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ON PERFORMANCE OF GREEDY ALGORITHMS

VLADIMIR N. TEMLYAKOV AND PAVEL ZHELTOV

Abstract. In this paper we show that for dictionaries with small
coherence in a Hilbert space the Orthogonal Greedy Algorithm
(OGA) performs almost as well as the best m−term approximation
for all signals with sparsity almost as high as the best theoretically
possible threshold s = 1

2 (M−1 + 1) by proving a Lebesgue-type
inequality for arbitrary signals. On the other hand, we present an
example of a dictionary with coherence M and an s−sparse sig-
nal for which OGA fails to pick up any atoms from the support,
thus showing that the above threshold is sharp. Also, by prov-
ing a Lebesgue-type inequality for Pure Greedy Algorithm (PGA),
we show that PGA matches the rate of convergence of the best
m−term approximation, even beyond the saturation limit of m− 1

2 .

1. Introduction

In this paper we mainly study the efficiency of the Orthogonal Greedy
Algorithm (OGA), which is also known as the Orthogonal Matching
Pursuit (OMP) in the compressed sensing community, when dealing
mostly with finite-dimensional spaces. To preserve a more theoretical
flavor of our result, we’ll stay with a term more traditional in the field
of approximation theory.

OGA is a simple yet powerful algorithm for highly nonlinear sparse
approximation that enjoyed a long history of research, for example, see
[1, 2, 4, 9, 10, 14, 16, 17], and [15] for a survey. Since conception,
its performance served as a baseline of comparison for the other algo-
rithms, such as Regularized OMP [13], Stagewise OMP [6] and others
[12].

Previous work ([3, 4, 8, 16]) has shown that both OGA and convex
relaxation known as Basis Pursuit recover sparse signals f = Φx exactly
if support size doesn’t exceed a critical threshold m = 1

2
(M−1 + 1). In

particular, Orthogonal Greedy Algorithm does so in exactly m steps.
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2 VLADIMIR N. TEMLYAKOV AND PAVEL ZHELTOV

In fact, OGA will recover one atom from the support of sparse f on
every step.

The results in this paper are threefold. In the first section, we will
show that OGA performs as well as the best m−term approximation
(up to a factor of exp(

√
logm)) for all signals with sparsity almost as

high as the best theoretically possible threshold m = O( 1
M

) (up to the
same factor). After that, we will show that this threshold is sharp by
constructing an explicit example of a dictionary with small coherence
and a signal with sparsity m = 1

2
(M−1 + 1), for which OGA fails to

find its sparse approximation within m steps.
In a separate section we will explore OGA’s sibling Pure Greedy

Algorithm (PGA), which goes under the name of Projection Pursuit
([9, 10]) among statisticians. While even simpler to implement, as has
been shown in [2, 11] to perform in the sense of rate of approximation
of elements from special classes (namely, A1(D)) less efficiently than
OGA.

We will work in a Hilbert space H. The dictionary D is an arbitrary
collection of elements {ϕi, i ∈ N} ⊂ H such that spanD is dense
in H. For convenience, we will assume all elements (or atoms) are
normalized (‖ϕ‖ = 1). We would be interested in the property of D
called coherence:

M := sup{|〈ϕi, ϕj〉| : ϕi, ϕj ∈ D, ϕi 6= ϕj}.

We will commonly use Γ ⊂ N for a finite set of indices, and ΦΓ for
the collection of atoms from D indexed by Γ. Moreover, we will omit
subscript Γ where it will be obvious from context. It would be conve-
nient then to abuse finite-dimensional notation for linear combinations
of elements from Φ,

Φ = {ϕ}γ∈Γ , Φx =
∑
γ∈Γ

xγϕγ,

for scalar products of f with Φ (which can be seen as adjoint operator
of Φ)

Φ∗f = [〈ϕ, f〉]γ∈Γ ,

and for coefficients of projection of f onto span Φ (pseudoinverse):

Φ†f = arg min
x∈Rm

‖f − Φx‖ , ΦΦ†f = projΦ f.

