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FAST MEMORY EFFICIENT EVALUATION OF SPHERICAL

POLYNOMIALS AT SCATTERED POINTS

KAMEN IVANOV AND PENCHO PETRUSHEV

Abstract. A method for fast evaluation of band-limited functions (spherical

polynomials) at many scattered points on the unit 2-d sphere is presented.
The method relies on the superb localization of the father needlet kernels

and their compatibility with spherical harmonics. It is fast, local, memory
efficient, numerically stable and with guaranteed (prescribed) accuracy. The

speed is independent of the band limit and depends logarithmically on the

prescribed accuracy. The method can be also applied for approximation on
the sphere, verification of spherical polynomials and for fast generation of

surfaces in computer-aided geometric design. It naturally extends to higher

dimensions.

1. Introduction

In this paper we take on the problem for effective computation of the values of
high degree (> 2000) 2-d spherical polynomials at scattered points on the sphere.
We seek an algorithm which is accurate, fast, stable and memory efficient. This
problem is important for many areas, where high degree spherical harmonics are
employed. A targeted application and motivation for this undertaking is the prob-
lem for fast efficient computation of the values of the geoid undulation determined
from the Earth Gravitational Model EGM2008 of NGA [21].

The problem for fast evaluation of spherical polynomials at many scattered
points on the unit sphere S2 in R3 is traditionally divided into two subproblems:

(i) Evaluate a spherical polynomial of degree N given by its coefficients at
regular grid points on S2;

(ii) Evaluate at many, say J , scattered points a spherical polynomial of degree
N given its values at regular grid points.

Regular grid points on S2 will be points which are equally spaced or “Gaussian”
with respect to each of their spherical coordinates (θ, λ). The mesh size in each
coordinate is O(N−1), thus the grid with a total of O(N2) points is compatible
with the number of polynomial coefficients, that is (N + 1)2 (see §2.2). Regular
grid points have the obvious drawback that they congregate near the poles, but
this is fully compensated by the possibility of applying fast Fourier methods.

This method is particularly effective when the computation has to be executed
many times for a single high degree spherical polynomial.
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2 KAMEN IVANOV AND PENCHO PETRUSHEV

A standard method for solving problem (ii) is by using bi-variate spline inter-
polation, see e.g. [15]. In principle this method experiences accuracy problems
because the spherical spline interpolation is not compatible with spherical harmon-
ics. Consequently, the error of approximation is O((hN)r), where h is the mesh
size, N is the degree of the polynomial being approximated and r is the order of
the spline interpolant (the constant depends on the uniform norm of the polyno-
mial). The only ways to improve the accuracy of this method are by decreasing the
mesh size h in (i) or by restricting its application to smoother spherical polynomials
(spherical polynomials with small high degree coefficients). Decreasing the mesh
size h creates sever memory and speed problems, while restricting the application
to smoother spherical polynomials is usually not an option.

In this article we present an alternative method for solving problem (ii), based
on the spherical “needlets” introduced in [18, 19]. We propose a new approximation
scheme based on “father needlets”. These are kernels on the sphere which reproduce
high order spherical harmonics and are superbly localized and hence are perfectly
well suited for approximation in the uniform norm.

The method requires problem (i) to be solved in advance on a regular grid con-
sisting of O(N2) points. The father needlets being spherical harmonics friendly
allow to achieve the desired accuracy ε0 using a grid with larger mesh size than
when using spline interpolation. This distinctive feature of our method leads to
modest requirements on the computer memory size, and hence makes it attractive
for compressed (memory efficient) evaluation of spherical polynomials. Further-
more, the grid depends only on the polynomial degree N and is independent of the
polynomial coefficients and the targeted accuracy. Thus, unlike bi-variate splines,
better accuracy can be achieved without solving problem (i) for a new refined grid.

The method is fast because it is local in the sense that only the polynomial values
from a small neighborhood of the point of evaluation are used. More precisely, we
determine within an arbitrary precision ε0 the value of a polynomial at a given point
using its values at ν = O(log2(1/ε0)) neighboring grid points. Thus the number of
operations for solving (ii) is O(νJ). As the form of ν indicates, one can substantially
improve the accuracy by a slight enlargement of the point neighborhood. Moreover
the number of floating-point operations does not depend on the polynomial degree!
Let us also point out that the method is numerically stable.

The method has been implemented in MATLAB 2012b with double-precision
variables. Variable precision arithmetic is not needed for achieving accuracy 10−10

in evaluating spherical polynomials of degree up to ten thousand. The method has
been intensively tested for degrees between 500 and 2190 (see §5). These tests (and
other experiments with polynomials of degree up to 10 000) confirm the features
of our method outlined above. Due to the memory efficiency of our algorithm all
computations could be performed in real time on a small PC with 1 GB of RAM.

For comparison we next recall briefly some of the existing in the literature meth-
ods for evaluation of spherical polynomials. A direct evaluation of a spherical poly-
nomial of degree N given by its coefficients at O(N2) grid points has computational
complexity O(N4). Using straightforward separation of variables and appropriate
associated Legendre functions recurrence formulas the complexity of problem (i) is
reduced to O(N3) and the algorithm is numerically stable.

The first two-dimensional fast Fourier method on the sphere (for expansion, not
evaluation) was developed by Driscoll and Healy [3]. Mohlenkamp presented in [16]
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two algorithms for approximate solution of problem (i) with costs O(N5/2 logN)
and O(N2(logN)2). The stability of the original algorithms in [3, 16] was prob-
lematic and subsequent efforts were made for their stabilization. Another approach
based on the multi-pole method for approximate solution of (i) with O(N2 logN)
operations was proposed by Tygert [25].

Another approach to the problem for fast evaluation of spherical polynomials
given their coefficients relies on their intermediate representation (approximation)
via trigonomatric polynomials in spherical coordinates. It was put forward by Ku-
nis and Potts in [14] and is based on the excellent computational properties of the
algorithm for nonequispaced fast Fourier transform developed by Dutt and Rokhlin
in [4] . In [14] Kunis and Potts utilize a combination of a discrete Legendre func-
tions transform and the nonequispaced fast Fourier transform to solve the problem
for fast evaluation of a spherical polynomial at many scattered points. The discrete
Legendre functions transform, however, is in principle unstable and various modi-
fications were designed in order to overcome its instability. This instability makes
the application of this approach problematic for high degree spherical polynomials.

The proposed method for evaluation of spherical polynomials reflects our funda-
mental principle that high degree spherical polynomials are better represented by
their values at regular grid points than by their coefficients.

The paper is organized as follows. The formulation of the problem and the
theoretical basis for its solution by our method is given in §2. In §3 we discuss
all parts of the method, describe the relations between the parameters and present
the method in an algorithmic form. In §4 we generalize our method to dimensions
d > 2 and present some of its applications to other problems. Some numerical
experiments are described in §5. Section 6 contains a discussion on the method
features. The technical proof of Theorem 3.1 is postponded to the Appendix in
Section 7.

We will denote by c, c1, c2, . . . positive constants which may vary at every ap-
pearance and by c̄, c̃, c′, c′′ and the alike positive constants which preserve their
values throughout the paper. The relation f ∼ g between functions f and g means
c1f ≤ g ≤ c2f , while f ≈ g is used when f/g → 1 under an appropriate limit of
the argument.

2. Theoretical underpinning of our method

In this section we state precisely the problems of interest to us, collect all related
background material and develop the theoretical basis of our solution.

2.1. The problem of spherical polynomial evaluation. We are interested in
the folloing

Problem 1. Given a spherical polynomial YN with its coefficients {am,n, bm,n},
evaluate YN (x) at arbitrary (scattered) points x ∈ Z, on the sphere S2 with pre-
scribed precision ε0 > 0, measured in the uniform norm.

We split this problem into two problems:
Problem 2. Given a spherical polynomial YN with its coefficients {am,n, bm,n},
evaluate YN (ξ) at all points ξ from a regular grid X on S2.

Problem 3. Given the values YN (ξ) of a spherical polynomial YN at regular grid
points ξ ∈ X , evaluate YN (x) at arbitrary (scattered) points x ∈ Z, on the sphere
S2 with precision ε0.
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Regular grid points on S2 will be points {(θk, λ`)} in spherical coordinates, where
{λ`} are equally distributed and {θk} are equally distributed or “Gaussian”. Any
rotation of such a set of points will also be deemed regular.

We next define explicitly three sets of regular grid points that we shall use in the

following. Given K,L ≥ 1 we define the sets X (i) = {ξ(i)
k,` = (θ

(i)
k , λ

(i)
` )}, i = 1, 2, by

(2.1) θ
(1)
k =

π

K
k, k = 0, 1, . . . ,K; λ

(1)
` =

2π

L
`, ` = 0, 1, . . . , L− 1;

and

(2.2) θ
(2)
k =

π

K

(
k − 1

2

)
, k = 1, 2, . . . ,K; λ

(2)
` =

2π

L
`, ` = 0, 1, . . . , L− 1.

Here in X (1) we consider only one node for k = 0 (the North Pole) and one node
for k = K (the South Pole).

The third regular set X (3) = {ξ(3)
k,`} is defined via the zeros uk of the Kth degree

Legendre polynomials PK (given in (2.8) below) as follows

(2.3) θ
(3)
k = arccosuk, k = 1, 2, . . . ,K; λ

(3)
` =

2π

L
`, ` = 0, 1, . . . , L− 1.

The relations between K,L and N above are explained in §3.4.

Methods for solving Problem 2 were discussed in the introduction. In the present
paper we focus on Problem 3.

2.2. Spherical harmonics: Background. Recall first the relation between the
cartesian coordinates (x1, x2, x3) and the spherical coordinates (θ, λ), 0 ≤ θ ≤ π,
0 ≤ λ < 2π, of a point x on the unit 2-d sphere S2:

(2.4) x = (x1, x2, x3) = (sin θ cosλ, sin θ sinλ, cos θ).

We shall denote by x · y the inner product of x, y ∈ S2 and by ρ(x, y) the geodesic
distance (angle) between x and y. If x, y ∈ S2 are given in spherical coordinates,
e.g. x = (θ, λ), y = (θ′, λ′), then according to the Spherical Law of Cosines

(2.5) x · y = cos ρ(x, y) = cos θ cos θ′ + sin θ sin θ′ cos(λ− λ′).
Denote by Hn (n ≥ 0) the space of all spherical harmonics of degree n on S2.

We refer the reader to [22] and [17] for the basics of spherical harmonics. The

standard orthonormal basis {C̃m,n}nm=0 ∪ {S̃m,n}nm=1 for Hn is defined in terms of
the associated Legendre functions of the first kind Pm,n. Namely, for x = (θ, λ)

C̃m,n(x) = qm,nPm,n(cos θ) cosmλ, m = 0, 1, . . . , n,

S̃m,n(x) = qm,nPm,n(cos θ) sinmλ, m = 1, 2, . . . , n,
(2.6)

where the coefficients qm,n are given by

(2.7) q0,n =
√

2n+ 1; qm,n =

√
2(2n+ 1)

(n−m)!

(n+m)!
, m = 1, . . . , n,

and

Pm,n(u) = (1− u2)m/2
dm

dum
Pn(u).

Here Pn is the nth degree Legendre polynomial normalized by Pn(1) = 1, i.e.

(2.8) Pn(u) =
1

2nn!

dn

dun
(u2 − 1)n.
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Then for m = 0, 1, . . . , n, m′ = 0, 1, . . . , n′ we have

1

4π

∫
S2

C̃m,n(x)C̃m′,n′(x) dσ(x) =
1

4π

∫
S2

S̃m,n(x)S̃m′,n′(x) dσ(x) = δm,m′δn,n′ ,

1

4π

∫
S2

C̃m,n(x)S̃m′,n′(x) dσ(x) = 0,(2.9)

where δk,` is the Kronecker delta and σ is the standard Lebesgue measure on S2,
which in spherical coordinates is given by

(2.10) dσ(x) = sin θ dθ dλ.

