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Abstract

Applications of the Incremental Algorithm, which was developed
in the theory of greedy algorithms in Banach spaces, to approximation
and numerical integration are discussed. In particular, it is shown that
the Incremental Algorithm provides an efficient way for deterministic
construction of cubature formulas with equal weights, which give good
rate of error decay for a wide variety of function classes.

1 Introduction

The paper provides some progress in the fundamental problem of algorithmic
construction of good methods of approximation and numerical integration.
Numerical integration seeks good ways of approximating an integral∫

Ω

f(x)dµ

by an expression of the form

Λm(f, ξ) :=
m∑
j=1

λjf(ξj), ξ = (ξ1, . . . , ξm), ξj ∈ Ω, j = 1, . . . ,m. (1.1)
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It is clear that we must assume that f is integrable and defined at the
points ξ1, . . . , ξm. The expression (1.1) is called a cubature formula (Λ, ξ)
(if Ω ⊂ Rd, d ≥ 2) or a quadrature formula (Λ, ξ) (if Ω ⊂ R) with knots
ξ = (ξ1, . . . , ξm) and weights Λ = (λ1, . . . , λm). For a function class W we
introduce a concept of error of the cubature formula Λm(·, ξ) by

Λm(W, ξ) := sup
f∈W
|
∫

Ω

fdµ− Λm(f, ξ)|. (1.2)

There are many different ways to construct good deterministic cubature
formulas beginning with heuristic guess of good knots for a specific class
and ending with finding a good cubature formula as a solution (approximate
solution) of the optimization problem

inf
ξ1,...,ξm;λ1,...,λm

Λm(W, ξ).

Clearly, the way of solving the above optimization problem is the preferable
one. However, in many cases this problem is very hard (see a discussion in
[10]). It was observed in [9] that greedy-type algorithms provide an efficient
way for deterministic constructions of good cubature formulas for a wide
variety of function classes. This paper is a follow up to [9]. In this paper
we discuss in detail a greedy-type algorithm – Incremental Algorithm – that
was not discussed in [9]. The main advantage of the Incremental Algorithm
over the greedy-type algorithms considered in [9] is that it provides better
control of weights of the cubature formula and gives the same rate of decay
of the integration error.

We remind some notations from the theory of greedy approximation in
Banach spaces. The reader can find a systematic presentation of this theory
in [11], Chapter 6. Let X be a Banach space with norm ‖ · ‖. We say that
a set of elements (functions) D from X is a dictionary if each g ∈ D has
norm less than or equal to one (‖g‖ ≤ 1) and the closure of spanD coincides
with X. We note that in [8] we required in the definition of a dictionary
normalization of its elements (‖g‖ = 1). However, it is pointed out in [10]
that it is easy to check that the arguments from [8] work under assumption
‖g‖ ≤ 1 instead of ‖g‖ = 1. In applications it is more convenient for us to
have an assumption ‖g‖ ≤ 1 than normalization of a dictionary.

For an element f ∈ X we denote by Ff a norming (peak) functional for
f :

‖Ff‖ = 1, Ff (f) = ‖f‖.
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The existence of such a functional is guaranteed by the Hahn-Banach theo-
rem.

We proceed to the Incremental Greedy Algorithm (see [10] and [11], Chap-
ter 6). Let ε = {εn}∞n=1, εn > 0, n = 1, 2, . . . .

Incremental Algorithm with schedule ε (IA(ε)). Denote f i,ε0 :=
f and Gi,ε

0 := 0. Then, for each m ≥ 1 we have the following inductive
definition.

(1) ϕi,εm ∈ D is any element satisfying

Ff i,εm−1
(ϕi,εm − f) ≥ −εm.

(2) Define
Gi,ε
m := (1− 1/m)Gi,ε

m−1 + ϕi,εm/m.

(3) Let
f i,εm := f −Gi,ε

m .

We show how the Incremental Algorithm can be used in approximation
and numerical integration. We begin with a discussion of the approximation
problem. A detailed discussion, including historical remarks, is presented in
Section 2. For simplicity, we illustrate how the Incremental Algorithm works
in approximation of univariate trigonometric polynomials.

