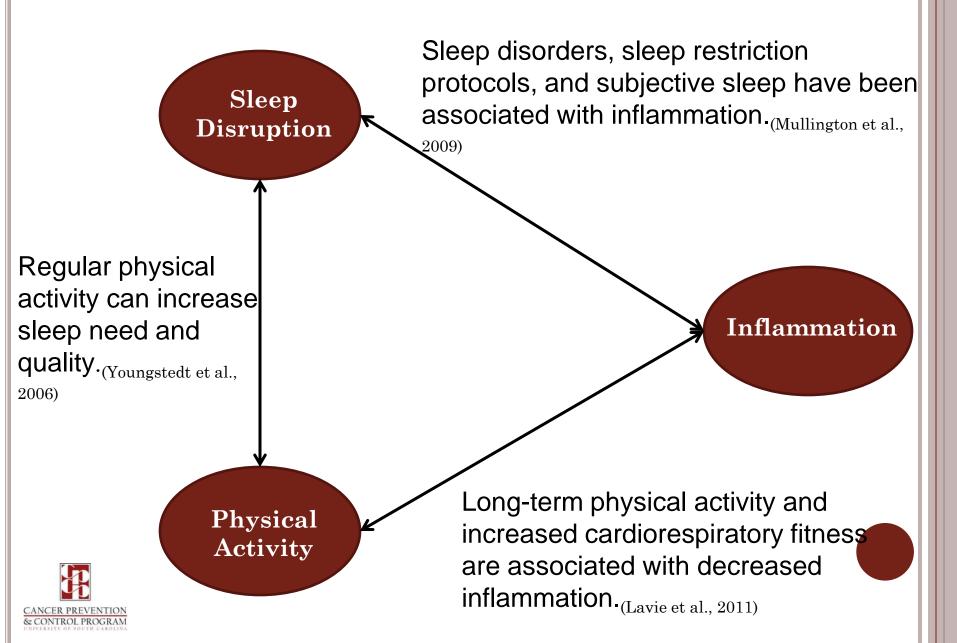
Effect of Sleep and Physical Activity on Markers of Inflammation

Michael Wirth, MSPH, PhD Postdoctoral Fellow

Mentors:

Dr. James Hébert


Dr. Jim Burch

Dr. Steven Blair

Dr. John Vena

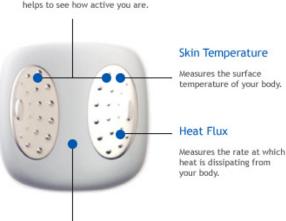
Background & Significance

Purpose

 Hypothesis: hsCRP and IL-6 would be greater among those with sleep characteristics indicative of 'unhealthy' sleep and this relationship would be modified by PA.

- Study Population: Baseline data were used from a randomized trial designed to test the feasibility of a homebased intervention to increased PA among PLWHA._(Jaggers et al., 2013)
 - PLWHA have been shown to suffer disproportionately from various sleep problems. (Parish et al, 2009)
 - Increased inflammation has been observed among PLWHA._(Deeks 2013)

Methods


Galvanic Skin Response

When you sweat, your skin becomes more electrically conductive. This measurement helps to see how active you are

3-axis Accelerometer

Measures your motion and

steps taken.

 PA measurements: Due to the limited sample size, a median split of MVPA minutes categorized subjects into low and high PA.

Table: Inflammation by PA Categories								
MVPA	hsCRP	p	IL-6	p				
<70	3.8 (1.9-7.7)		4.1 (3.4-4.9)					
>70	1.4 (0.7-2.8)	0.05	3.0 (2.2-3.8)	0.04				

- Sleep measurements: Minute-by-minute data from Bodymedia's Sensewear® PA monitor was used to calculated sleep metrics.
 - Sleep/wake times; sleep duration, latency, and efficiency; and WASO

Methods

- Potential confounders: WHR, BMI, demographics, sexual orientation, route of infection, smoking status, comorbidities, and numerous psychosocial and behavioral questionnaires.
- Variable selection: Based on a backward elimination procedures.
- Main analyses: General linear models were used to compute least square (LS) means and 95% confidence intervals (95%CI) for hsCRP and IL-6 among median splits of each sleep metric.
- Stratification: Combined measures of PA and sleep into one variable.