An important property of Legendre polynomials is that the kernel of the orthog-
onal projector ProjHn : L2(S2)→ Hn is given by (2n+ 1)Pn(x · y), i.e.

(2.11) (ProjHnf)(x) =
1

4π

∫
S2

(2n+ 1)Pn(x · y)f(y)dσ(y), f ∈ L2(S2),

and hence Pn(x · y) is in Hn as a function of y for every x ∈ S2.
In the standard basis (2.6) a spherical polynomial YN of degree N is given by

its coefficients {am,n, bm,n}, i.e.

(2.12) YN (x) =

N∑
n=0

n∑
m=0

(
am,nC̃m,n(x) + bm,nS̃m,n(x)

)
.

In sums of this form we shall always assume that the term b0,nS̃0,n(x) is missing or,

equivalently, S̃0,n(x) = 0. Note that the number of coefficients in (2.12) is (N+1)2.
Denote by ΠN the set of all spherical polynomials of degree N . The spherical

polynomials are also known as band-limited functions on the sphere. As any spher-
ical polynomial (a linear combination of spherical harmonics) is the restriction to
S2 of an algebraic polynomial in three variables [22, Theorem 2.1, Ch. IV], then

(2.13) f ∈ ΠM , g ∈ ΠN =⇒ fg ∈ ΠM+N .

This property is standard for polynomials but, in general, it is not true for harmonic
functions.

From (2.11) we see that the kernel of the orthogonal projector ProjΠN : L2(S2)→
ΠN is given by

∑N
n=0(2n+ 1)Pn(x · y), i.e.

(2.14) (ProjΠN f)(x) =
1

4π

∫
S2

N∑
n=0

(2n+ 1)Pn(x · y)f(y)dσ(y), f ∈ L2(S2),

and hence ProjΠN f = f for every f ∈ ΠN .

As usual we denote by Lp(S2), 1 ≤ p ≤ ∞, the space of functions defined on S2

with norm

‖f‖Lp(S2) =
( 1

4π

∫
S2

|f(x)|p dσ(x)
)1/p

.

For p =∞ we shall consider both L∞(S2) and C(S2) with the standard modification
to sup-norm and max-norm, respectively.

We shall denote by

(2.15) EN (f)p = inf
Y ∈ΠN

‖f − Y ‖Lp(S2)
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the best approximation of f ∈ Lp(S2) from spherical polynomials of degree N .

2.3. Integral spherical “needlet” operators. The kernel in (2.14) (whose one-
dimensional analog is the Dirichlet kernel) has poor localization. We shall utilize
reproducing operators with well localized kernels defined by (cf. (2.14))

(2.16) KN (u) =

∞∑
n=0

ϕ
( n
N

)
(2n+ 1)Pn(u), u ∈ [−1, 1],

where Pn is the Legendre polynomial and ϕ is a cutoff function, namely,

(2.17) ϕ ∈ C[0,∞); ϕ(t) = 1, t ∈ [0, 1]; 0 ≤ ϕ(t) ≤ 1, t ∈ [1, 1 + τ ]

and ϕ(t) = 0, t ≥ 1 + τ,

for some τ > 0. The value of τ will vary depending on the application, as the
standard choice is τ = 1 (used in [18, 19, 11]).

The “needlet idea” is to vary the cutoff function ϕ from (2.17) in order to improve
the localization of the kernel. As shown in [18, Theorem 3.5] the kernel KN from
(2.16) has nearly exponential localization for cutoff functions ϕ ∈ C∞:

Theorem 2.1. Let ϕ ∈ C∞[0,∞) be a cutoff function from (2.17) for some τ > 0.
Then for any k > 0 there is a constant c̄k,τ such that

(2.18) |KN (cos θ)| ≤ c̄k,τN2(1 +Nθ)−k, 0 ≤ θ ≤ π.

The localization of KN can be improved to sub-exponential if the cutoff function
ϕ ∈ C∞[0,∞) has “small” derivatives, for instance, if ϕ satisfies

(2.19) ‖ϕ‖∞ ≤ c̃′′,
1

k!
‖ϕ(k)‖∞ ≤ c̃′′

(
c̃′[ln(e+ k − 1)]1+β

)k
, k = 1, 2, . . .

for some constants β, c̃′, c̃′′ > 0. The existence of cutoff functions ϕ satisfying (2.17)
and (2.19) is established in [11, Theorem 3.1] and under more general conditions
in [12, Theorem 2.3]. The sub-exponential localization of the kernels KN can be
stated as the following (see [11, Theorem 5.1]):

Theorem 2.2. Let ϕ satisfy (2.17) for some τ > 0 and (2.19) with constants
β, c̃′, c̃′′ > 0. Then the kernels KN from (2.16) satisfy

(2.20) |KN (cos θ)| ≤ c′′N2 exp

{
− c′βNθ

[ln(e+Nθ)]1+β

}
, 0 ≤ θ ≤ π,

where c′ = c̃′c∗ with c∗ > 0 an absolute constant, and the constant c′′ > 0 depends
only on τ, β, c̃′, and c̃′′.

For each ϕ from (2.17) we consider the linear operator

(2.21) Φ̃Nf(x) :=
1

4π

∫
S2

KN (x · y)f(y) dσ(y)

with kernel defined by (2.16). Clearly,

Φ̃Nf = f ∀f ∈ ΠN ;(2.22)

Φ̃Nf ∈ ΠNτ−1 ∀f ∈ L1(S2) with Nτ = dN + τNe .(2.23)
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Furthermore, for C∞ cutoff functions ϕ the sequence of operators
{

Φ̃N

}∞
N=0

is

uniformly bounded, i.e.

(2.24) ‖Φ̃Nf‖Lp(S2) ≤ c̄‖f‖Lp(S2), ∀f ∈ Lp(S2), 1 ≤ p ≤ ∞,

with a constant c̄ ≥ 1 depending only on ϕ. Inequalities (2.24) follow from

(2.25)
1

4π

∫
S2

|KN (x · y)| dσ(y) =
1

2

π∫
0

|KN (cos θ)| sin θ dθ ≤ c̄, ∀x ∈ S2,

which is a consequence of Theorem 2.1 with k = 3. In fact, a sufficient condition
for (2.25) is ϕ ∈W 3

∞[0,∞).

2.4. Discrete spherical “needlet” operators. To make the operator Φ̃N from

(2.21) computationally feasible we discretize Φ̃N by using a cubature formula on
S2. We shall utilize cubatures of the form

(2.26)
1

4π

∫
S2

f(y) dσ(y) ∼
∑
ξ∈X

wξf(ξ) with wξ > 0,

where X is a finite set of nodes on S2. For example, X can be one of the grids
X (i), i = 1, 2, 3, from §2.1. We shall assume that the cubature we use is exact for
spherical polynomials of certain degree M − 1 ∈ N

(2.27)
1

4π

∫
S2

f(y) dσ(y) =
∑
ξ∈X

wξf(ξ) ∀f ∈ ΠM−1,

and there is a companion to X disjoint partition {Aξ}ξ∈X of S2 (∪ξ∈XAξ = S2)
consisting of measurable sets Aξ with the properties:

(2.28) Aξ ⊂ B(ξ, c1M
−1) and wξ ≤ c2σ(Aξ), ξ ∈ X ,

where c1, c2 > 0 are constants and B(x, r) = {y ∈ S2 : ρ(x, y) < r} denotes the
open ball centered at x of radius r.

Applying cubature (2.26) to the integral in (2.21) we get a discrete counterpart

to the operator Φ̃N , namely,

(2.29) ΦNf(x) :=
∑
ξ∈X

wξKN (x · ξ)f(ξ).

Furthermore, the superb localization of the kernel KN , given in Theorems 2.1 and
2.2, implies that most of the terms in (2.29) are very small and this leads us to the
idea of introducing the truncated operator

(2.30) ΦN,δf(x) :=
∑
ξ∈X

ρ(x,ξ)≤δ

wξKN (x · ξ)f(ξ),

where δ > 0 is a small parameter.
In the next theorem we collect some properties of ΦN .

Theorem 2.3. Let ϕ satisfy (2.17) for some τ > 0 and assume KN given by (2.16)
satisfies (2.18) with k ≥ 3. Let the cubature (2.26) satisfy (2.27)–(2.28) for some
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M > N . Then ΦN given by (2.29) satisfies:

ΦN : `∞(X )→ C(S2) is a bounded linear operator;(2.31)

‖ΦN‖`∞(X )→C(S2) ≤ C, where C > 0 is a constant independent of N ;(2.32)

ΦNf ∈ ΠNτ−1 ∀f ∈ `∞(X ) with Nτ = dN + τNe .(2.33)

Moreover, if

(2.34) M ≥ N +Nτ ,

then

ΦNf = f ∀f ∈ ΠN ;(2.35)

‖f − ΦNf‖C(S2) ≤ (‖ΦN‖+ 1)EN (f)∞ ∀f ∈ C(S2).(2.36)

Proof. Using (2.29) we get (2.31) with norm

(2.37) ‖ΦN‖`∞(X )→C(S2) = sup
x∈S2

∑
ξ∈X

wξ |KN (x · ξ)|.

In order to bound the above quantity we set η := c1N
−1 with c1 from (2.28) and

let T be a maximal η-net on S2, i.e. ρ(y, z) ≥ η for all y, z ∈ T and T cannot
be enlarged. Observe that S2 = ∪y∈T B(y, η) and B(y, η/2) ∩ B(z, η/2) = ∅ for
y, z ∈ T , y 6= z.

We now split X into disjoint subsets Xy, y ∈ T , so that ξ ∈ B(y, η) for all ξ ∈ Xy.
From the properties of {Aξ}, see (2.28), we get for any y ∈ T

(2.38)
∑
ξ∈Xy

wξ ≤ c2
∑
ξ∈Xy

σ(Aξ) ≤ c2σ(B(y, 2η)) ≤ cN−2.

On the other hand, for any x ∈ S2, y ∈ T and ξ ∈ Xy (hence ξ ∈ B(y, η)) we have

1 +Nρ(x, y) ≤ 1 +Nρ(x, ξ) +Nρ(ξ, y) ≤ 1 +Nρ(x, ξ) + c1 ≤ c(1 +Nρ(x, ξ)).

From this, (2.38), and (2.18) with k = 3 we infer∑
ξ∈Xy

wξ|K(x · ξ)| ≤ c(1 +Nρ(x, y))−3, x ∈ S2, y ∈ T .

Therefore,

(2.39)
∑
ξ∈X

wξ|K(x · ξ)| =
∑
y∈T

∑
ξ∈Xy

wξ|K(x · ξ)| ≤ c
∑
y∈T

(1 +Nρ(x, y))−3.

