality on the last term, we have

‖δtU
h
n‖L2(Sh) ≤ ch−1.

Applying the inverse inequality again, we further obtain

‖δtU
h
n‖W 0,∞(Sh) ≤ ch−2,

which leads to

‖Uh
n+1 − Uh

n‖W 0,∞(Sh) ≤ c∆th−2 ≤ cc0, ∀n = 0, 1, . . . ,N − 1. (4.28)

Combining (4.28) and Theorem 4, we have for any n = 0, 1, . . . ,N − 1,

‖Uh
n+1‖W 0,∞(Sh) ≤ ‖Uh

n+1/2‖W 0,∞(Sh) +
∥

∥

∥

Uh
n+1 − Uh

n

2

∥

∥

∥

W 0,∞(Sh)
≤ c,

which proves the theorem. �

The stability condition (4.24) needed for proving the above theorem requires the time step
increment be refined at a faster rate than the spatial discretization parameter h, when refinement
of the discretization is used. Since the scheme is implicit, this may not be essential to the stability of
the approximation scheme. In fact, the stability condition is not necessary for the one dimensional
problem. On the other hand, the stability condition for a typical fully explicit finite difference
scheme for fourth-order problems requires ∆t ≤ ch4, which is considerably more restrictive than
the one specified here.
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5 Error Estimates for the Approximation Scheme

We have derived some nice properties of the discrete solutions in previous sections, and we also
note note that existence and uniqueness of the discrete solutions for our scheme can be shown using
the approach very similar to that of [16]. On the other hand, with all the previous arguments the
error estimate becomes kind of standard, except for some consideration of the projections between
the surface and its planar triangulation.

To simplify the notation, we use the abbreviation u − u(t) and u = p(t) to denote the exact
solution u = u(·, t) and the corresponding chemical potential at time t, both of which are assumed
to be sufficiently smooth. We let ut, utt be the time derivatives of u, pt be that of p.

Lemma 8 Let u ∈ L∞(S × (0, T )). Assume there exists a constant c > 0 such that

‖Uh
n‖W 0,∞(Sh) ≤ c, ∀ n = 0, 1, ...,N. (5.1)

Then there exists a generic constant c > 0 such that

‖φ̃(Uh
n , Uh

n+1) − φ(ul(tn))‖L2(Sh)

≤ c
(

‖Uh
n+1 − ul(tn+1)‖L2(Sh) + ‖Uh

n − ul(tn)‖L2(Sh) + ‖ul(tn) − ul(tn+1)‖
2
L4(Sh)

)

Proof: By the triangle inequality,

‖φ̃(Uh
n , Uh

n+1) − φ(ul(tn))‖L2(Sh)

≤ ‖φ̃(Uh
n , Uh

n+1) − φ̃(Uh
n , ul(tn+1))‖L2(Sh)

+ ‖φ̃(Uh
n , ul(tn+1)) − φ̃(ul(tn), ul(tn+1))‖L2(Sh)

+ ‖φ̃(ul(tn), ul(tn+1)) − φ(ul(tn))‖L2(Sh)

= I1 + I2 + I3,

where {Ii} (i = 1, 2, 3) denote the terms in the previous summation in their corresponding orders.
Due to the uniform boundedness of Uh

n and u(t), it easily follows that

I1 ≤ c‖Uh
n+1 − ul(tn+1)‖L2(Sh),

I2 ≤ c‖Uh
n − ul(tn)‖L2(Sh),

for some constant c > 0.
For the term I3, recall the algebraic identities

u2 + uv + v2

3
−

(u + v

2

)2
=

1

12
(u − v)2,

u3 + u2v + uv2 + v3

4
−

(u + v

2

)3
=

1

8
(u + v)(u − v)2,

then we have

φ̃(ul(tn), ul(tn+1)) − φ(ul(tn)) =
(γ2

4
ul(tn) +

γ1

12

)

[ul(tn) − ul(tn+1)]
2,

thus
I3 ≤ c‖ul(tn) − ul(tn+1)‖

2
L4(Sh),

which finishes the proof. �

We remark that in Lemma 8, if we change φ(ul(tn)) to φ(ul(tn+1)), a similar result follows.
Then we have the following error estimate for our fully discrete finite element scheme.
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Theorem 6 For n = 1, 2, ..., N , adopt the assumptions about u and Uh
n in Lemma 8, and assume

u ∈ C1([0, T ],H1
0 (S) ∩ H2(S)) ∩ C3([0, T ], L2(S)) , , (5.2)

p ∈ L∞([0, T ],H1
0 (S) ∩ H2(S)) ∩ C2([0, T ], L2(S)) , (5.3)

then it holds that there exists a constant c > 0 independent of h, ∆t and n, such that