An expression

m∑
j=1

cjgj, gj ∈ D, cj ∈ R, j = 1, . . . ,m

is called m-term polynomial with respect to D. The concept of best m-term
approximation with respect to D

σm(f,D)X := inf
{cj},{gj∈D}

‖f −
m∑
j=1

cjgj‖X

plays an important role in our consideration.
ByRT (N) we denote the set of real 1-periodic trigonometric polynomials

of order N . For a real trigonometric polynomial denote

‖a0 +
N∑
k=1

(ak cos k2πx+ bk sin k2πx)‖A := |a0|+
N∑
k=1

(|ak|+ |bk|).

We formulate here a result from [10].
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Theorem 1.1. There exists a constructive method A(N,m) such that for
any t ∈ RT (N) it provides a m-term trigonometric polynomial A(N,m)(t)
with the following approximation property

‖t− A(N,m)(t)‖∞ ≤ Cm−1/2(ln(1 +N/m))1/2‖t‖A

with an absolute constant C.

An advantage of the IA(ε) over other greedy-type algorithms is that the
IA(ε) gives precise control of the coefficients of the approximant. For all
approximants Gi,ε

m we have the property ‖Gi,ε
m‖A = 1. Moreover, we know

that all nonzero coefficients of the approximant have the form a/m where a
is a natural number. In Section 2 we prove the following result.

Theorem 1.2. For any t ∈ RT (N) the IA(ε) applied to f := t/‖t‖A provides
after m iterations a m-term trigonometric polynomial
Gm(t) := Gi,ε

m (f)‖t‖A with the following approximation property

‖t−Gm(t)‖∞ ≤ Cm−1/2(lnN)1/2‖t‖A, ‖Gm(t)‖A = ‖t‖A,

with an absolute constant C.

We note that the implementation of the IA(ε) depends on the dictionary
and the ambient space X. The IA(ε) from Theorem 1.2 acts with respect to
the real trigonometric system 1, cos 2πx, sin 2πx, . . . , cosN2πx, sinN2πx in
the space X = Lp with p � lnN .

We now proceed to results from Section 3 on numerical integration. As
in [9] we define a set Kq of kernels possessing the following properties. Let
K(x, y) be a measurable function on Ωx × Ωy. We assume that for any
x ∈ Ωx K(x, ·) ∈ Lq(Ωy), for any y ∈ Ωy the K(·, y) is integrable over Ωx

and
∫

Ωx
K(x, ·)dx ∈ Lq(Ωy).

For a kernel K ∈ Kp′ we define the class

WK
p := {f : f =

∫
Ωy

K(x, y)ϕ(y)dy, ‖ϕ‖Lp(Ωy) ≤ 1}.

Then each f ∈ WK
p is integrable on Ωx (by Fubini’s theorem) and

defined at each point of Ωx. We denote for convenience

J(y) := JK(y) :=

∫
Ωx

K(x, y)dx.
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Consider a dictionary
D := {K(x, ·), x ∈ Ωx}

and define a Banach space X(K, p′) as the Lp′(Ωy)-closure of span of D. In
Section 3 the following theorem is proved.

Theorem 1.3. Let WK
p be a class of functions defined above. Assume that

K ∈ Kp′ satisfies the condition

‖K(x, ·)‖Lp′ (Ωy) ≤ 1, x ∈ Ωx, |Ωx| = 1

and JK ∈ X(K, p′). Then for any m there exists (provided by the Incremen-
tal Algorithm) a cubature formula Λm(·, ξ) with λµ = 1/m, µ = 1, 2, . . . ,m,
and

Λm(WK
p , ξ) ≤ C(p− 1)−1/2m−1/2, 1 < p ≤ 2.

Theorem 1.3 provides a constructive way of finding for a wide variety of
classes WK

p cubature formulas that give the error bound similar to that of
the Monter Carlo method. We stress that in Theorem 1.3 we do not assume
any smoothness of the kernel K(x, y).