To estimate the last sum above for fixed x ∈ S2 we split the set T by setting
T0 := {y ∈ T : ρ(x, y) < 2−1η} and Tj := {y ∈ T : 2j−2η ≤ ρ(x, y) < 2j−1η}, j ≥ 1.
Clearly,

cη2#Tj ≤
∑
y∈Tj

σ(B(y, η/2)) ≤ σ(B(x, 2jη)) ≤ c′22jη2

implying #Tj ≤ c22j , j ≥ 1. Evidently, #T0 ≤ 1. Using these estimates we get∑
y∈T

(1 +Nρ(x, y))−3 ≤
∑
j≥0

∑
y∈Tj

(1 +Nρ(x, y))−3

≤ 1 + c
∑
j≥1

2−3j#Tj ≤ 1 + c
∑
j≥1

2−j ≤ c′ <∞.
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This coupled with (2.39) yields
∑
ξ∈X wξ|K(x · ξ)| ≤ C <∞. We use this in (2.37)

to obtain (2.32).
Property (2.33) follows from (2.29), (2.16) and (2.11).
By (2.13), (2.16) and (2.11) we infer that if f ∈ ΠN , then KN (x · ξ)f(ξ) is a

spherical polynomial of ξ of degree N + Nτ − 1 for every x ∈ S2. Now, property
(2.35) follows from (2.29), (2.34), (2.27), (2.21) and (2.22). For the proof of (2.36)
let Y realize the inf in (2.15) with p =∞. Then

‖f − ΦNf‖C(S2) ≤ ‖f − Y ‖C(S2) + ‖Y − ΦNY ‖C(S2) + ‖ΦN (f − Y )‖C(S2),

which gives (2.36) on account of (2.31) and (2.35). �

Note that Theorem 2.3 holds, in particular, for any C∞ cutoff function ϕ. From
(2.33), (2.15), (2.36) and (2.32) it follows that

ENτ−1(f)∞ ≤ ‖f − ΦNf‖C(S2) ≤ cEN (f)∞,

which shows the superb approximation properties of operators ΦN .

Some properties of the operators ΦN,δ read as follows:

Theorem 2.4. Let KN satisfy

(2.40) |KN (cos θ)| ≤ ε for δ ≤ θ ≤ π.
Then under the assumptions of Theorem 2.3 we have

ΦN,δ : `∞(X )→ L∞(S2) is a bounded linear operator;(2.41)

‖ΦNf − ΦN,δf‖L∞(S2) ≤ ε‖f‖`∞(X ) ∀f ∈ `∞(X );(2.42)

‖f − ΦN,δf‖L∞(S2) ≤ (C + 1)EN (f)∞ + ε‖f‖`∞(X ) ∀f ∈ C(S2),(2.43)

where C is the constant from (2.32).

Proof. From (2.40) we get

(2.44)
∑
ξ∈X

ρ(x,ξ)>δ

wξ |KN (x · ξ)| ≤
∑
ξ∈X

ρ(x,ξ)>δ

wξ ε ≤ ε.

This along with (2.29)–(2.30) leads to

|ΦNf(x)− ΦN,δf(x)| ≤
∑
ξ∈X

ρ(x,ξ)>δ

wξ |KN (x · ξ)| ‖f‖`∞(X ) ≤ ε‖f‖`∞(X ).

Now Theorem 2.4 follows immediately from Theorem 2.3 and the above estimate.
�

3. Toward an effective computational method

Theorem 2.4 suggests the main steps in solving effectively Problem 3 from §2.1.
According to (2.42) with f = YN the error of computing (approximating) YN (x) by
means of ΦN,δYN (x), x ∈ S2, does not exceed ε0 if δ is determined in (2.40) with

(3.1) ε = ε0/‖YN‖`∞(X ).

The quantity ‖YN‖`∞(X ) can be easily computed as the values YN (ξ), ξ ∈ X , are
known. In (3.1) we may consider ε0 as the absolute error of our method (if the
computations are performed in the exact arithmetic), while ε is the relative error
(with respect to the polynomial norm, not a particular polynomial value!).
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Apparently, the number of operations needed to compute ΦN,δf(x) is a constant
multiple of the number of terms in (2.30), which in turn depends on how smaller δ is.
Thus varying ϕ in (2.17) we seek for a given ε the smallest possible δ such that (2.40)
holds. Upper and lower bounds for the order of the best possible δ are given in §3.1
and an improved criterion for determining δ is given in §3.2. Note that the choice
of δ is independent of the cubature formula (because ‖YN‖`∞(X ) ≤ ‖YN‖C(S2)).
Moreover the dependence of δ on the polynomial YN is only via the degree N and
the polynomial norm ‖YN‖C(S2).

The problem for fast and accurate computation of the values KN (x · ξ) is non-
trivial due to fact that the function KN (cos ρ) in (2.30) changes very rapidly for
ρ close to 0. Thus the round-off error in the computation of x · ξ by (2.5) may
cause undesirable big error in the value of KN (x · ξ). In §3.3 we present an effec-
tive solution to this problem combined with a very fast method for evaluation of
KN (cos ρ).

Having obtained δ we need to determine effectively the nodes ξ ∈ X that satisfy
ρ(x, ξ) ≤ δ. This step gives advantage to nodal sets with some kind of structure,
e.g. as in (2.1), (2.2) or (2.3). The values of the cubature weights associated with
these nodes and the proof that the cubatures satisfy (2.27)–(2.28) are given in §3.4.

As was pointed out in §2.1 the nodes in (2.1), (2.2) and (2.3) get denser around
the poles. This means that for x close to one of the poles the sum in (2.30) will
have O(N2δ) terms as opposed to the normal O(N2δ2) terms for x away from the
poles. A simple method for avoiding this undesirable drawback is given in §3.5.

The connection between the degree of exactness of the cubature and the poly-
nomial degree N is only one-sided – via the inequalities M > N or M ≥ N + Nτ
in the hypothesis of Theorem 2.3. This means that we can increase the degree of
exactness M and thus the number of nodes. If we keep δ fixed, then this will lead
to a larger number of nodes in the δ-neighborhood of x and increase the computa-
tional cost. Such relation would be inconsistent with the general perception that
the knowledge of the polynomial values at larger number of nodes should make the
point-wise evaluation easier and faster. In our method in accordance with this idea
we can increase the parameter τ in (2.17), which will lead to the decrease of δ and,
as a consequence, to smaller number of nodes in the δ-neighborhood of a point.
The details are given in §3.6.

All elements of our algorithm for solving Problem 3 are given in §3.7.

3.1. Bounds on δ. Given τ > 0, a cutoff function ϕ satisfying (2.17), 0 < ε ≤ 1,
and N ≥ 1 we denote by δ∞(ϕ; ε, τ,N) the minimal δ for which (2.40) holds.
Functions ϕ with small δ are deemed to be good cutoff functions. Set

δ∞(ε, τ,N) = inf
ϕ
δ∞(ϕ; ε, τ,N),

where the infimum is taken on all ϕ satisfying (2.17). We are interested in estab-
lishing lower and upper bounds on δ∞(ε, τ,N).

The upper bound relies on the following

Theorem 3.1. Let N, k ∈ N, N > k and τ > 0. Let the cutoff function ϕ be
defined by (7.4). Then there exist absolute constants c0, c1 > 0 such that

(3.2) |KN (cos θ)| ≤ c0 ((1 + τ)N)
2

min

{
1,

(
c1k

τNθ

)k}
, θ ∈ [0, π].
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This theorem follows by Theorem 7.1 with α = β = 0 from the appendix.
Lower and upper bounds on δ∞(ε, τ,N) are given in

Theorem 3.2. Let N ∈ N, 0 < ε ≤ 1 and τ ≥ 1. Then there exist absolute
constants c−1 , c

+
1 , c

+
2 > 0 such that for N > 2 max{ln(c0(1 + τ)2/ε), 4} with c0 from

Theorem 3.1 we have

(3.3)
c−1 ln(N2/ε)

τN
≤ δ∞(ε, τ,N) ≤ c+1 ln(N2/ε) + c+2 ln(1 + τ)

τN
.

Proof. For the lower bound we shall employ the Chebyshev polynomials. By (2.16)–
(2.17) it follows that KN (defined in (2.16)) is an algebraic polynomial of degree
m = Nτ − 1 satisfying

(3.4) KN (1) =

m∑
n=0

ϕ
( n
N

)
(2n+ 1) = κϕ,NN

2

with 1 ≤ κϕ,N ≤ (1 + τ)2. As is well known among all algebraic polynomials of
degree m with uniform norm 1 on [−1, 1] the Chebyshev polynomial of the first
kind Tm has the fastest growth for every v ∈ (1,∞). By a linear change of the
variable we get the following Bernstein inequality: For any a ∈ R, b > 0 and any
algebraic polynomial P of degree m we have

(3.5) ‖P‖C[a−vb,a+vb] ≤ Tm(v)‖P‖C[a−b,a+b] ∀v ∈ (1,∞).

Therefore, a lower bound δ0 for δ from (2.40) will be given by the m-th degree

polynomial T̃m(u) = εTm((2u+ d)/(2− d)) with d = 1− cos δ0 and T̃m(1) = KN (1)
because

|T̃m(cos θ)| ≤ ε for δ0 ≤ θ ≤ π and |T̃m(cos θ)| > ε for 0 ≤ θ < δ.

From this condition, (3.4) and the standard representation of Tm(u) for u ≥ 1 (see
e.g. [2, p. 76]) we obtain the following equation for δ0

(3.6)
(
v +

√
v2 − 1

)m
+
(
v −

√
v2 − 1

)m
=

2κϕ,NN
2

ε
, v =

3− cos δ0
1 + cos δ0

.

The exact explicit solution of (3.6) is

δ0 = arccos(8S(S + 1)−2 − 1), S =
(
R+

√
R2 − 1

)1/m

, R =
κϕ,NN

2

ε
.

From the above we get the following asymptotic of δ0 for large N and small ε

(3.7) δ0 ≈
ln(2κϕ,NN

2/ε)

m
>

ln(2N2/ε)

2τN
.

Now, the inequality δ(ϕ; ε, τ,N) ≥ δ0 coupled with (3.7) gives the lower bound in
(3.3).

For the upper bound in (3.3) we apply Theorem 3.1 with δ = c1ek/(τN) and
k =

⌈
ln(c0(1 + τ)2N2/ε)

⌉
(hence N > k) to obtain

(3.8) |KN (cos θ)| ≤ ε, δ ≤ θ ≤ π.

This completes the proof. �

Remark 3.3. In fact, the upper bound in (3.3) holds for 0 < τ <∞. The condition
τ ≥ 1 is used only for the inequality in (3.7). For 0 < τ < 1 the denominator of the
lower bound in (3.3) is (1 + τ)N and does not match the upper bound. Note that
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the localization of KN gets worse when τ → 0 and necessarily δ∞(ε, τ,N) → π in
this case.

Remark 3.4. There is no term c−2 ln(1+τ) in the numerator of the lower bound in
(3.3) because 1 was used in (3.7) as a lower bound for κϕ,N . The term c−2 ln(1 + τ)
would appear in the lower bound in (3.3) if ϕ obeys some mild additional restrictions
such as ϕ(u) ≥ c > 0 for 1 ≤ u ≤ 1 + τ/2.

Remark 3.5. Theorems 2.1 and 3.1 look very similar – both of them state that the
“needlet kernel” has a majorant with a power-type decrease. The main difference
is that the dependence of constant c̄k,τ in Theorem 2.1 on k is not specified while
the same constant in Theorem 3.1 behaves as (ck)k for fixed τ . This behavior of
c̄k,τ in Theorem 3.1 is achieved by W k

∞ functions ϕ which vary with k and implies
the very strong upper estimate in (3.3) when k =

⌈
ln(c0(1 + τ)2N2/ε)

⌉
. The upper

estimate in (3.3) is not true for any single “universal” (i.e. independent on N and
ε) cutoff function ϕ from C∞, even for those ϕ satisfying (2.19).

In fact, the kernels KN generated by different cutoff functions in Theorems 2.1,
2.2 and 3.1 belong to the class of fast decreasing polynomials studied in Ivanov,
Totik [13].