Also, we will use notation log for the base-2 logarithm.
Finally, Pure and Orthogonal Greedy Algorithms construct sequences

of approximations of a given signal f ∈ H according to the following
theoretical procedure:
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Initialize residual f0 := f and the index set Γ0 := ∅
Repeat for s = 1, 2, . . . :

Find the best atom in D: ϕs = arg maxϕ∈D |〈fs−1, ϕ〉|
Add it to the list: Φs = Φs−1 ∪ {ϕs}
PGA: Subtract its contribution: fs = fs−1 − 〈fs−1, ϕs〉ϕs
OGA: Project onto Φs: fs = f − projΦs f

2. Lebesgue-type inequalities for OGA

To reduce visual clutter, we will use the notation fk for the residuals
of both OGA and PGA throughout the paper. It will always be clear
from context which algorithm is being used.

First, we will assume that the maximizer exists, otherwise some mod-
ifications are necessary.

For a function f from H we will define its best m-term approximation
error

σm(f) := inf
Γ:| supp Γ|=m

inf
x∈Rm

‖f − ΦΓx‖ .

This quantity will serve as a benchmark for performance of the greedy
algorithms. Following [5], we call such inequalities Lebesgue-type.

The first result of this kind was proven by Gilbert, Muthukrishnan
and Strauss in [7]:

Theorem 1. For every M−coherent dictionary D and any signal f ∈
H

‖fm‖ ≤ 8
√
mσm(f), if m+ 1 ≤ 1

8
√

2M
.

The constants were improved by Tropp in [16];

Theorem 2. For every M−coherent dictionary D and any signal f ∈
H

‖fm‖ ≤
√

1 + 6mσm(f), if m ≤ 1

3M
.

Of course, this provides a guarantee that for sparse signals OGA will
recover its support exactly after at most m iterations, but on the other
hand, the factor in front of σ is huge. This problem was solved by
Donoho, Elad and Temlyakov in [5], where they have shown that

Theorem 3. For every M−coherent dictionary D and any signal f ∈
H ∥∥fbm logmc

∥∥ ≤ 24σm(f), if m ≤ 1

20M
2
3

.
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This is much better in a sense that we have an absolute constant as
an extra factor, but to obtain that they had to sacrifice depth of search
(m logm now) and critical sparsity (only M− 2

3 ) to kill the square root.
The method they used was based on the following fact:

Theorem 4. For every M−coherent dictionary D and any signal f ∈
H and any k, s

‖fk+s‖2 ≤ 2 ‖fk‖ (3M(k + s) ‖fk‖+ σs(fk)) , if k + s ≤ 1

2M
.

In other words, it is possible to estimate fk+s in terms of the best
m−term approximation of fk. A clever recursive argument primed with
Theorem 2 then establishes Theorem 3.

The approach used in this paper is a modification of their argument,
replacing a crude triangle inequality in (2.6, [5]) by Parseval identity.
This allows to essentially close the gap between 2

3
and 1. For the sake of

brevity, we refer you to their paper [5] for proofs of most of the impor-
tant lemmas that we will need, initial setup and notation. We believe
that current result (following) is more natural for this construction,
and we suggest to call it an additive-type Lebesgue inequality.

Theorem 5. (Additive-type Lebesgue inequality) For every M−coherent
dictionary D and any signal f ∈ H and any k < s

‖fk+s‖2 ≤ 7Ms ‖fk‖2 + σs(fk)
2, if k + s <

1

2M
.

Corollary 6. For every M−coherent dictionary D and any signal f ∈
H ∥∥∥fmb2√logmc

∥∥∥ ≤ 3σm(f), if m2
√

2 logm ≤ 1

26M
.