2 Approximation by the Incremental Algo-

rithm

First, we discuss the known Theorem 1.1 from the Introduction. Proof of
Theorem 1.1 is based on a greedy-type algorithm – the Weak Chebyshev
Greedy Algorithm. We now describe it. Let τ := {tk}∞k=1 be a given sequence
of nonnegative numbers tk ≤ 1, k = 1, . . . . We define (see [8]) the Weak
Chebyshev Greedy Algorithm (WCGA) that is a generalization for Banach
spaces of Weak Orthogonal Greedy Algorithm defined and studied in [7] (see
also [11]).

Weak Chebyshev Greedy Algorithm (WCGA). We define f c0 :=
f c,τ0 := f . Then for each m ≥ 1 we inductively define

1). ϕcm := ϕc,τm ∈ D is any element satisfying

|Ffcm−1
(ϕcm)| ≥ tm sup

g∈D
|Ffcm−1

(g)|.

2). Define
Φm := Φτ

m := span{ϕcj}mj=1,
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and define Gc
m := Gc,τ

m to be the best approximant to f from Φm.
3). Denote

f cm := f c,τm := f −Gc
m.

The term “weak” in this definition means that at the step 1) we do not
shoot for the optimal element of the dictionary, which realizes the correspond-
ing supremum, but are satisfied with weaker property than being optimal.
The obvious reason for this is that we do not know in general that the opti-
mal one exists. Another, practical reason is that the weaker the assumption
the easier to satisfy it and, therefore, easier to realize in practice.

We consider here approximation in uniformly smooth Banach spaces. For
a Banach space X we define the modulus of smoothness

ρ(u) := sup
‖x‖=‖y‖=1

(
1

2
(‖x+ uy‖+ ‖x− uy‖)− 1).

The uniformly smooth Banach space is the one with the property

lim
u→0

ρ(u)/u = 0.

It is well known (see for instance [3], Lemma B.1) that in the case X = Lp,
1 ≤ p <∞ we have

ρ(u) ≤

{
up/p if 1 ≤ p ≤ 2,

(p− 1)u2/2 if 2 ≤ p <∞.
(2.1)

Denote by A1(D) := A1(D, X) the closure in X of the convex hull of D.
The following theorem from [8] gives the rate of convergence of the WCGA
for f in A1(D).

Theorem 2.1. Let X be a uniformly smooth Banach space with the modulus
of smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. Then for t ∈ (0, 1] we have for any
f ∈ A1(D) that

‖f −Gc,τ
m (f,D)‖ ≤ C(q, γ)(1 +mtp)−1/p, p :=

q

q − 1
,

with a constant C(q, γ) which may depend only on q and γ.
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In [10] we demonstrated the power of the WCGA in classical areas of
harmonic analysis. The problem concerns the trigonometric m-term approx-
imation in the uniform norm. The first result that indicated an advantage of
m-term approximation with respect to the real trigonometric systemRT over
approximation by trigonometric polynomials of order m is due to Ismagilov
[5]

σm(| sin 2πx|,RT )∞ ≤ Cεm
−6/5+ε, for any ε > 0. (2.2)

Maiorov [6] improved the estimate (2.2):

σm(| sin 2πx|,RT )∞ � m−3/2. (2.3)

Both R.S. Ismagilov [5] and V.E. Maiorov [6] used constructive methods
to get their estimates (2.2) and (2.3). V.E. Maiorov [6] applied a number
theoretical method based on Gaussian sums. The key point of that technique
can be formulated in terms of best m-term approximation of trigonometric
polynomials. Let as above RT (N) be the subspace of real trigonometric
polynomials of order N . Using the Gaussian sums one can prove (construc-
tively) the estimate

σm(t,RT )∞ ≤ CN3/2m−1‖t‖1, t ∈ RT (N). (2.4)

Denote as above

‖a0 +
N∑
k=1

(ak cos k2πx+ bk sin k2πx)‖A := |a0|+
N∑
k=1

(|ak|+ |bk|).