3.2. An improved criterion for δ. The majorants of |KN (cos θ)| given in (2.18),
(2.20) and (3.2), after reaching the value ε for θ = δ∞, preserve their fast decay for
θ > δ∞. This means that it is possible to select a smaller value of δ in the operator
ΦN,δ from (2.30) and still have the same error bound as in (2.42). This can be
achieved, for example, by replacing the uniform condition in (2.40) by an integral
one. Thus we arrive at the equation

(3.9)
1

2

cos δ∫
−1

|KN (u)| du = ε

=
ε

2

1∫
−1

KN (u) du

 ,

which determines δ = δ1(ϕ; ε, τ,N) as a function of ε, τ , N and ϕ (satisfying (2.17)).
The fact that the second integral in (3.9) is equal to 2 follows from (2.16) and the
orthogonality of Legendre polynomials on [−1, 1].

Equation (3.9) is justified by the following approximate identity (cf. (2.44)) for
cubatures with positive weights:

(3.10)
∑
ξ∈X

ρ(x,ξ)>δ

wξ |KN (x · ξ)| ∼=
1

4π

∫
ρ(x,ξ)>δ

|KN (x · ξ)| dσ(ξ)

=
1

2

π∫
δ

|KN (cos θ)| sin θ dθ =
1

2

cos δ∫
−1

|KN (u)| du = ε.

From (3.10), (2.29) and (2.30) we get immediately the following counterpart of
(2.42)

(3.11) ‖ΦNf − ΦN,δf‖L∞(S2) ≤ ε‖f‖`∞(X ) ∀f ∈ `∞(X )

for every δ ∈ [δ1(ϕ; ε, τ,N), π].
In looking for small δ for the truncated operator ΦN,δ from (2.30) we arrived at



FAST EVALUATION OF SPHERICAL POLYNOMIALS AT SCATTERED POINTS 13

Problem 4. For given τ > 0, ε ∈ (0, 1] and N ≥ 1 set

(3.12) δ1(ε, τ,N) = inf
ϕ
δ1(ϕ; ε, τ,N),

where the infimum is over all ϕ satisfying (2.17). Find a cutoff function ϕ satisfying
(2.17) which minimizes (3.12).

From (2.40) and (3.9) we get immediately

(3.13) δ1(ϕ; ε, τ,N) ≤ δ∞(ϕ; ε, τ,N).

Hence, the upper bound from Theorem 3.2 holds for δ1(ε, τ,N) as well. But one
can improve this estimate as follows

Theorem 3.6. Let N ∈ N, 0 < ε ≤ e−1 and τ ≥ 1. Then there exist absolute
constants c#, c∗ > 0 such that for N ≥ ln(1/ε) + c∗ we have

(3.14) δ1(ε, τ,N) ≤ c# ln(1/ε)

τN
.

Proof. From Theorem 3.1 we get

(3.15)

1

2

cos δ∫
−1

|KN (u)| du ≤ 1

2

π∫
δ

|KN (cos θ)|θ dθ ≤ c0 ((1 + τ)N)
2

2

∞∫
δ

(
c1k

τNθ

)k
θ dθ

=
c0c

2
1k

2(1 + τ)2

2τ2

∞∫
τNδ
c1k

v−k+1 dv =
c0c

2
1k

2(1 + τ)2

2(k − 2)τ2

(
c1k

τNδ

)k−2

.

Let κ ≥ 4 be such that 4c0c
2
1ue
−u ≤ 1 for u ≥ κ. Set k = dln(1/ε) + κe and

δ = e2c1k/(τN). Then from (3.15), τ ≥ 1 and k ≥ κ ≥ 4 we get

(3.16)
1

2

cos δ∫
−1

|KN (u)| du ≤ 4c0c
2
1ke
−ke−k+4 ≤ e− ln(1/ε)e−κ+4 ≤ ε.

Now (3.16) proves the theorem with c# = e2c1(κ+1) and c∗ = κ+1 (which implies
N > k). �

Note that for a fixed ε the upper bound for δ1(ε, τ,N) in (3.14) with the increase
of N becomes smaller than the lower bound for δ∞(ε, τ,N) in Theorem 3.2. This
fact justifies the replacement of criterion (2.40) from Theorem 2.4 by criterion (3.9)
for practical application. Note that the product Nδ1(ε, τ,N) is bounded from above
by a quantity depending on ε and τ but not on N . This means that the complexity
of (2.30) will not depend on N and we can use ΦN,δ for very high degrees N .

Selection of ϕ. For fixed ϕ, ε, τ and N it is easy to write a code for approximate
computation of δ1(ϕ; ε, τ,N) from (3.9) and thus to compare the values of δ1 for
different ϕ’s. Although such approach will not lead to a solution of Problem 4, it
guided us in selecting a cutoff function ϕ for our purposes.
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We work with ϕ satisfying (2.17), which for t in the interval [1, 1 + τ ] are given
by

(3.17) ϕ(t) = κ−1

1∫
(t−1)/τ

eb
√
v(1−v) dv, κ =

1∫
0

eb
√
v(1−v) dv, b > 0.

In (3.17) b is a parameter, which for 4 < log10(1/ε) < 11 and τ ≥ 1 is given by

(3.18) b = 4.8 log10(1/ε) + 3.4− 0.2 min{τ, 3}.

The graph in the interval [0, 0.009] of the kernel K1000 ◦ cos generated by ϕ
defined in (3.17)–(3.18) with τ = 4 and ε = 10−7 is given in Figures 1 and 2, while
Table 1 contains its local extrema and their locations on the same interval.

Figure 1. Graph of K1000 ◦ cos in [0, 0.009] for τ = 4 and ε = 10−7

Abscissa Value Abscissa Value
0 9.2049 · 106 5.7680 · 10−3 -4.3761 · 103

1.6575 · 10−3 -9.1850 · 105 6.7632 · 10−3 6.2170 · 102

2.7150 · 10−3 2.7573 · 105 7.7384 · 10−3 -5.1301 · 101

3.7442 · 10−3 -8.3107 · 104 8.6708 · 10−3 1.5374 · 100

4.7614 · 10−3 2.1568 · 104 – –
Table 1. The extrema of K1000 ◦ cos and their abscissas in
[0, 0.009] for τ = 4 and ε = 10−7

The computed values of δ1(ϕ; ε, τ,N) for ϕ from (3.17) with b from (3.18) can
be very well approximated by the expression

(3.19) δ1(ε, τ,N) ≈ c̃ ln(1/ε)

τN
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Figure 2. Graph of K1000 ◦ cos in [0, 0.009] for τ = 4 and ε = 10−7 (continued)

τ\ε 10−5 10−6 10−7 10−8 10−9 10−10

1 0.0278 0.0325 0.0372 0.0419 0.0468 0.0515
2 0.0137 0.0162 0.0185 0.0209 0.0232 0.0257
3 0.00917 0.0107 0.0123 0.0138 0.0155 0.0171
4 0.00685 0.00802 0.00919 0.0103 0.0116 0.0128

Table 2. Values of δ1(ϕ; ε, τ, 1000) for ϕ from (3.17)–(3.18)

with an appropriate constant c̃, which corresponds to the upper limit from (3.14).
The values of δ1(ϕ; ε, τ, 1000) for some ε and τ are given in Table 2.

The entries in the Table 2 support the dependance of δ1 on ε and τ as suggested
in (3.19) with a value of c̃ between 2.22 and 2.42. Moreover, our computations show
that the quantity Nδ1(ϕ; ε, τ,N) is practically a constant for 100 ≤ N ≤ 10 000 for
every fixed ε and τ in the specified range.

3.3. Accurate kernel evaluation. The next step in developing our algorithm is
the accurate and fast evaluation of KN (x·y) for given x, y ∈ S2, which is a nontrivial
task.

For every u ∈ [−1, 1] one can evaluate KN (u) using, for instance, the downward
Clenshaw recurrence formula. It employs the Legendre recurrence relation

(n+ 1)Pn+1(u) = (2n+ 1)uPn(u)− nPn−1(u), n ≥ 0; P0(u) = 1, P−1(u) = 0.

This algorithm is numerically stable and fast since it requires O(N) operations.
The straightforward calculation of KN (x · y), where u = x · y is obtained via

(2.5) and KN (u) is computed by the Clenshaw summation, looses accuracy when x
is close to y that is exactly the case we are interesting in. In order to improve the
accuracy by several significant digits we perform the calculations as follows:
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(i) We compute the spherical distance ρ between x = (θ, λ) and y = (θ′, λ′)
via the Haversine Law of Spherical Trigonometry

(3.20) sin2 ρ

2
= sin2 θ

′ − θ
2

+ sin θ′ sin θ sin2 λ
′ − λ
2

.

(ii) We compute KN (x · y) = (KN ◦ cos)(ρ) via an approximation of KN ◦ cos.

The Haversine Law (3.20) is well-conditioned for computation of ρ close to 0 and
the round-off error is smaller when compared with the Spherical Law of Cosines
(2.5). This fact has been known since the XIX century. The haversine function is
defined by hav ρ := (1− cos ρ)/2 = sin2(ρ/2); we have used the last form in (3.20).

The advantage of using the trigonometric polynomial KN ◦ cos in step (ii) over
the algebraic polynomial KN stems from the fact that the derivative of KN ◦ cos
near the origin is cN times smaller than the derivative of KN near 1.

In order to get fast and accurate evaluation of (KN ◦cos)(ρ) for ρ ∈ [0, δ] we take
the equally spaced points tr = δr/R for r = −s,−s+1, . . . , R+s and determine t∗r =
arccos(cos tr). Note that in general t∗r 6= tr because of the machine arithmetic, while
cos t∗r and cos tr coincide as double precision numbers. Then KN (ur), determined
for ur = cos tr = cos t∗r via the Clenshaw summation, is a good approximation to
(KN ◦ cos)(t∗r). Thus we have the values of KN ◦ cos at the points t∗r , which are
close to equally spaced but not equally spaced. Now (KN ◦ cos)(ρ) is computed by
Lagrange interpolation of KN ◦cos with nodes t∗r , r = m−s,m−s+1, . . . ,m+s+1,
where m = bρR/δc. The Lagrange polynomial is of degree 2s+ 1.

The choice of R and s depends on the targeted relative error ε and the degree
Nτ − 1 of KN ◦ cos. Our experiments showed that for ε ≥ 10−10 and Nτ ≤ 20 000
one can take R = 2 000 and s = 1 or s = 2. The numbers KN (ur) are computed
in O(NR) operations and stored at the initial stage of the program. At the later
stages the evaluation of (KN ◦ cos)(ρ) requires only O(s) operations. Of course, the
third degree Lagrange interpolation, i.e. s = 1, is faster but less accurate than the
fifth degree Lagrange interpolation for s = 2.

The graph of the kernel KN ◦ cos in [0, δ] as well its extrema and their location
in this interval are given in Figures 1 and 2 and Table 1 in §3.2.

3.4. Nodes and cubatures. The following lemma gives a simple method for con-
structing cubatures on S2 from one-dimensional quadratures. These simple cuba-
tures are very attractive since they are exact for high degree spherical polynomials
and their nodes and weights can be computed easily to very high precision. They
also demonstrate the advantage of the regular grids defined in §2.1 over other grids
such as HEALPix.

Lemma 3.7. Let K,L ≥ 1 and assume that the quadrature

(3.21)
1

2

1∫
−1

f(t) dt ∼
K∑
k=0

vkf(uk),

with uk ∈ [−1, 1] is exact for all algebraic polynomials of degree K1 − 1 and the
quadrature

(3.22)
1

2π

2π∫
0

g(t) dt ∼
L−1∑
`=0

v̄`g(λ`),
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with λ` ∈ [0, 2π) is exact for all trigonometric polynomials of degree L1 − 1. Then
the cubature

(3.23)
1

4π

∫
S2

F (y) dσ(y) ∼
K∑
k=0

L−1∑
`=0

vkv̄`F (arccos(uk), λ`)

is exact for all spherical polynomials of degree M − 1 with M = min{K1, L1}.