Note that the expression m2
√

logm grows slower than any m1+ε. Com-
paring to m logm in Corollary 2.1, [5], some sacrifices in the depth of
search had to be made, but they don’t offset the gains on the sparsity
front, which is evident from another corollary:

Corollary 7. For every M−coherent dictionary D, any signal f ∈ H
and any fixed δ > 0∥∥∥f

m2d 1
δe
∥∥∥ ≤ 3σm(f), if m ≤

(
1

14M

) 1
1+δ

2−d
1
δe

3. Lebesque inequality for PGA

In a PGA setting we lack Theorem 2, and the fact that atoms cho-
sen previously can still reappear in the expansion precludes a full force
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of Theorem 5. On the other hand this is an advantage over OGA in
a sense that PGA outputs a greedy expansion, i.e. it is completely
sequential, and therefore we can use fm+n = (fm)n. This allows The-
orem 8, an analogue of Theorem 5 with k = 0, to be a source of a
surprising pair of corollaries. We will show that if the best m−term
approximation rate is O(m−r) for some fixed r, then PGA matches
this rate up to a constant factor. This is a first result that breaks
the saturation barrier. While a similar result was proven in [5] for a
general class of dictionaries called λ−quasiorthogonal (which includes
M−coherent dictionaries), it suffered from what is known as satura-
tion property. That is, even imposing extremely tough restrictions on
σm(f), we cannot get better than m−

1
2 rate of approximation by PGA.

In fact, DeVore and Temlyakov in [2] construct a signal and a dictio-

nary such that σ2(f) = 0, but ‖f − fm‖ ≥ m−
1
2 for m ≥ 4. Note that

the coherence of their dictionary is M =
√

33/89 = 0.61..., which en-
tails m < 1

2M
< 1, and therefore, the following theorems are, of course,

useless.

Theorem 8. (Additive-type Lebesgue inequality for PGA) For every
M−coherent dictionary D and any signal f ∈ H

‖fs‖2 ≤ 9Ms ‖f‖2 + σs(f)2, if s ≤ 1

2M
.

Corollary 9. Let D have coherence M and signal f ∈ H be such that
for some fixed r > 0 and for all

m2
√

10r logm ≤ 1

18M

it is true that

σm(f) ≤ m−r ‖f‖ .
Then for all such m

‖fm2
√

10r logm‖ ≤ 2m−r ‖f‖ .

Just as Corollary 7 is a “hard” realization of a “soft” Corollary 6 as
far as power of m is concerned, Corollary 10 is a power of m version of
a previous Corollary 9.

Corollary 10. Let D have coherence M and signal f ∈ H be such that
for some fixed δ > 0, r > 0 and for all

m ≤ N(δ) :=

(
1

18M

) 1
1+δ

2−d
1
δe
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it is true that

σm(f) ≤ m−r ‖f‖ .
Then there exists a constant C(δ, r) such that m-th PGA residual is
suboptimal:

‖fm‖ ≤ C(δ, r)m−r ‖f‖ for all m ≤ N(δ).

In other words, almost on the whole interval m ∈ [0, O( 1
M

)] we get
PGA residuals matching the rate of best approximation. The proofs
repeat for most part the corresponding proofs for OGA, so we will
describe the necessary changes only.

4. A dictionary with small coherence that is difficult
for OGA

From [16] (see also [4]) we know that OGA recovers m−sparse signal
over M−coherent dictionary D exactly in m steps if

m <
1

2

(
1

M
+ 1

)
.

We will show that an above estimate is sharp.

Theorem 11. For any 0 < M < 1 there exists M−coherent dictionary
D and an m−sparse signal f such that m = 1

2

(
1
M

+ 1
)

but OGA will
never recover x exactly.

Proof. Let {ej}∞j=1 be the standard basis for H = `2 and a signal f =∑m
i=1 ei with norm ‖f‖ =

√
m. Let the dictionary D be a basis of H

comprised of the following two kinds of atoms:

Dgood = {ϕi = αei − βf, i = 1, . . . ,m}, and

Dbad = {ϕj = ηej + γf, j = m+ 1, . . . }.

It is enough to consider α, β, γ > 0. Also, let all ϕ’s above to be norm-1:
η is chosen in a way to normalize ϕj, j = m+ 1, . . . , and

(1) (α− β)2 + (m− 1)β2 = 1.