‖Uh
n − ul(tn)‖2

L2(Sh) ≤ ‖ul(tn) − Πhu(tn)‖2
L2(Sh) + c∆t

n−1
∑

i=0

[

‖δt(u
l(ti) − Πhu(ti))‖

2
L2(Sh)

+ ‖ul(ti) − Πhu(ti)‖
2
L2(Sh) + ‖pl(ti) − Πhp(ti)‖

2
L2(Sh)

+ ∆t4(‖ul
ttt(ti+θi

)‖2
L2(Sh) + ‖ul

ttt(ti+κi
)‖2

L2(Sh)

+‖pl
tt(tn+τi

)‖2
L2(Sh) + ‖pl

tt(tn+νi
)‖2

L2(Sh) + ‖ul
t(ti+γi

)‖4
L4(Sh))

]

, (5.4)

where tj = j∆t, tj+θj
= (j + θj)∆t for 0 < θj < 1, j = 1, 2, ..., n − 1, adopt the same definition for

κj , τj , νj and γj .

Proof: For n = 0, 1, 2, ...N , let us define

En = Uh
n − Πhu(tn), Fn = P h

n − Πhp(tn), Fn+(1/2) = P h
n − Πhp(tn+(1/2)),

and
ξ(t) = ul(t) − Πhu(t), η(t) = pl(t) − Πhp(t).

By the definition of the fully discrete scheme we see that the above quantities satisfy the following
equations:

(En+1 − En

∆t
, V h)sh

+ (∇sh
Fn+(1/2),∇sh

V h
)

sh

=
(ξ(tn+1) − ξ(tn)

∆t
, V h

)

sh

− (δtu
l(tn), V h)sh

− (∇sh
Πhp(tn+(1/2)),∇sh

V h)sh
, (5.5)

− (Fn+(1/2),W
h)sh

+ σ
(

∇sh

En+1 + En

2
,∇sh

W h
)

sh

= −(η(tn+(1/2)),W
h)sh

+ (pl(tn+(1/2)),W
h)sh

− σ
(

∇sh

Πhu(tn+1) + Πhu(tn)

2
,∇sh

W h
)

sh

− (φ̃(Uh
n , Uh

n+1),W
h)sh

. (5.6)

Set V h = En+1+En

2 in (5.5), W h = Fn+(1/2) in (5.6), multiply the first result by σ and subtract by
the second result, we then obtain

σ
(En+1 − En

∆t
,
En+1 + En

2

)

sh

+ (Fn+(1/2), Fn+(1/2))sh

= σ
(ξ(tn+1) − ξ(tn)

∆t
, V h

)

sh

− σ(δtu
l(tn), V h)sh

− σ(∇sh
Πhp(tn+(1/2)),∇sh

V h)sh
+ (η(tn+(1/2)),W

h)sh

− (pl(tn+(1/2)),W
h)sh

+ σ
(

∇sh

Πhu(tn+1) + Πhu(tn)

2
,∇sh

W h
)

sh

+ (φ̃(Uh
n , Uh

n+1),W
h)sh

= T1 + T2 + T3 + T4, (5.7)

where

T1 = σ
(ξ(tn+1) − ξ(tn)

∆t
, V h

)

sh

,
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T2 = −σ(δtu
l(tn), V h)sh

− σ(∇sh
Πhp(tn+(1/2)),∇sh

V h)sh
,

T3 = (η(tn+(1/2)),W
h)sh

,

T4 = −(pl(tn+(1/2)),W
h)sh

+ σ
(

∇sh

Πhu(tn+1) + Πhu(tn)

2
,∇sh

W h
)

sh

+ (φ̃(Uh
n , Uh

n+1),W
h)sh

.

Now let us estimate T2 and T4. To avoid complexity, we omit most details of our analysis and give
the following results:

T2 = −σ
( 1

µh
(
u(tn+1) − u(tn)

∆t
− ut(tn+(1/2))), V

h,l
)

s

= −
σ∆t2

48

(

uttt(tn+θn
) + uttt(tn+κn), V h

)

sh

T4 = −(pl(tn+(1/2)),W
h)sh

+ (φ̃(Uh
n , Uh

n+1),W
h)sh

+
(pl(tn+1) + pl(tn)

2
−

φ(ul(tn+1)) + φ(ul(tn))

2
,W h

)

sh

=
(pl(tn+1) + pl(tn)

2
− pl(tn+(1/2)),W

h
)

sh

+
( φ̃(Uh

n , Uh
n+1) − φ(ul(tn+1))

2
,W h

)

sh

+ (
φ̃(Uh

n , Uh
n+1) − φ(ul(tn))

2
,W h)sh

.