The lemma is immediate from the form of the basis of Hn given in (2.6) (with
the variables separated) and the form of the measure dσ given in (2.10).

Note that if uk = 1, then all nodes (arccos(uk), λ`) = (0, λ`) coincide with the

North Pole and the cubature weight associated with this node is vk =
∑L−1
`=0 vkv̄`.

A similar modification is made if uk = −1, i.e the node coincides with the South
Pole.

The case of quadrature (3.22) is quite simple, the best choice is the rectangular
quadrature

(3.24)
1

2π

2π∫
0

g(t) dt ∼
L−1∑
`=0

1

L
g(λ`), λ` =

2π

L
`, ` = 0, . . . , L− 1,

which is exact for trigonometric polynomials of degree L− 1.

The algebraic quadrature formulas (3.21) with nodes {cos θ
(i)
k }, i = 1, 2, 3, from

§2.1 are given in the following three lemmas.

Lemma 3.8. For given K ≥ 1 denote by u
(1)
k = cos θ

(1)
k , θ

(1)
k = πk/K, k =

0, 1, . . . ,K, the points of extrema of the Chebyshev polynomial TK . If the weights

{v(1)
k } are defined by

(3.25) v
(1)
0 = v

(1)
K :=

1

2K(2R+ 1)
,

v
(1)
k :=

1

K

(
1

2R+ 1
+ 4

R∑
r=1

sin2 rθ
(1)
k

4r2 − 1

)
, k = 1, . . . ,K − 1,

where R = b(K − 1)/2c, then the quadrature

(3.26)
1

2

1∫
−1

f(t) dt ∼
K∑
k=0

v
(1)
k f(u

(1)
k ),

is exact for all algebraic polynomials of degree 2 b(K + 1)/2c − 1 ≥ K − 1.

Lemma 3.9. Given K ≥ 1 denote by u
(2)
k = cos θ

(2)
k , θ

(2)
k = π(2k − 1)/(2K),

k = 1, . . . ,K, the zeros of the Chebyshev polynomial TK . If the weights {v(2)
k } are

defined by

(3.27) v
(2)
k :=

1

K

(
1

2R+ 1
+ 4

R∑
r=1

sin2 rθ
(2)
k

4r2 − 1

)
, k = 1, . . . ,K,

where R = b(K − 1)/2c, then the quadrature

(3.28)
1

2

1∫
−1

f(t) dt ∼
K∑
k=1

v
(2)
k f(u

(2)
k ),
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is exact for all algebraic polynomials of degree 2 b(K + 1)/2c − 1 ≥ K − 1.

Quadrature (3.26) is usually known as the Clenshaw–Curtis quadrature [1] or

Fejér’s second quadrature. (In [7, 8] Fejér gave the values of v
(1)
k under the assump-

tion that f(−1) = f(1) = 0.) Quadrature (3.28) is usually known as Fejér’s first
quadrature [7, 8]. The weight expressions (3.25), (3.27) deviate from the standard
ones, but we prefer these forms because they underline the weights’ positivity.

Lemma 3.10. For K ≥ 1 denote by u
(3)
k = cos θ

(3)
k , θ

(3)
k ∈ (0, π), k = 1, . . . ,K,

the zeros of the Legendre polynomial PK . If the weights {v(3)
k } are defined by

(3.29) v
(3)
k :=

(
P ′K(cos θ

(3)
k ) sin θ

(3)
k

)−2

, k = 1, . . . ,K,

then the Gaussian quadrature

(3.30)
1

2

1∫
−1

f(t) dt ∼
K∑
k=1

v
(3)
k f(u

(3)
k ),

is exact for all algebraic polynomials of degree 2K − 1.

To compute the knots u
(3)
k = cos θ

(3)
k and weights v

(3)
k of the Gaussian quadrature

we use the MATLAB function legpts from Chebfun software system by Trefethen
et all [24]. It utilizes a fast and accurate algorithm from Glaser, Liu and Rokhlin
[9], which shows very good results for quadratures with up to a million knots.

Applying (3.24) and Lemmas 3.8–3.10 in Lemma 3.7 we get

Theorem 3.11. Let M ≥ 1 and assume that X (i), i = 1, 2, 3, is one of the regular
grids from §2.1 with K,L ≥ 1 satisfying the conditions

(3.31) M ≤ L, M ≤
{

2 b(K + 1)/2c , i = 1, 2;
2K, i = 3.

For ξ = (θ
(i)
k , λ

(i)
` ) ∈ X (i) set w

(i)
ξ = v

(i)
k L−1. Then the cubature

(3.32)
1

4π

∫
S2

F (y) dσ(y) ∼
∑
ξ∈X (i)

w
(i)
ξ F (ξ)

is exact for all spherical polynomials of degree M − 1.

In other words, if K ≥ M and L ≥ M , then we have a cubature satisfying
(2.27) with nodes at the regular grid points from (2.1) or (2.2). In a number of
applications we have L ≈ 2K because at the equator the mesh size is 2π/L in the
longitude direction and π/K in the latitude direction. For the grid points (2.3) the
condition K ≥M may be relaxed to K ≥M/2.

Our next step is to show that the cubatures from Theorem 3.11 satisfy (2.28).
To this end for any finite set X ⊂ S2 we define the Voronoi cells Ωξ, ξ ∈ X , by

Ωξ = {x ∈ S2 : ρ(x, ξ) ≤ ρ(x, η) ∀η ∈ X},

i.e. Ωξ consists of all points from the sphere, which are closer to ξ than to any
other point from X . Note that every cell is a convex spherical polygon. The set of
all Voronoi cells forms the Voronoi tessellation of S2. Thus ∪ξ∈XΩξ = S2 and the
interiors of any two different cells are disjoint.
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For every ξ ∈ X the set Aξ from (2.28) is defined as the interior of Ωξ plus some
points from its boundary so that {Aξ}ξ∈X forms a disjoint partition of S2. Now it
is easy to prove

Theorem 3.12. Under the hypothesis of Theorem 3.11 the cubature (3.32) satisfies
(2.28).

Proof. For the Gaussian quadrature (i = 3) it is well known that uniformly

(3.33) θ
(3)
k+1 − θ

(3)
k ∼ K

−1, k = 1, 2, . . . ,K − 1, θ
(3)
1 ∼ K−1, π − θ(3)

K ∼ K
−1.

Using also λ
(3)
`+1−λ

(3)
` = 2πL−1 we get Aξ ⊂ B(ξ, r) with r = O(max{K−1, L−1}) =

O(M−1) and σ(Aξ) ∼ K−1L−1 sin θ
(3)
k . The weights v

(3)
k are positive and satisfy

uniformly (see e.g. [20])

(3.34) v
(3)
k ∼ K−1 sin θ

(3)
k , k = 1, 2, . . . ,K,

which implies w
(3)
ξ ≤ c2σ(Aξ) and proves the theorem in the case i = 3.

If i = 1 or i = 2 we have estimates similar to (3.33) and (3.34). Estimate (3.34)
follows from (3.25) and (3.27), and (3.33) follows from (2.1) and (2.2). The only
exceptions are the two poles (k = 0 and k = K) in the case i = 1. If ξ is any of

them, we have σ(Ωξ) ∼ K−2 and w
(1)
ξ = K−1(2 b(K − 1)/2c+1)−1. This completes

the proof. �

Theorem 3.11 and Theorem 3.12 show that cubatures (3.32) satisfy (2.27) and
(2.28) under the assumptions (3.31). Consequently, if (2.34) is verified, then the
operators from (2.29) and (2.30) satisfy Theorem 2.3 and Theorem 2.4, respectively,
for each of the cubatures (3.32).

We now turn our attention to the problem for determining the nodes ξ = (θ, λ) ∈
X (i), which satisfy ρ(x, ξ) ≤ δ for given x = (θ′, λ′) ∈ S2 and δ ∈ (0, π/2]. From
the Law of Sines in spherical trigonometry we conclude that for δ ≤ θ′ ≤ π − δ it
suffices to have

(3.35) (θ, λ) ∈ [θ′ − δ, θ′ + δ]× [λ′ − φ, λ′ + φ], φ = arcsin(sin δ/ sin θ′).

For 0 ≤ θ′ < δ (3.35) can be replaced by (θ, λ) ∈ [0, θ′+ δ]× [0, 2π) and for π− δ <
θ′ ≤ π by (θ, λ) ∈ [θ′ − δ, π] × [0, 2π). It is easy to create code which determines
quickly the indices of the grid points ξ = (θk, λ`) satisfying (3.35). Observe that
approximately π/4 of the grid points obeying (3.35) satisfy ρ(x, ξ) ≤ δ. Thus, if
the kernel is evaluated for all grid points satisfying (3.35), then the extra work of
27.4% could be fully compensated by not performing the verification ρ(x, ξ) ≤ δ.

The number of points from X (i), i = 1, 2, 3, satisfying (3.35) is approximately

(3.36) ν =
2KLδ2

π2 sin θ′
.

Thus the number of terms in (2.30) increases from O(KLδ2) for points at the
equator to O(KLδ) for points near the poles. This drawback of our method can
easily be overcome as shown in §3.5.
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3.5. Computations near the poles. In order to evaluate ΦN,δf(x) at points
x = (θ′, λ′) with latitudes between 45◦ North and 45◦ South, i.e. π/4 ≤ θ′ ≤ 3π/4,
we apply the method as explained so far. For the remaining points from the two
45◦ caps centered at the poles we apply the change of variables T (x) = x̃ given by

(3.37) (x1, x2, x3) = (x̃1, x̃3,−x̃2)

(T is a 90◦ rotation about the x-axis) or in spherical coordinates

(sin θ cosλ, sin θ sinλ, cos θ) = (sin θ̃ cos λ̃, cos θ̃,− sin θ̃ sin λ̃).

In the new coordinate system the above spherical caps appear as 45◦ caps centered
at the points (π/2, π/2) and (π/2, 3π/2), which are on the new equator. In order
to apply the same operators ΦN and ΦN,δ we need the values of the spherical
polynomial to be computed at the regular grid points with respect to the new
coordinate system, i.e. the values at the images T−1(ξ), ξ ∈ X , of these grid points
under the mapping T−1, which is inverse to (3.37). Note that each of the spaces
Hn, n = 0, 1, 2, . . . , is invariant under the rotation (3.37).

Using this approach we essentially improve the computational speed for points
near the poles. Now in the worst case scenario the evaluation of ΦN,δf(x) requires

a factor of
√

2 more points than the points used when x is on the equator. Another
positive feature is the reduction of the total number of nodes where we have to
pre-compute the polynomial values. The reduction is by approximately 25% and is
due to the fact that the grid points, which are denser near the poles, are replaced
by new points with “equatorial” density.

In the following table we give the average number of nodes in the δ-neighborhood
of a point, i.e. the average number of summands in (2.30), when ϕ is defined by
(3.17)–(3.18). The computations were performed for N = 1000, but, as it was
pointed out in §3.2, the average number of nodes is practically independent of
the polynomial degree N . The nodes in Table 3 are from the regular grid X (3)

with K = d(1 + τ/2)Ne and L = d(2 + τ)Ne. According to Theorem 3.11 the
cubature based on these nodes is exact for spherical polynomials of degree M − 1
with M = d(2 + τ)Ne.