Results

Table: Baseline mean C-Reactive Protein and Interleukin-6 by Combined Sleep Metric Levels and MVPA Minutes

Sleep	MVPA	hsCRP (n=45)		IL-6 (n=42)			
Metric	Level	Mean (95%CI)	d	Mean (95%CI)	р		
Bedtime							
<11:46PM	>70 Min	1.1 (0.4-3.7)	Ref	3.4 (2.3-4.6)	Ref		
>11:46PM	<70 Min	6.5 (1.7-25.1)	0.03	5.0 (4.0-6.0)	0.02		
Sleep Duration							
<339 Min	<70 Min	6.7 (1.9-23.9)	0.01	5.3 (4.5-6.1)	0.02		
>339 Min	>70 Min	1.0 (0.3-3.1)	Ref	4.0 (3.0-4.9)	Ref		

<u>C-reactive protein adjustments</u>: <u>Bedtime</u> = race, education, sexual orientation, and PSS; <u>Total Sleep Time</u> = race, education, and Social Support for PA family subscale. <u>Interleukin-6 adjustments</u>: <u>Bedtime</u> = employment, HIV/AIDS stage, route of infection, PSS, and SF-36 physical functioning subscale; <u>Total Sleep Time</u> = route of infection, PSS, WHR, and POC social liberation subscale.

Results

Table: Baseline mean C-Reactive Protein and Interleukin-6 by Combined Sleep Metric Levels and MVPA Minutes

Sleep Metric	MVPA	hsCRP(n=45)		IL-6 (n=42)	
	Level	Mean (95%CI)	q	Mean (95%CI)	р
Sleep Efficiency					
<73%	<70 Min	7.8 (2.3-27.2)	0.02	4.3 (3.3-5.2)	0.30
>73%	>70 Min	1.3 (0.4-4.4)	Ref	3.7 (2.6-4.7)	Ref
WASO					
<85 Min	>70 Min	1.0 (0.4-3.0)	Ref	4.6 (3.5-5.8)	Ref
>85 Min	<70 Min	3.9 (1.4-11.0)	0.04	4.1 (3.2-5.0)	0.46

C-reactive protein adjustments: Sleep Efficiency = marital status, religion, race, education, Social Support for PA family subscale, POC self-reevaluation subscale, and SF-36 emotional wellbeing, pain, and social functioning subscales; WASO = religion, race, education, and POC self-reevaluation and counterconditioning subscales. Interleukin-6 adjustments: Sleep Efficiency = employment, route of infection, and POC social liberation, helping relationships, and reinforcement management subscales; WASO = route of infection, PSS, WHR, POC self-reevaluation and counterconditioning subscales, and SF-36 limitations due to physical health subscale.

Discussion

- Those in categories representing more PA and 'healthier' sleep had lower levels of hsCRP or IL-6.
- Future studies are necessary to further elucidate the combined effects of sleep and PA on inflammation, as well as to incorporate other lifestyle factors, such as diet.
- Determining which combination of these lifestyle factors is most strongly associated with inflammation could aid in developing lifestyle intervention programs that would be most effective in reducing inflammation levels.

Contact Information

Michael Wirth, MSPH, PhD, Postdoctoral Fellow

Cancer Prevention and Control Program

University of South Carolina

Work Phone: 803-576-5646

Email: wirthm@mailbox.sc.edu

Alternate Email: <u>mikewirth@verizon.net</u>

Acknowledgments

- Dr. Jason Jaggers (Murray State University)
- Dr. James Hébert (USC)
- Dr. Shawn Youngstedt (USC/Arizona State University)
- Dr. Wesley Dudgeon (College of Charleston)
- Dr. Steven Blair (USC)
- Dr. Gregory Hand (USC)