=
∆t2

16
(pl

tt(tn+τn) + pl
tt(tn+νn),W h)sh

+
( φ̃(Uh

n , Uh
n+1) − φ(ul(tn+1))

2
,W h

)

sh

+ (
φ̃(Uh

n , Uh
n+1) − φ(ul(tn))

2
,W h)sh

.

With all the above approximations and Lemma 8, we sum both sides of (5.7) with n ranging
from 0 to n − 1. It follows that

σ

2∆t
‖En‖

2
L2(Sh) +

n−1
∑

i=0

‖Fi+(1/2)‖
2
L2(Sh) −

σ

2∆t
‖E0‖

2
L2(Sh)

≤
σ

2

n−1
∑

i=0

‖δtξ(ti)‖
2
L2(Sh) +

σ∆t4

1304

n−1
∑

i=0

(‖ul
ttt(ti+θi

)‖2
L2(Sh) + ‖ul

ttt(ti+κi
)‖2

L2(Sh)) +
1

2

n−1
∑

i=0

‖η(ti)‖
2
L2(Sh)

+
σ

4

n−1
∑

i=0

‖Ei+1 + Ei‖
2
L2(Sh) +

∆t4

512

n−1
∑

i=0

(‖pl
tt(ti+τi

)‖2
L2(Sh) + ‖pl

tt(ti+νi
)‖2

L2(Sh))

+ c
n−1
∑

i=0

(‖Ei‖
2
L2(Sh) + ‖ξ(ti)‖

2
L2(Sh) + ‖ul(ti) − ul(ti+1)‖

4
L4(Sh)) +

1

2

n−1
∑

i=0

‖Fi+(1/2)‖
2
L2(Sh),

which leads to

‖En‖
2
L2(Sh) ≤ ‖E0‖

2
L2(Sh) + ∆t

n−1
∑

i=0

‖δtξ(ti)‖
2
L2(Sh) +

∆t5

652

n−1
∑

i=0

(‖ul
ttt(ti+θi

)‖2
L2(Sh) + ‖ul

ttt(ti+κi
)‖2

L2(Sh))

+ ∆t
n−1
∑

i=0

‖Ei‖
2
L2(Sh) +

∆t

2
‖En‖

2
L2(Sh) +

∆t

σ

n−1
∑

i=0

‖η(ti)‖
2
L2(Sh)
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+
∆t5

256σ

n−1
∑

i=0

(‖pl
tt(ti+τi

)‖2
L2(Sh) + ‖pl

tt(ti+νi
)‖2

L2(Sh))

+ c∆t

n−1
∑

i=0

‖Ei‖
2
L2(Sh) + c∆t

n−1
∑

i=0

‖ξ(ti)‖
2
L2(Sh) + c∆t5

n−1
∑

i=0

‖ul
t(ti+γi

)‖4
L4(Sh).

Apply the discrete Gronwall inequality and consider the definition of E0 and Uh
0 , then there exists

a constant c > 0 such that

‖En‖
2
L2(Sh) ≤ c∆t

n−1
∑

i=0

[

‖δtξ(ti)‖
2
L2(Sh) + ‖ξ(ti)‖

2
L2(Sh) + ‖η(ti)‖

2
L2(Sh)

+ ∆t4(‖ul
ttt(ti+θi

)‖2
L2(Sh) + ‖ul

ttt(ti+κi
)‖2

L2(Sh)

+‖pl
tt(ti+τi

)‖2
L2(Sh) + ‖pl

tt(ti+νi
)‖2

L2(Sh) + ‖ul
t(ti+γi

)‖4
L4(Sh))

]

.

Thus the conclusion (5.4) follows. �

By the definition of U and the conclusions in [19], it can be seen that if u ∈ C1((0, T ),H1
0 (S)∩

H2(S)) and p ∈ L∞((0, T ),H1
0 (S) ∩ H2(S)), then there exists some constant c > 0 which satisfies

‖ul(ti) − Πhu(ti)‖L2(Sh) ≤ ch2,

‖pl(ti) − Πhp(ti)‖L2(Sh) ≤ ch2,

‖δt(u
l(ti) − Πhu(ti))‖L2(Sh) ≤ ch2,

and under some regularity assumptions for time derivatives of u and p, we can deduce the following
corollary from Theorem 6,

Corollary 3 Under the assumptions in Theorem 6, it holds that for n = 1, 2, ...,N , there exists a
constant c > 0 independent of h, ∆t and n, such that

‖Uh
n − ul(tn)‖L2(Sh) ≤ c(h2 + ∆t2).