τ\ε 10−5 10−6 10−7 10−8 10−9 10−10

1 612 838 1091 1380 1735 2095
2 263 371 478 617 754 929
3 189 255 327 414 530 640
4 149 203 265 336 421 522

Table 3. The average number of nodes from X (3) in the δ-
neighborhood for δ’s given in Table 2.

In the case when the nodal set is either X (1) or X (2) with K = d(2 + τ)Ne the
average number of nodes is twice bigger than the entries of Table 3.

3.6. Optimal selection of parameters. The data from Table 3 brings to the
table the following problem:

Suppose a spherical polynomial of degree N is given by its values at, say, the
M/2×M regular grid points (2.3). Choose τ subject to (2.34) so that the number
of summands in (2.30) is minimal.
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To be more specific, let, say, N = 1000, M = 6000, ε = 10−8 and δ =
δ1(ϕ; ε, τ,N) as in §3.2. Consider the following two selections of τ :

(i) τ = 4 in the definition of ϕ and we make the computations using δ =
δ1(ϕ; ε, 4, N) and the 3 000× 6 000 grid (M = 6 000);

(ii) τ = 1 in the definition of ϕ and we make the computations using δ =
δ1(ϕ; ε, 1, N) and the 1 500× 3 000 sub-grid (M = 3 000) of the grid in (i).
Of course, we can use a larger sub-grid, but this will lead only to higher
number of terms.

The question is, in which case the cap {y ∈ S2 : ρ(x, y) ≤ δ} will contain less points
ξ from the respective grid.

Note that (2.34) is satisfied as equality in both cases. This makes us define
M := dN(2 + τ)e which is the best choice for the grid parameter. The number
of grid points in the δ-neighborhood of a point is a constant multiple of (Mδ)2 =
((2 + τ)Nδ)2.

Without going into details we would like to mention the asymptotic equality

(3.38) δ1(ϕ; ε, τ,N) ≈ C(ε, τ)

τN

valid for a fixed ϕ. In fact, C(ε, τ) in (3.38) is a slowly varying function of ε and
τ ≥ 1 (e.g. C(ε, τ) = c1 ln(1/ε) + c2 ln(1 + 1/τ), cf. (3.19)), which has a limit as
τ →∞.

Thus the number of summands in (2.30) is proportional to (1 + 2τ−1)2 (cf.
Table 3), which is a decreasing function of τ . In particular, this result implies that
the smallest number of terms for given N and M will be achieved for the largest
possible τ in (2.34), in other words

we cannot gain speed by using sub-grids.

Going back to our example, in case (i) we have approximately 4 times less terms
than in case (ii). Thus, the computational speed in case (i) will be 4 times higher
than in case (ii). But, one should not forget that the initial work for evaluating the
polynomial in the grid points is 4 times bigger in case (i) than in case (ii).

3.7. The algorithm. Based on the ideas from §2 and §3 we propose the following
algorithm for solving Problem 3 with input N , ε0 and YN (ξ), ξ ∈ X (i) for one of
i = 1, 2, 3:

(1) Using (3.25), (3.27) or (3.29) determine the weights w
(i)
ξ , i = 1, 2, 3, of the

cubature (3.32) according to the type i of the grid X (i) from §2.1.
(2) Determine the largest possible M for the cubature.
(3) For the given M,N determine the largest possible τ satisfying (2.34).
(4) Determine ‖YN‖`∞(X ) and then ε from (3.1).
(5) For ϕ given by (3.17)–(3.18) determine ϕ(n/N).
(6) Determine δ = δ1(ϕ; ε, τ,N) from (3.9).
(7) For ϕ and δ from Steps 5–6 compute KN (cos t∗r), r = −s,−s+ 1, . . . , R+ s

(see §3.3).
(8) For every x ∈ Z compute the approximate value ΦN,δYN (x) of YN (x) using

(2.30) with f = YN , where KN (x · ξ) = (KN ◦ cos)(ρ) is determined as in
§3.3 with ρ determined from (3.20).

If the improvement described in §3.5 is applied, then in Step 8 one verifies for
every x ∈ Z in advance to which of the three domains {θ < π/4}, {π/4 ≤ θ ≤ 3π/4}
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and {θ > 3π/4} it belongs and in two of the three cases rotation (3.37) is applied
before computing the approximation in (2.30).

We next determine the complexity of all steps in the typical case K = O(N),
L = O(N). Step 1 requires O(N logN) operations when FFT is used for computing

v
(i)
k . Step 4 requires O(N2) operations. The values ϕ(n/N) in Step 5 can be

computed in O(N) operations and the computation of δ in Step 6 can be done
with good precision with O(N2) operations. Step 7 requites O(NR) operations.
The total complexity of the preparatory Steps 1–7 is O(N2) without counting the
operations necessary to compute YN (ξ), ξ ∈ X (i), or the time to read them from
the disk. As explained in the introduction, a stable algorithm for computing YN (ξ),
ξ ∈ X (i), requires O(N3) operations.

From inequalities (3.14) and (3.3) we get that the approximate evaluation of YN
by (2.30) at a single point requires O(ln2(1/ε0)) operations if δ is determined by
criterion (3.9) and O(ln2(N2/ε0)) operations if criterion (2.40) is applied.

4. Generalizations and applications

4.1. Generalization to higher dimensions. Let Sd (d ≥ 1) be the unit sphere
in Rd+1 and denote by Hdn, n ≥ 0, the space of all spherical harmonics of degree n

on Sd. It is well known [22, p. 140] that dimHdn = (2n+d−1)Γ(n+d−1)
Γ(d)Γ(n+1) for n ≥ 1 and

dimHd0 = 1.
As is well known [22] the orthogonal projector ProjHdn : L2(Sd) → Hdn has the

representation (a generalization of (2.11))

(4.1) (ProjHdnf)(x) =
1

ωd

∫
Sd

n+ κ

κ
Cκn(x · y)f(y)dσ(y),

where σ is the standard Lebesgue measure on Sd, κ := d−1
2 , ωd :=

∫
Sd 1dσ = 2πκ+1

Γ(κ+1) ,

and x · y stands for the inner product of x, y ∈ Sd. Here Cκn is the Gegenbauer
polynomial of degree n normalized with Cκn(1) =

(
n+2κ−1

n

)
[6, p. 174].

Using the relationship between Gegenbauer and Jacobi polynomials [23, (4.7.1)]

Cκn(u) =
Γ(κ+ 1/2)

Γ(2κ)

Γ(n+ 2κ)

Γ(n+ κ+ 1/2)
P (κ−1/2,κ−1/2)
n (u)

we obtain the following generalization of (2.16)

(4.2) KN (u) =

∞∑
n=0

ϕ
( n
N

) (n+ κ)Γ(κ+ 1/2)Γ(n+ 2κ)

κΓ(2κ)Γ(n+ κ+ 1/2)
P (κ−1/2,κ−1/2)
n (u).

In dimension d = 1 one has after passing to the limit in (4.1) and (4.2) as κ → 0
(here F = f ◦ cos)

(ProjH1
n
F )(x) =

1

2π

2π∫
0

(2− δn,0) cosn(x− θ)F (θ)dθ,

KN (u) =

∞∑
n=0

ϕ
( n
N

)
(2− δn,0)Tn(u),

where Tn is the n-th degree Chebyshev polynomial and δn,m is the Kronecker delta.
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The point is that in the general case all necessary ingredients are either known,
e.g. the generalization of the sub-exponential decay of KN in Theorem 2.2 is es-
tablished in [11, Theorem 5.1], or can be derived following the same route as when
d = 2. Let us only mention that estimate (3.14) remains true. Hence, the number

of summands in (2.30) becomes O(lnd(1/ε0)).
Finally, let us point out that in the case d = 1 our method serves as an algorithm

for fast evaluation of trigonometric polynomials at scattered points.

4.2. Working with grids of wider mesh size. There are two groups of condi-
tions important to our theory: (a) inequalities (3.31) connecting K and L with M ,
and (b) deg YN ≤ N and inequality (2.34) connecting M with N . The first group
can be consider as a simple definition of the term “spherical degree of exactness
M”. For simplicity in this subsection we consider the case of “Gaussian” nodes
X (3) (with L = 2K = M), so the distance at the equator between the nodes is
2π/M in both latitude (approximately) and longitude directions.

We now turn our attention to the conditions from group (b). Let Ñ = deg YN
be the exact degree of the polynomial to be evaluated. The condition Ñ ≤ N
is implicitly part of our theory, however, in applications one can choose in (2.16)

N < Ñ . Similarly, condition (2.34) was essentially used in establishing (2.35)
in Theorem 2.3 and (2.42) in Theorem 2.4, which enable us to claim that the
error of approximation does not exceed ε0. In the typical case τ = 1, however,
inequality (2.34) implies M ≥ 3N , i.e. the nodes are at least 1.5 times denser
(linearly) than the the sampling interval for the Nyquist frequency π/N for Nth
degree polynomials. Therefore, the fundamental question here is:

Can one utilize successfully the truncated operators from (2.30) whenever (A)

N < Ñ and/or (B) M < (2 + τ)N?

We would like to emphasize that we are interested in significant reductions of the
sizes of N and M above. A small percentage reductions of N and M are always
possible since the cutoff coefficients ϕ(n/N) are very close to 1 when n is close
to N and very small when n is close to Nτ . Also the trivial positive answer of
question (B) that (2.30) is applicable for M > 2N (with τ̄ = MN−1 − 2) is not
very satisfactory. Of course, one will be covered by the theory but, as explained in
§3.6, decreasing τ below 1 reduces significantly the speed of the algorithm.

One can write explicitly the errors which conditions (A) and (B) bring in property
(2.35). Effects of such type are often called “aliasing”. These questions can also
be explored numerically when taking ε smaller than the aliasing error. One of the
conclusions from our experiments in Example 1 in §5 is that condition (A) is more
damaging to the error than condition (B) for polynomials with “large” high degree

coefficients am,n, bm,n for n closed to Ñ .
The above question has a positive answer in the the case when (i) one has to

compute the values of a spherical polynomial YN with “small” high degree coeffi-
cients and (ii) the error must not exceed ε which is within some reasonable bound
depending on the smoothness of YN (not arbitrarily small). Being able to reduce
significantly the size of M allows to utilize our method for fast compressed (mem-
ory efficient) evaluation of spherical polynomials with tight control on the accuracy.
This is precisely the case described in Example 2 in §5.
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4.3. Application to other problems. The operators ΦN from (2.29) and their
truncated versions ΦN,δ in (2.30) are a powerful approximation tool as evidenced
by estimates (2.36) in Theorem 2.3 and (2.43) in Theorem 2.4. Note that condition
(2.34) is no longer needed when these operators are used for approximation. Rather,
the identity N = bM/(2 + τ)c can be used to define the parameter N appearing in
the right-hand sides of (2.36) and (2.43).

The superb localization of the kernels of the operators ΦN and ΦN,δ and their
compatibility with spherical harmonics make them an excellent tool for global as
well as local approximation. The latter is a desirable feature for practical appli-
cations. Here “local” means that the approximant is closer to the approximated
function in regions where the function is smoother than globally. This is a well
known fact in the classical approximation theory.

Formulas (2.29) and, especially, (2.30) can be viewed as “interpolation” formulas,
and hence used for fast generation of surfaces in computer-aided geometric design.

Our algorithm can also be used for fast verification whether given data represent
(within accuracy ε0) the values at given regular grid points of some (unknown)
spherical polynomial of degree N . The criterion is defined by

|f(ξ)− ΦN,δf(ξ)| ≤ ε0 ∀ξ ∈ X ,

where f(ξ) denotes the value at ξ and δ is calculated for ε defined in (3.1). In this
case the grid should be oversampled with respect to the polynomial degree.