We note that by simple inequality

‖t‖A ≤ (2N + 1)‖t‖1, t ∈ RT (N),

the estimate (2.4) follows from the estimate

σm(t,RT )∞ ≤ C(N1/2/m)‖t‖A, t ∈ RT (N). (2.5)

Thus (2.5) is stronger than (2.4). The following estimate was proved in [1]

σm(t,RT )∞ ≤ Cm−1/2(ln(1 +N/m))1/2‖t‖A, t ∈ RT (N). (2.6)

In a way (2.6) is much stronger than (2.5) and (2.4). The proof of (2.6) from
[1] is not constructive. The estimate (2.6) has been proved in [1] with the help
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of a nonconstructive theorem of Gluskin [4]. In [10] we gave a constructive
proof of (2.6). The key ingredient of that proof is the WCGA. In the paper
[2] we already pointed out that the WCGA provides a constructive proof of
the estimate

σm(f,RT )p ≤ C(p)m−1/2‖f‖A, p ∈ [2,∞). (2.7)

The known proofs (before [2]) of (2.7) were nonconstructive (see discussion
in [2], Section 5). Thus, the WCGA provides a way of building a good m-
term approximant. However, the step 2) of the WCGA makes it difficult to
control the coefficients of the approximant – they are obtained through the
Chebyshev projection of f onto Φm. This motivates us to consider the IA(ε)
which gives explicit coefficients of the approximant.

Second, we proceed to a discussion and proof of Theorem 1.2. In order
to be able to run the IA(ε) for all iterations we need existence of an element
ϕi,εm ∈ D at the step (1) of the algorithm for all m. It is clear that the
following condition guarantees such existence.

Condition B. We say that for a given dictionary D an element f satisfies
Condition B if for any F ∈ X∗ we have

F (f) ≤ sup
g∈D

F (g).

It is well known (see, for instance, [11], p. 343) that any f ∈ A1(D)
satisfies Condition B. For completeness we give this simple argument here.
Take any f ∈ A1(D). Then for any ε > 0 there exist gε1, . . . , g

ε
N ∈ D and

numbers aε1, . . . , a
ε
N such that aεi > 0, aε1 + · · ·+ aεN = 1 and

‖f −
N∑
i=1

aεig
ε
i‖ ≤ ε.

Thus

F (f) ≤ ‖F‖ε+ F (
N∑
i=1

aεig
ε
i ) ≤ ε‖F‖+ sup

g∈D
F (g)

which proves Condition B.
We note that Condition B is equivalent to the property f ∈ A1(D).

Indeed, as we showed above, the property f ∈ A1(D) implies Condition B.
Let us show that Condition B implies that f ∈ A1(D). Assuming the contrary
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f /∈ A1(D) by separation theorem for convex bodies we find F ∈ X∗ such
that

F (f) > sup
φ∈A1(D)

F (φ) ≥ sup
g∈D

F (g)

which contradicts Condition B.
We formulate results on the AI(ε) in terms of Condition B because in the

application from Section 3 it is easy to check Condition B.

Theorem 2.2. Let X be a uniformly smooth Banach space with modulus of
smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. Define

εn := βγ1/qn−1/p, p =
q

q − 1
, n = 1, 2, . . . .

Then, for any f satisfying Condition B we have

‖f i,εm ‖ ≤ C(β)γ1/qm−1/p, m = 1, 2 . . . .

In the case f ∈ A1(D) this theorem is proved in [10] (see also [11], Chapter
6). As we mentioned above Condition B is equivalent to f ∈ A1(D).

We now give some applications of Theorem 2.2 in construction of special
polynomials. We begin with a general result.

Theorem 2.3. Let X be a uniformly smooth Banach space with modulus
of smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. For any n elements ϕ1, ϕ2, . . . , ϕn,
‖ϕj‖ ≤ 1, j = 1, . . . , n, there exists a subset Λ ⊂ [1, n] of cardinality |Λ| ≤
m < n and natural numbers aj, j ∈ Λ such that

‖ 1

n

n∑
j=1

ϕj −
∑
j∈Λ

aj
m
ϕj‖X ≤ Cγ1/qm1/q−1,

∑
j∈Λ

aj = m.

Proof. For a given set ϕ1, ϕ2, . . . , ϕn consider a new Banach space Xn :=
span(ϕ1, ϕ2, . . . , ϕn) with norm ‖·‖X . In the space Xn consider the dictionary
Dn := {ϕj}nj=1. Then the space Xn is a uniformly smooth Banach space with
modulus of smoothness ρ(u) ≤ γuq, 1 < q ≤ 2 and f := 1

n

∑n
j=1 ϕj ∈ A1(Dn).