The following are the scalar products of f with the dictionary:

For ϕi ∈ Dgood 〈ϕi, f〉 = 〈αei − βf, f〉 = α−mβ
For ϕj ∈ Dbad 〈ϕj, f〉 = 〈ηej + γf, f〉 = mγ.

Let’s require the above dot products to be equal (R := mγ = α−mβ).
This will allow some realization of OGA to select ϕm+1 on the first
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step. Now the scalar products of the elements in D are as follows
(i 6= i′, j 6= j′, i, i′ ≤ m < j, j′):

〈ϕi, ϕi′〉 = 〈αei − βf, αei′ − βf〉 = mβ2 − 2αβ = −mβ(2γ + β),

〈ϕj, ϕj′〉 = 〈ηej + γf, ηej′ + γf〉 = mγ2,

〈ϕi, ϕj〉 = 〈αei − βf, ηej + γf〉 = γ(−mβ + α) = γR = mγ2.

Then coherence of such a dictionary is

M := max(mγ2,mβ(2γ + β)),

and it make sense to require γ2 = β(2γ + β). Solving this quadratic
equation, we get γ = (1 +

√
2)β. Now we can find α = mγ + mβ =

m(2 +
√

2)β, and plugging in (1) we can find β:

(m(2 +
√

2)− 1)2β2 + (m− 1)β2 = 1

β2 =
1

m2(2 +
√

2)2 −m(3 + 2
√

2)
.

The bottom line is that

M = mγ2 = m(1 +
√

2)2β2 =
(1 +

√
2)2

m(2 +
√

2)2 − (3 + 2
√

2)
.

Denote A := 1 +
√

2 and notice that 2 +
√

2 =
√

2A, 3 + 2
√

2 = A2.
Now simplify:

M =
A2

2A2 ·m− A2
=

1

2m− 1
, or m =

1

2

(
1

M
+ 1

)
.

Now remember OGA picked a wrong atom ψ fromDbad on the first step:
f ′ = f − 〈f, ψ〉ψ. By induction, suppose that by the n−th step OGA
has selected n atoms ψ1, ψ2, . . . , ψn from Dbad. Due to projection, OGA
will never select an atom twice, so let’s see what happens for ϕ ∈ D\Ψ:

〈ϕ, f −
n∑
j=1

cjψj〉 = 〈ϕ, f〉 −
n∑
j=1

cj〈ϕ, ψj〉 = R−M
n∑
j=1

cj.

Since all the scalar products are still the same (they do not depend
on ϕ), some realization of OGA will select another atom from Dbad,
completing the induction. In fact, OGA will never select a correct
atom from Dgood ever, a disastrous failure. �
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5. Proofs

We will need the following simple lemmas.

Lemma 12. Let Φ = {ϕ1, ϕ2, . . . , ϕn} be a finite collection of atoms
from M−coherent dictionary D. Then for any x ∈ Rn

(1−Mn) ‖x‖2
2 ≤ ‖Φx‖

2 ≤ (1 +Mn) ‖x‖2
2 .

Lemma 13. Let Φ = {ϕ1, ϕ2, . . . , ϕn} be a finite collection of atoms
from M−coherent dictionary D. Then for any f ∈ H

‖Φ∗f‖2 ≥
1−Mn√
1 +Mn

‖projΦ f‖H .

Proof. For the proofs of the above lemmas see [5], Lemmas 2.1, 2.2. �

Proof of Proof of Theorem 5. Let’s say OGA is on its i + 1-st itera-
tion. Let’s denote its choice ϕi+1 := arg maxϕ∈D |〈ϕ, fi〉|, and di+1 :=
|〈fi, ϕi+1〉|. Also, let G ⊂ D be the collection of s distinct elements
that have biggest scalar products with fk:

G = {g : |G| = s, |〈g, fk〉| ≥ |〈ϕ, fk〉| for all g ∈ G,ϕ ∈ D \G}.