Applications of the spherical “father needlets” to reconstruction of band-limited
functions from their values at scattered points on the sphere are given in Ivanov,
Petrushev [10].

5. Numerical experiments

The method for evaluation of high degree spherical polynomials at scattered
points described in this article has been implemented in software written initially
in MATLAB 7.2 and then rewritten in MATLAB 2012b with double-precision vari-
ables. Variable precision arithmetic has not been used in the code.

Our experiments were conducted in real time on a small 1.6 GHz PC with 1 GB of
RAM and on a 3.4 GHz PC with 16 GB of RAM. The method has been intensively
tested for degrees between 500 and 2190. The verification of experiments with high
degree spherical polynomials is not easy for lack of independent reliable software.
For instance, the MATLAB function legendre(n,X,’norm’) gives wrong answers
(including 0 or NaN) for degrees n > 3000.

We have also made a number of experiments with spherical polynomials of de-
grees up to 10 000 and compared the results with the results of code performing
sharp direct computations in variable precision arithmetic. Unfortunately, such
code is too slow for any substantial testing. In all experiments the results were in
full agreement with the theory.

Here we report the result of two experiments with our method: the first with
spherical polynomials of “large” high degree coefficients, and the second with the
spherical polynomial representing the geoid undulation in the 2160 model of NGA
(EGM2160) with relatively small high degree coefficients.
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Example 1. For n = 500, n = 1 000 and n = 2 000 let Fn be defined by

Fn(θ, λ) := q0,nP0,n(cos θ) + 2

n∑
m=1

qm,nPm,n(cos θ) cos(mλ)

with qm,n given by (2.7). Fn has relatively small values in the interiors of the
domains {(θ, λ) : 0 < θ < π

2 ,
π
2 < λ < 3π

2 } and {(θ, λ) : π2 < θ < π,−π2 < λ < π
2 }.

The extrema of Fn are localized around (π2 ,
π
2 ) and (π2 ,

3π
2 ). The values of F500 on

an 800×1600 grid range from -452.1885 to 371.7888. The graph of F500 in spherical
coordinates is given in Figure 3.

Figure 3. Graph of F500

A representative of the behavior of Fn is the region D = {(θ, λ) : |π2 − θ| ≤
π
15 , |π − λ| ≤

2π
15 }, where we have high oscillation in the longitude direction and

essential decrease of the absolute value in the latitude direction. The values of F500

in D range from -22.7986 to 22.8061. The graph of F500 over this rectangle is given
in Figure 4.

Our experiments have shown full agreement of the test results with the the-
ory. The error of computation was within the prescribed bound ε0 for ε0 = 10−5,
10−6, 10−7, 10−8, 10−9, 10−10 in all cases, whereas ε in (3.1) was determined by
‖F500‖`∞ = 453 for (θ, λ) ∈ [0, π] × [0, 2π) and by ‖F500‖`∞ = 23 for (θ, λ) ∈ D.
The later increase of ε is allowed by the local nature of the operators. The errors
in evaluating Fn for n = 1 000 and n = 2 000 are almost the same as for F500.

Experiments with parameters satisfying conditions (A) and/or (B) of §4.2 showed
that for ε0 = 10−10 practically no significant reduction of speed is possible. On the
other hand a gain of speed by a factor of two is possible for ε0 = 10−5 (depending
on the number of grid points). Under similar ratios in conditions (A) and (B)
the contribution of condition (A) to the error was higher than the contribution of
condition (B).

Example 2. The geoid undulation G is approximated by a spherical polyno-

mial of degree and order Ñ = 2189, computed in the official Earth Gravitational
Model EGM2008 and publicly released by the U.S. National Geospatial-Intelligence
Agency (NGA). The polynomial coefficients have been taken from
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Figure 4. Graph of F500 over D

http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/egm08_wgs84.html.

This website also contains the values of the geoid undulation on two mesh grids of
type (2.1): 2.5′ × 2.5′ (i.e. K = M = 4320, L = 8640) and 1′ × 1′ (i.e. K = M =
10800, L = 21600). The 1′ × 1′ grid points are 233, 301, 600. The geoid undulation
values as single precision numbers occupy 890MB on the hard disk and range from
−106.9 m to 85.8 m.

Table 4 summarizes the results of the testing. The following programs are com-
pared:

• hsynth_WGS84 – the NGA spherical harmonic synthesis program comput-
ing G by its coefficients directly from (2.12); written in FORTRAN; for
comparison purposes assumed to be exact, so the error reported in Table 4
is 0.
• interp_1min – the NGA spherical harmonic synthesis program computing
G by spline interpolation of the 1′ × 1′ undulation data; written in FOR-
TRAN; because of the higher memory requirements, the code was tested
only on a 16 GB RAM computer.
• interp_2p5min – the NGA spherical harmonic synthesis program comput-

ing G by spline interpolation of the 2.5′ × 2.5′ undulation data; written in
FORTRAN.
• needlet3 – implementation of our algorithm which uses the 3′ × 3′ undu-

lation data; written in MATLAB.
• needlet4 – implementation of our algorithm which uses the 4′ × 4′ undu-

lation data; written in MATLAB.

The NGA programs interp_1min and interp_2p5min require approximately 20
and 7 seconds for loading into the memory and initialization, while each of needlet3
or needlet4 requires approximately 2 seconds. The total run time should be formed
as the sum of these values plus the time for proper point evaluation computed using
column “points/second” above.

Program hsynth_WGS84 solves Problem 1 while the remaining programs solve
Problem 3 described in §2.1.
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Program
Size HD

(MB)
Size RAM

(MB)
points/
second

Error
(mm)

hsynth_WGS84 71.2 53.9 16 0
interp_1min 890.0 1 814.0 640 000 0.84
interp_2p5min 142.5 287.6 630 000 8.65
needlet3 70.9 132.4 11 000 0.40
needlet4 41.1 100.2 4 400 0.36

Table 4. Program comparison by memory size, speed (on a
3.4 GHz PC) and error

The sampling interval for the Nyquist frequency is π/2160 = 5′ and programs
needlet3 and needlet4 work with 3′× 3′ and 4′× 4′ mesh grids producing results
with relative errors approximately ε = 4 · 10−6. The programs demonstrate that
for some quantities used in practice one can violate (2.34) as discussed in §4.2
and still achieve very good approximation. As explained before one can increase
the accuracy of the needlet software by simply increasing δ. Thus, polynomial
evaluation at additional grid points is avoided, which is not the case with the spline
interpolation software interp_1min and interp_2p5min.

The test results described in Table 4 show that needlet3 and needlet4 are
memory efficient and, therefore, they can be effectively used for fast compressed
and accurate computation of the geoid undulation at scattered points on the sphere.
This is the main advantage of needlet3 and needlet4 over interp_1min. Of
course, as usual here there is a trade-off between memory size and speed.

Observe also that we use the same algorithm for both Example 1 and Example 2.
In contrast, the spline interpolation software discussed above looses accuracy when
evaluating functions as in Example 1 because of their rapid oscillation.

6. Discussion

In the paper we have presented a method for fast and memory efficient evaluation
within any precision of high degree spherical polynomials at many scattered points
on the sphere. As shown in §4.3 the method can also be used for approximation
on the sphere, for verification of spherical polynomials, and for fast generation of
surfaces in computer-aided geometric design.

The strength of operators ΦN,δ can be summarized as follows:

• Excellent approximation properties:
– The spherical polynomials {wξKN (ξ · x) : ξ ∈ X} form not only a

superbly localized partition of unity but also reproduce the N -th degree
spherical polynomials.

– As a consequence we have inequality (2.43).
• Numerical stability

– The operator norm ‖ΦN,δ‖`∞(X )→L∞(S2) is between 2.5 and 4.5 for the
values of τ and ε under consideration (see [10]).

– Thus, the errors generated in evaluating function values f(ξ), ξ ∈ X ,
are kept bounded, which is stability by initial data.

– The rounding errors in computing ΦN,δf(x) have small impact on the
outcome because the rapid decay of KN (ξ · x) implies that the sum-
mands in (2.30) are of different magnitudes.
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– Hence, the prescribed accuracy in uniform norm, which is guaranteed
by theory, is achieved in practice too.

• Fast evaluation
– Only functional values at the nodes from a δ-neighborhood of a point
x are used in the computation of ΦN,δf(x).

– The kernel KN (ξ · x) is a superposition of a dot product and an one-
dimensional function, i.e. a ridge function, which allows fast compu-
tation.

• Mild requirements on the nodal sets
– The nodal set should allow: (i) the construction of a cubature with

positive weights that is exact for M -th degree spherical polynomials;
(ii) fast determination of the nodes from a δ-neighborhood of any point.

– This allows a wide variety of nodal sets to be used.
– The algorithm can work with, but does nor require, asymptotically

equally spaced nodes, such as the ones given by HEALPix or GLESP.
In these cases, however, the construction of cubatures which are exact
for high degree spherical polynomials is problematic.

Some other distinctive features of our algorithm are:

• The product Nδ depends logarithmically on ε0, which allows the algorithm
to work with practically the same speed for widely varying precisions ε0.
At the same time the speed does not depend on the polynomial degree.
Thus very high degrees and very fine precisions are attainable for effective
computation.
• The algorithm error is measured in the uniform norm, which guarantees the

computational accuracy at any point from the sphere. This feature gives
our algorithm an important advantage over algorithms with error estimates
in average, in RMS or of statistical nature.
• The local nature of formula (2.30) implies that only nodes which are close to

the point of interest enter the computations, even if the polynomial is highly
oscillating (see Example 1 in §5). As a consequence, when computations
for a given region are performed only the grid points covering the region
plus a small neighborhood have to be stored in the computer memory.

• The local nature of the method also leads to its natural parallelization.
• The improvement of the precision ε0 is achieved by increasing δ and does

not require computation of polynomial values at new nodal points. Such
increase of δ does not affect the computed approximation for the previous
δ, thus an application of the algorithm in a nested fashion may be used for
gaining speed (see §3.6).

• One of the main ways for increasing the speed of the algorithm is the
increasing of the parameter τ as (3.19) and (3.38) show. Under certain
conditions τ can be chosen larger than the main restriction from (2.34)
allows (see §4.2 and Example 2 of §5).

• For a given nodal set X one can use different cubatures satisfying the com-
mon requirement of high degree of exactness.

• The method successfully avoids underflow and overflow problems since no
evaluation of a single associated Legendre function is performed. We only
use downward Clenshaw summation with the Legendre polynomials recur-
rence.
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• The advantage of our algorithm over the direct calculation of spherical
polynomials becomes significant for spherical polynomials of degree 300 or
higher.

7. Appendix: Localization of reproducing Jacobi polynomial kernels

We first construct cutoff functions with small derivatives. Denote by Nk the
normalized B-spline with knots 0, 1, . . . , k, defined by convolving k times the char-
acteristic function χ[0,1] of the interval [0, 1], i.e.

(7.1) Nk = χ[0,1] ∗ · · · ∗ χ[0,1]︸ ︷︷ ︸
k−times

.

From (7.1) we get Nk(t) > 0 for t ∈ (0, k), Nk(t) = 0 for t ∈ R\(0, k) and

(7.2)

k∫
0

Nk(v) dv = 1.

In order to estimate the uniform norm of Nk and its derivatives we first derive from
(7.1) and the Fourier transform of χ[0,1]

‖Nk‖L∞(R) = Nk(k/2) = π−1

∞∫
−∞

(
sinπω

πω

)k
dω =

√
6

π3k
(1 + o(1)).