Applying the AI(ε) to f with respect to Dn we obtain by Theorem 2.2 after
m iterations

‖f −
m∑
k=1

1

m
ϕjk‖X ≤ Cγ1/qm1/q−1,

where ϕjk is obtained at the kth iteration of the AI(ε). Clearly,
∑m

k=1
1
m
ϕjk

can be written in the form
∑

j∈Λ
aj
m
ϕj with |Λ| ≤ m.
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Corollary 2.1. Let m ∈ N and n = 2m. For any n trigonometric polyno-
mials ϕj ∈ RT (N), ‖ϕj‖∞ ≤ 1, j = 1, . . . , n with N ≤ nb there exist a set
Λ and natural numbers aj, j ∈ Λ, such that |Λ| ≤ m,

∑
j∈Λ aj = m and

‖ 1

n

n∑
j=1

ϕj −
∑
j∈Λ

aj
m
ϕj‖∞ ≤ C(b)(lnm)1/2m−1/2. (2.8)

Proof. First, we apply Theorem 2.3 with X = Lp, 2 ≤ p < ∞. Using (2.1)
we get

‖ 1

n

n∑
j=1

ϕj −
∑
j∈Λ(p)

aj(p)

m
ϕj‖p ≤ Cp1/2m−1/2,

∑
j∈Λ(p)

aj(p) = m, (2.9)

with |Λ(p)| ≤ m.
Second, by the Nikol’skii inequality we obtain from (2.9)

‖ 1

n

n∑
j=1

ϕj −
∑
j∈Λ(p)

aj(p)

m
ϕj‖∞

≤ CN1/p‖ 1

n

n∑
j=1

ϕj −
∑
j∈Λ(p)

aj(p)

m
ϕj‖p ≤ Cp1/2N1/pm−1/2.

Choosing p � lnN � lnm we obtain (2.8).

We note that Corollary 2.1 provides a construction of analogs of the
Rudin-Shapiro polynomials in a much more general situation than in the
case of the Rudin-Shapiro polynomials, albeit with a little bit weaker bound,
which contains an extra (lnm)1/2 factor.

Proof of Theorem 1.2. It is clear that it is sufficient to prove The-
orem 1.2 for t ∈ RT (N) with ‖t‖A = 1. Then t ∈ A1(RT (N), Lp) for all
p ∈ [2,∞). Now, applying Theorem 2.3 and using its proof with X = Lp,
ϕ1, ϕ2, . . . , ϕn, n = 2N + 1, being the real trigonometric system
1, cos 2πx, sin 2πx, . . . , cosN2πx, sinN2πx, we obtain that

‖ 1

n

n∑
j=1

ϕj −
∑
j∈Λ

aj
m
ϕj‖p ≤ Cγ1/2m−1/2,

∑
j∈Λ

aj = m, (2.10)
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where
∑

j∈Λ
aj
m
ϕj is the Gi,ε

m (t). By (2.1) we find γ ≤ p/2. Next, by the
Nikol’skii inequality we get from (2.10)

‖ 1

n

n∑
j=1

ϕj −
∑
j∈Λ

aj
m
ϕj‖∞ ≤ CN1/p‖ 1

n

n∑
j=1

ϕj −
∑
j∈Λ

aj
m
ϕj‖p ≤ Cp1/2N1/pm−1/2.

Choosing p � lnN we obtain the desired in Theorem 1.2 bound.
We point out that the above proof of Theorem 1.2 gives the following

statement.

Theorem 2.4. Let 2 ≤ p < ∞. For any t ∈ RT (N) the IA(ε) applied to
f := t/‖t‖A provides after m iterations a m-term trigonometric polynomial
Gm(t) := Gi,ε

m (f)‖t‖A with the following approximation property

‖t−Gm(t)‖p ≤ Cm−1/2p1/2‖t‖A, ‖Gm(t)‖A = ‖t‖A,

with an absolute constant C.