By the same construction as in [5], we have, denoting pk+i = projΦk+i fk,

(2)

‖fk+s‖2 ≤ ‖fk‖2 −
s∑
i=1

|〈fk+i, gi〉|2 = ‖fk‖2 −
s∑
i=1

|〈fk, gi〉 − 〈pk+i, gi〉|2

Replacing triangle inequality by a more appropriate Parseval identity
in (2.6, [5]), using Lemma 13 we can estimate

s∑
i=1

|〈fk, gi〉|2 ≥
(1−Ms)2

1 +Ms
‖projΨ fk‖

2 =
(1−Ms)2

1 +Ms
(‖fk‖2 − σs(fk)2).

A slightly more delicate approach to (2.4, [5]) under the assump-
tions k ≤ s,M(k + s) ≤ 1

2
gives an improved estimate on the second

component of the sum in (2):

(3)
s∑
i=1

|〈pk+i, gi〉|2 =
s∑
i=1

|〈Φk+ick+i, gi〉|2 ≤
s∑
i=1

∣∣〈ck+i,Φ
∗
k+igi〉

∣∣2 ≤
≤

s∑
i=1

M2(k + i)

1−M(k + i)
‖fk‖2 ≤M2

s∑
i=1

2(k + i) ‖fk‖2 ≤ 3(Ms)2 ‖fk‖2 .
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To combine the two inequalities above back into (2), similarly to (2.5, [5])
we use triangle inequality:

(4)

(
s∑
i=1

|〈fk, gi〉 − 〈pk+i, gi〉|2
) 1

2

≥

≥

(
s∑
i=1

|〈fk, gi〉|2
) 1

2

−

(
s∑
i=1

|〈pk+i, gi〉|2
) 1

2

≥

≥ (1− αx)
(
‖fk‖2 − σs(fk)2)

) 1
2 − βx ‖fk‖ ,

where we denoted x := Ms, β = 2, and used that on x ∈ [0, 1
2
]

1− x√
1 + x

≥ 1− αx for α =
3

2
.

For the sake of the presentation, β = 2 >
√

3 will suffice. A more
careful treatment of (3) as a right Riemann sum of an increasing func-

tion yields an even better β = 4
√

ln(3
2
)− 1

4
= 1.577... (see [18]).

The rest is a simple calculus exercise: observe that the convex qua-
dratic in (4) is above its tangent line at x = 0 (for simplicity of presen-
tation, let a = ‖fk‖2 , c = σs(fk)

2):

((1− αx)
√
a− c− βx

√
a)2 ≥ a− c− 2x

√
a− c(α

√
a− c+ β

√
a) ≥

≥ a− c− 2x(α + β)a.

Therefore,

‖fk+s‖2 ≤ a− (a− c− 7xa) = 7xa+ c = 7Ms ‖fk‖2 + σs(fk)
2.

�

From here, several analogues to [2.4, 2.5, [5]] can be established,
although the nature of the estimate allows a purely iterative argument
instead of a recursive one. We will need the following trivial lemma
about sequences.

Lemma 14. Let {al}∞l=1, {bl}∞l=1 be nonnegative sequences of real num-
bers such that bl <

1
2

for all l, and c be a nonnegative real number.
Also, let

(5) al+1 ≤ albl + c for all l ∈ N.
Then for all natural L

aL+1 ≤ a1

L∏
l=1

bl + 2c.
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Proof. For L = 1, the statement is obvious. Suppose the desired in-
equality holds for some L−1. Then by (5) and by induction hypothesis,

aL+1 ≤ aLbL + c ≤

(
a1

L−1∏
l=1

bl + 2c

)
bL + c ≤ a1

L∏
l=1

bl + 2c.