From the discussion in previous sections, we know that the condition (5.1) is automatically
satisfied under the conditions specified in Theorem 5. The error estimate is of optimal order, with
respect to the approximation space.

6 Numerical Experiments

We now present some numerical simulations using themethod developed here. To ensure the accu-
rate finite element solution, the meshes of the surface S to be used in our numerical experiments for
discretization are generated by the so-called constrained centroidal Voronoi Delaunay triangulation
(CCVDT) algorithm [14]. We now give a brief description below.

Given a density function ρ(x) defined on S, for any region V ⊂ S, we call xc the ‘constrained
mass centroid of V on S’ if

xc = arg min
x∈V

F (x) , where F (x) =

∫

V
ρ(y)‖y − x‖2 ds(y) . (6.1)

The existence of solutions of (6.1) can be easily obtained by using the continuity and compactness of
F ; however, solutions may not be unique. In general, given a Voronoi tessellation W = {xi, Vi}

n
i=1
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of S, the generators {xi}
n
i=1 do not coincide with {xc

i}
n
i=1, where xc

i denotes the constrained mass
centroid of Vi for i = 1, . . . , n. We refer to a Voronoi tessellation of S as a constrained centroidal
Voronoi tessellation(CCVT) if and only if the points {xi}

n
i=1 which serve as the generators of the

associated Voronoi tessellation {Vi}
n
i=1 are also the constrained mass centroids of those regions [14],

i.e., if and only if we have that
xi = xc

i for i = 1, . . . , n .

The CCVT is a generalization of the standard centroidal Voronoi tessellation [13] which is a concept
with many applications including mesh generation and optimization. The dual tessellation of
CCVT of S is then called a CCVDT. Constrained centroidal Voronoi meshes on surfaces in R

3 have
many good geometric properties, see [14, 18] for detailed studies as well as efficient algorithms for
constructing CCVT/CCVDT meshes.

For all the experiments we are going to show, the meshes are all generated by CCVDT algorithm
(see previous chapters for details), and we always set φ(u) = u3 − u, and numerical tests will be
done on different surfaces, with different σ. Firstly, we observe the approximate solutions u on
half unit sphere with σ = 0.008, ∆t = 0.002. Figure 1 shows the results on meshes with 1219 and
4777 nodes, respectively. The initial condition for the coarse mesh is randomly generated, then
we project the values onto the finer mesh, such that the two experiments have the same initial
condition. We can see the excellent agreement between these two cases.

Figure 1: Numerical solutions of the concentration u at t = 0, 0.2, 0.4, 0.6 (from left to right), on
meshes with 1219 (top row) and 4777 (bottom row) nodes.

Our second experiment is performed on a saddle-like surface defined by

S = {x ∈ R
3 | (x3 − x2

2)
2 + x2

1 + x2
2 = 1, x3 ≥ x2

2, x1 ≥ 0}.

We set σ = 0.006, ∆t = 0.002 and Figure 2 shows the numerical results at different time with 3420
and 13493 nodes. The initial conditions for different meshes are set by using the same trick as in
Experiment 1. We can observe the solution finally converges to the steady state and the solutions
agree well on the two meshes.

Finally, we test our scheme on a closed surface. The surface S is chosen to be the unit sphere,
defined by S = {x ∈ R

3 | x2
1 + x2

2 + x2
3 = 1}, take σ = 0.01, ∆t = 0.005. We solve the equation on

mesh with 2014 and 8050 nodes, initial conditions on two meshes are set as in previous two exper-
iments to guarantee the consistency, and results at different time steps are presented in Figure 3.
As we can see, our scheme also works well for closed surface, though the theoretical analysis is done
for an open surface.
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Figure 2: Numerical solution of the concentration u at t = 0, 1, 2, 10 (left to right), on meshes
with 3420 (top row) and 13493 (bottom row) nodes.

Figure 3: Numerical solution of the concentration u at t = 0, 1, 2, 5 (from left to right), on meshes
with 2014 (top row) and 8050 (bottom row) nodes.

7 Conclusions

We conclude our discussions by noting that while a uniform time discretization is used in the
analysis given here for the purpose of simplifying notations, much of the conclusions remain valid
for nonuniform and adaptive time steps. The approximation scheme as well as the analysis presented
here can be easily modified to deal with the Neumann type boundary value problems for the Cahn-
Hilliard equation where the reductions to coupled systems are again allowed. In the future, it will
be interesting to study the extensions to more complex situation where the surfaces evolve together
with the phase field variables.
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