Also (7.1) gives N ′k(x) = Nk−1(x)−Nk−1(x− 1), which implies

‖N (k−1)
k ‖L∞(R) =

∥∥∥ k−1∑
j=0

(−1)j
(
k − 1

j

)
χ[j,j+1]

∥∥∥
L∞(R)

= max
0≤j≤k−1

(
k − 1

j

)
= 2k−1

√
2

πk
(1 + o(1)).

Now the Kolmogorov-Landau inequality (see Theorem 7.1 in Chapter 5 of [2, p.
153]) yields

(7.3) ‖N (`−1)
k ‖L∞(R) ≤ µk2`, ` = 1, 2, . . . , k,

where µk = c∗k−1/2 with c∗ an absolute constant.
We use the normalized B-spline Nk from above to define the cutoff function

(7.4) ϕ(t) =

τ/2∫
t−1−τ/2

2kτ−1Nk(2kτ−1s) ds, t ∈ [0,∞).

Clearly, ϕ(t) = 1 for t ∈ [0, 1 + τ/2], ϕ(t) = 0 for t ∈ [1 + τ,∞), i.e. ϕ is a cutoff
function. Furthermore, (7.1) implies that ϕ ∈ Ck−1[0,∞) and ϕ(k−1) is a piece-wise
linear continuous function. Hence ϕ ∈W k

∞[0,∞).

The Jacobi polynomials {P (α,β)
n }n≥0 form an orthogonal basis for the weighted

space L2([−1, 1], wα,β) with weight wα,β(x) := (1−x)α(1+x)β , α, β > −1, and are
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traditionally normalized by P
(α,β)
n (1) =

(
n+α
n

)
. It is well known that [23, (4.3.3)]

1∫
−1

P (α,β)
n (x)P (α,β)

m (x)wα,β(x)dx = δn,mh
(α,β)
n ,

where

(7.5) h(α,β)
n =

2α+β+1

(2n+ α+ β + 1)

Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(n+ 1)Γ(n+ α+ β + 1)
.

We are interested in kernels of the form

(7.6) Qα,βN (x, y) =

∞∑
n=0

ϕ
( n
N

)(
h(α,β)
n

)−1

P (α,β)
n (x)P (α,β)

n (y), x, y ∈ [−1, 1],

where ϕ is a cutoff function, i.e. ϕ(t) = 1 for t ∈ [0, 1] and ϕ(t) = 0 for t ∈ [1+τ,∞).
Set

(7.7) Kα,βN (x) := Qα,βN (x, 1) =

∞∑
n=0

ϕ
( n
N

)(
h(α,β)
n

)−1

P (α,β)
n (x)P (α,β)

n (1).

It is easy to see that

(7.8) Kα,βN (x) = c?
∞∑
n=0

ϕ
( n
N

) (2n+ α+ β + 1)Γ(n+ α+ β + 1)

Γ(n+ β + 1)
P (α,β)
n (x),

where c? := 2−α−β−1Γ(α+1)−1. Here the product (2n+α+β+1)Γ(n+α+β+1)
for n = 0 is replaced by Γ(α+ β + 2).

A localization estimate of the kernel Kα,βN for ϕ defined in (7.4) is given in

Theorem 7.1. Let N, k ∈ N, N > k and τ > 0. Then for any α ≥ β ≥ −1/2 there
exist constants c0, c1 > 0 depending only on α, β such that

(7.9) |Kα,βN (cos θ)| ≤ c0 ((1 + τ)N)
2α+2

min

{
1,

(
c1k

τNθ

)k}
, θ ∈ [0, π].

Proof. We shall need the simple inequality

(7.10) Γ(n+ α+ k + β + 1)/Γ(n+ β + 1) ≤ c(n+ k)α+k, c = c(α, β).

A trivial estimate of |Kα,βN | follows by applying ‖P (α,β)
n ‖L∞[−1,1] ≤ cnα with

c = c(α, β) [23, (7.32.6)] and (7.10) with k = 0 in (7.8)
(7.11)

|Kα,βN (cos θ)| ≤ c

1 +
∑

1≤n<(1+τ)N

n2α+1

 ≤ c((1 + τ)N)2α+2, c = c(α, β).

A key role in obtaining a nontrivial estimate on |Kα,βN | will play the identity [23,
(4.5.3)]:

n∑
ν=0

(2ν + α+m+ β + 1)Γ(ν + α+m+ β + 1)

Γ(ν + β + 1)
P (α+m,β)
ν (x)(7.12)

=
Γ(n+ α+m+ 1 + β + 1)

Γ(n+ β + 1)
P (α+m+1,β)
n (x).
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Applying summation by parts to the sum in (7.8) using (7.12) with m = 0, we get

(7.13) Kα,βN (x) = c?
∞∑
n=0

[
φ
( n
N

)
− φ

(n+ 1

N

)]Γ(n+ α+ 1 + β + 1)

Γ(n+ β + 1)
P (α+1,β)
n (x).

In order to apply repeatedly summation by parts to the sum in (7.13) we define
the sequence of functions {Am(u)}∞m=0, u ∈ [0,∞), recursively by

(7.14) A0(u) := φ
( u
N

)
, Am(u) :=

Am−1(u)−Am−1(u+ 1)

2u+ α+m+ β + 1
, m ≥ 1.

Note that (7.14) for m = 1 is

(7.15) A1(u) :=
φ
(
u
N

)
− φ

(
u+1
N

)
2u+ α+ 1 + β + 1

,

which implies suppA1 ⊂ [(1 + τ/2)N − 1, (1 + τ)N ]. Inductively we get suppAm ⊂
[(1 + τ/2)N −m, (1 + τ)N ]. With this notation we rewrite (7.13) as
(7.16)

Kα,βN (x) = c?
∞∑
n=0

A1(n)
(2n+ α+ 1 + β + 1)Γ(n+ α+ 1 + β + 1)

Γ(n+ β + 1)
P (α+1,β)
n (x).

Applying summation by parts k − 1 times starting from (7.16) (using every time
(7.12)), we arrive at the identity:
(7.17)

Kα,βN (x) = c?
∞∑
n=0

Ak(n)
(2n+ α+ k + β + 1)Γ(n+ α+ k + β + 1)

Γ(n+ β + 1)
P (α+k,β)
n (x).

The summation index n in (7.17) effectively runs from b(1 + τ/2)Nc − k + 1 to
d(1 + τ)Ne − 1 because Ak(n) = 0 for the other n’s.

We next prove the estimates

(7.18) ‖A(`)
m ‖L∞[0,∞) ≤ µk

23m+2`km+`

τm+`(1 + τ)mN2m+`

for all `,m ≥ 0 in the range 0 < m+ ` ≤ k, where µk is from (7.3).
Let m = 0. For ` = 1 we have

A′0(u) = N−1ϕ′(uN−1) = −2k(τN)−1Nk(2kτ−1(uN−1 − 1− τ/2)).

Hence A
(`)
0 (u) = −(2k/(τN))`N (`−1)

k (2kτ−1(uN−1 − 1− τ/2)) and using (7.3) we
get

‖A(`)
0 ‖L∞[0,∞) ≤ µk

(
4k

τN

)`
, ` = 1, 2, . . . , k,

which is (7.18) for m = 0.
We prove (7.18) for m ≥ 1 by induction on m and for every m by induction on `.

We rewrite (7.14) as

(7.19) (2u+ α+m+ β + 1)Am(u) = −
1∫

0

A′m−1(u+ v) dv.

The `-th derivative of the above representation by Leibniz identity gives

(7.20) A(`)
m (u) = −

2`A
(`−1)
m (u) +

∫ 1

0
A

(`+1)
m−1 (u+ v) dv

2u+ α+m+ β + 1
.
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As indicated above Am(u) = 0 for u ≤ (1 + τ/2)N −m. Therefore, in the proof of
(7.18) we use (7.20) for u > (1 + τ/2)N −m. Since N > k ≥ m for these u’s we
have 2u+ α+m+ β + 1 ≥ (1 + τ)N .

Assume that (7.18) is established for m− 1. Then (7.19) gives

‖Am‖L∞[0,∞) ≤
1

(1 + τ)N
µk

23(m−1)+2km−1+1

τm(1 + τ)m−1N2(m−1)+1
=

1

2
µk

23mkm

τm(1 + τ)mN2m
,

which implies (7.18) for ` = 0. For ` = 1, 2, . . . , k −m we get from (7.20)

‖A(`)
m ‖L∞[0,∞)

≤ 1

(1 + τ)N
µk

(
2`

23m+2`−2km+`−1

τm+`−1(1 + τ)mN2m+`−1
+

23m+2`−1km+`

τm+`(1 + τ)m−1N2m+`−1

)
= µk

(
`τ

2k(1 + τ)
+

1

2

)
23m+2`km+`

τm+`(1 + τ)mN2m+`
< µk

23m+2`km+`

τm+`(1 + τ)mN2m+`
,

where the last inequality follows from ` ≤ k − 1. This proves (7.18).
We shall need the following estimate for Jacobi polynomials [5, Theorem 1]: For

α, β ≥ −1/2 and n ≥ 1,

(7.21) sup
x∈[−1,1]

(1− x)α+1/2(1 + x)β+1/2|P (α,β)
n (x)|2 ≤ 2e

π

(
2 +

√
α2 + β2

)
h(α,β)
n ,

where h
(α,β)
n is from (7.5).

By (7.5) it readily follows that

(7.22) h(α+k,β)
n ≤ c2kn−1.

Using (7.22), (7.21), and the obvious inequalities 1− cos θ ≥ 2π−2θ2, 1 + cos θ ≥ 1
for 0 < θ ≤ π/2, we infer

(7.23) |P (α+k,β)
n (cos θ)| ≤ ck1/2πk

n1/2θk+α+1/2
, 0 < θ ≤ π/2.

We now use (7.18) with m = k and ` = 0, (7.10) and (7.23) in (7.17) to obtain
for 0 < θ ≤ π/2 and N > k

(7.24) |Kα,βN (cos θ)|

≤ c
∑

(1+τ/2)N−k≤n<(1+τ)N

µk
23kkk

τk(1 + τ)kN2k
n(n+ k)α+k k1/2πk

n1/2θk+α+1/2

≤ c0((1 + τ)N)2α+2

(
c1k

τNθ

)k+α+1/2

≤ c0((1 + τ)N)2α+2

(
c1k

τNθ

)k
whenever c1k ≤ τNθ. Now, (7.11) and (7.24) yield (7.9) for 0 ≤ θ ≤ π/2.

Now let π/2 ≤ θ ≤ π − 1/N . Using (7.22), (7.21), and the obvious inequalities
1 + cos θ ≥ 2π−2(π − θ)2 ≥ 2(πN)−2, 1− cos θ ≥ 1 for these θ’s we infer
(7.25)

|P (α+k,β)
n (cos θ)| ≤ ck1/22k/2

n1/2(π − θ)β+1/2
≤ c2kn−1/2Nβ+1/2,

π

2
≤ θ ≤ π − 1

N
.

Using (7.25) instead of (7.23) in the proof of (7.24) we get

|Kα,βN (cos θ)| ≤ c̃0(1 + τ)α+3/2Nα+β+2

(
c̃1k

τN

)k
,
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which implies

‖Kα,βN ‖C[cos(π−1/N),0] ≤ c̃0((1 + τ)N)2α+2

(
c̃1k

τN

)k
.

This estimate combined with (3.5) and Kα,βN ∈ Π(1+τ)N implies

‖Kα,βN ‖C[−1,0] ≤ c0((1 + τ)N)2α+2

(
c̃1k

τN

)k
,

which completes the proof of the theorem. �
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