�

Proof of Corollaries 6,7. Fix m ≥ 1. Let kl := m(2l−1) be a sequence
of indices and {al}∞l=1 be a sequence of squared norms al := ‖fkl‖

2.
Then by Theorem 5, while Mm2l ≤ 1

2
, we have

(6) al+1 ≤ 7Mm2lal + σkl+m(fkl)
2 ≤ 7Mm2lal + σm(f)2,

where we used a degrees-of-freedom argument to estimate

σkl+m(fkl) ≤ σm(f) =: σ.

By Lemma 14 until 7Mm2l > 1
2

we get

aL ≤ a1

L−1∏
l=1

7Mm2l + 2σ2.

From Theorem 2 we can initialize a1 = ‖fm‖2 ≤ (6m + 1)σ2 for the
final estimate

aL ≤

(
2 + (6m+ 1)

L−1∏
l=1

7Mm2l

)
σ2.

For a meaningful conclusion, we need the product to overpower m in
6m+ 1. If we require 7Mm2L−1 ≤ 1

2
m−δ for some fixed δ ≥ 0, then

7Mm2l = (7Mm2L−1)2l−L+1 ≤ m−δ2l−L,

and therefore
L−1∏
l=1

7Mm2l ≤ m−(L−1)δ

L−1∏
l=1

2l−L ≤ m−(L−1)δ2−
1
2

(L−1)2 .

Each of the factors can do the job, thus we obtain two corollaries. Both
conditions will then provide us with

(7) ‖fm2L‖ ≤ 3σm(f).

Proof of Corollary 6. If δ = 0, we need 7Mm2L−1 ≤ 1
2

andm2−
1
2

(L−1)2 <

1. Stipulating L =
⌈√

2 logm
⌉

+ 1, if

m2
√

2 logm ≤ 1

26M
,
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then after m(2d
√

logme+1 − 1) iterations we get (7). �

Proof of Corollary 7. Similarly, if there exists δ > 0 such that

7Mm2d
1
δe ≤ 1

2
m−δ, or, rewriting as m ≤

(
1

14M

) 1
1+δ

2−d
1
δe,

we get the job done after m2d
1
δe+1 iterations. �

Proof of Theorem 8. In (2), we have an expansion fs = f − Φscs in-
stead, and using ‖Φscs‖ ≤ ‖f‖ + ‖fs‖ ≤ 2 ‖f‖, the following estimate
holds:

|〈Φscs, gi〉| ≤M
√
s ‖cs‖2 ≤

M
√
s√

1−Ms
‖Φscs‖ ≤

2M
√
s ‖f‖√

1−Ms
,

and then (4) holds with α = 3
2
, β = 3, and therefore, for all s ≤ 1

2M

‖fs‖2 ≤ 9Ms ‖f‖2 + σs(f)2.

�

Proof of Corollary 9. From above, by using the same argument as in
proof of Theorem 5, we obtain (if 9Mm2L−1 ≤ 1

2
)

‖fm2L‖2 ≤ 2−
1
2

(L−1)2 ‖f‖2 + 2σm(f)2.

If we decree a certain rate of convergence on σm(f), we can match it for
the PGA residual at some price. Suppose σm(f) ≤ m−r ‖f‖. Selecting
L =
√

10r logm ≥
⌈√

4r logm− 2 + 1
⌉
, we get that

‖fm2L‖ ≤ 2m−r ‖f‖
for all m such that

m2L ≤ 1

18M
.

�

Proof of Corollary 10. If we require a stronger condition 9Mm2L−1 ≤
1
2
m−δ, we get

(8) ‖fm2L‖2 ≤ m−(L−1)δ ‖f‖2 + 2σm(f)2.

Suppose now we have m ≤ N(δ) :=
(

1
9M

) 1
1+δ 2−d

2r
δ e, and L =

⌈
2r
δ

⌉
+ 1.

Let n =
⌊
m2−L+1

⌋
. Using that σn(f) ≤ n−r ‖f‖, by (8) we have

‖fm‖2 ≤ n−(L−1)δ ‖f‖2 + 2σn(f)2 ≤
(
n−2r + 2n−2r

)
‖f‖2 ≤

≤ C(δ, r)m−2r ‖f‖2 .

�
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