3 Numerical integration and discrepancy

For a cubature formula Λm(·, ξ) we have

Λm(WK
p , ξ) = sup

‖ϕ‖Lp(Ωy)≤1

|
∫

Ωy

(
J(y)−

m∑
µ=1

λµK(ξµ, y)
)
ϕ(y)dy| =

= ‖J(·)−
m∑
µ=1

λµK(ξµ, ·)‖Lp′ (Ωy). (3.1)

Define the error of optimal cubature formula with m knots for a class W

δm(W ) := inf
λ1,...,λm;ξ1,...,ξm

Λm(W, ξ).

The above identity (3.1) obviously implies the following relation.

Proposition 3.1.

δm(WK
p ) = inf

λ1,...,λm;ξ1,...,ξm
‖J(·)−

m∑
µ=1

λµK(ξµ, ·)‖Lp′ (Ωy).

11



Thus, the problem of finding the optimal error of a cubature formula
with m knots for the class WK

p is equivalent to the problem of best m-
term approximation of a special function J with respect to the dictionary
D = {K(x, ·), x ∈ Ωx}.

Consider a problem of numerical integration of functions K(x, y), y ∈ Ωy,
with respect to x, K ∈ Kq:∫

Ωx

K(x, y)dx−
m∑
µ=1

λµK(ξµ, y).

Definition 3.1. (K, q)-discrepancy of a cubature formula Λm with knots
ξ1, . . . , ξm and weights λ1, . . . , λµ is

D(Λm, K, q) := ‖
∫

Ωx

K(x, y)dx−
m∑
µ=1

λµK(ξµ, y)‖Lq(Ωy).

The above definition of the (K, q)-discrepancy implies right a way the
following relation.

Proposition 3.2.
inf

λ1,...,λm;ξ1,...,ξm
D(Λm, K, q)

= inf
λ1,...,λm;ξ1,...,ξm

‖J(·)−
m∑
µ=1

λµK(ξµ, ·)‖Lq(Ωy).

Therefore, the problem of finding minimal (K, q)-discrepancy is equivalent
to the problem of best m-term approximation of a special function J with
respect to the dictionary D = {K(x, ·), x ∈ Ωx}.

The particular case K(x, y) = χ[0,y](x) :=
∏d

j=1 χ[0,yj ](xj), yj ∈ [0, 1), j =
1, . . . , d, where χ[0,y](x), y ∈ [0, 1) is a characteristic function of an interval
[0, y), leads to a classical concept of the Lq-discrepancy.

Proof of Theorem 1.3. By (3.1)

Λm(WK
p , ξ) = ‖J(·)−

m∑
µ=1

λµK(ξµ, ·)‖Lp′ (Ωy).

We are going to apply Theorem 2.2 with X = X(K, p′) ⊂ Lp′(Ωy), f = JK .
We need to check the Condition B. Let F be a bounded linear functional on
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Lp′ . Then by the Riesz representation theorem there exists h ∈ Lp such that
for any φ ∈ Lp′

F (φ) =

∫
Ωy

h(y)φ(y)dy.

By the Hölder inequality for any x ∈ Ωx we have∫
Ωy

|h(y)K(x, y)|dy ≤ ‖h‖p.

Therefore, the functions |h(y)K(x, y)| and h(y)K(x, y) are integrable on Ωx×
Ωy and by Fubini’s theorem

F (JK) =

∫
Ωy

h(y)

∫
Ωx

K(x, y)dx =

∫
Ωx

(∫
Ωy

h(y)K(x, y)dy

)
dx

=

∫
Ωx

F (K(x, y))dx ≤ sup
x∈Ωx

F (K(x, y)),

which proves the Condition B. Applying Theorem 2.2 and taking into account
(2.1) we complete the proof.

Proposition 3.2 and the above proof imply the following theorem on
(K, q)-discrepancy.

Theorem 3.1. Assume that K ∈ Kq satisfies the condition

‖K(x, ·)‖Lq(Ωy) ≤ 1, x ∈ Ωx, |Ωx| = 1

and JK ∈ X(K, q). Then for any m there exists (provided by the Incremen-
tal Algorithm) a cubature formula Λm(·, ξ) with λµ = 1/m, µ = 1, 2, . . . ,m,
and

D(Λm, K, q) ≤ Cq1/2m−1/2, 2 ≤ q <∞.

13
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