The Survey

Long before a decision was made to conduct a formal search for South Carolina rock art, I had begun a search for information that might assist a better understanding of the few previously reported petroglyphs. A search of the South Carolina Statewide Archaeological Site Inventory, managed by the South Carolina Institute of Archaeology and Anthropology (SCIAA), produced a single record of an earlier-recorded rock art that was unknown to me. In 1979 Dr. Robert L. Stephenson, then state archaeologist and director of SCIAA, filed a brief report describing a single petroglyph at site 38GR9 in Greenville County (figs. 1 and 2). The report consists of little more than a single photograph and site-location data. According to Stephenson, the informant and some local people called the carved stone the “Old Indian Rock,” believing that the petroglyph was created by Native Americans. Others thought that the carving might be of Spanish origin. The meandering journeys through South Carolina by the Spaniards Hernando de Soto in 1540 and Juan Pardo in 1566–67 and 1567–68 have spawned folklore that members of these expeditions carved “evidence” of their passing on rocks. Perhaps the best known of these carvings is the “Pardo stone” (fig. 3), a small portable petroglyph that was found in 1934 by Bryson Hammett while plowing on his farm, near the town of Inman, in northwestern Spartanburg County (Jones 1978, 12; Wallace 1936). Now on display at the Spartanburg Regional History Museum, the rock is incised with the date “1567,” a parallelogram, and a sun with an arrow pointing away from it. These images have led to speculation that the carved stone was a “direction rock” left by Pardo’s expedition. It is unlikely that the true origin of this petroglyph or the date of its creation will ever be substantiated, but it has added to the lore that Spaniards were responsible for creating some South Carolina petroglyphs.

Searching publications about early explorers who ventured into the region produced a much earlier record of a pictograph, reported by James Mooney in 1891. This brief report gives no details about the drawing itself and only vague location data; in its entirety it says: “Pictograph on Table Rock, 4 miles north of Oolenoy River, near Caesars Head Mountain on North Carolina line” (Cyrus 1891, 418–19).
Other than offering hope that pictographs might still exist, Mooney’s brief report was of little value; finding a particular pictograph in the area he described would be like looking for the proverbial needle in a haystack. Thus Mooney’s discovery could be anywhere within several square miles of rugged mountains in northern Greenville or Pickens counties (fig. 1). Many rock shelters are located in this wilderness, each a potential site for rock art. Because the area is dissected by streams and steep slopes and has few roads or trails, it is difficult to traverse and remains largely unexplored for rock art. Much of Table Rock Mountain and the lowlands on the north side are now within the Greenville County watershed, and this area is off limits to all but a few employees of the Greenville County Water Department. To learn what Mooney had observed and to realize his data were so inadequate that we might never be able to locate the site was both tantalizing and frustrating. Our survey did record a pictograph in this general area but not in Greenville County. The site (38PN102, plate 12), is situated no more than fifty meters over the Pickens County line. Even today the boundary between the two counties is poorly marked in that area, and without the use of a Global Positioning System (GPS)—or the discovery of a modern marker—a trekker is unlikely to be sure of which county he is in. Because Mooney gave no description of the pictograph he visited, however, there is no way of determining if the pictograph we found is the same one observed. Stephenson’s and Mooney’s reports are apparently the only records pertaining to South Carolina rock art prior to 1983.

Soon after I visited my first petroglyph site in 1983, I began corresponding with Dr. James L. Swauger, one of the stalwarts of rock-art research in eastern North America and curator emeritus of anthropology at the Carnegie Museum of Natural History in Pittsburgh. Swauger maintained a repository for records of eastern-states rock art. After I sent him data from my initial visit to this rock art as well as data pertaining to several other glyphs that were reported over the ensuing years, he graciously sent me a copy of his Petroglyphs of Ohio (1984). In 1997, when I inquired about a petroglyph similar to the “peace” symbol that I had recorded in South Carolina, he sent me an article about these particular glyphs, his “Petroglyphs, Tar Burner Rocks, and Lye Leaching Stones” (1981). He also referred me to Charles Hockensmith, staff archaeologist at the Kentucky Heritage Council. Hockensmith had done extensive research on the tar-burner petroglyphs in Kentucky and other eastern states, and he generously shared with me the data he had acquired.

Other publications I consulted were Julian H. Steward’s “Petroglyphs of the United States” (1937), Garrick Mallery’s Picture-Writing of the American Indians (1972), and—for comparative purposes—Robert F. Heizer and Martin A. Baumhoff’s Prehistoric Rock Art of Nevada and Eastern California (1962). Later we made use of Rock Art of Kentucky, by Fred E. Coy Jr. and others (1997), considered the definitive work on the rock art of that state. The only publications we found that related to rock art in reasonable proximity to South Carolina were “Georgia Petroglyphs” (1964) by Margaret
Perryman (the pen name for Francis Smith), and Bart Henson and John Martz’s *Alabama’s Aboriginal Rock Art* (1979). Several years after our survey had begun, we were able to consult *The Petroglyphs and Pictographs of Missouri* (2000) by Carol Diaz–Granados and James R. Duncan, and *Picture Rocks, American Indian Rock Art in the Northeast Woodlands* (2002) by Edward J. Lenik.

All these publications are interesting and informative; yet none addresses the technical aspects of in-the-field procedures necessary to find previously unknown petroglyphs that are eroded to complete invisibility in natural daylight. Thus these publications were of little use in establishing methods for our survey. Rather they detailed visits to previously discovered rock-art sites where the petroglyphs are at least minimally visible by daylight, and for many of these sites prior photographs and drawings already existed. The greatest contribution of these publications to our survey was helping us to better understand the considerable disparity between the physical preservation of the petroglyphs in other eastern states and that of most petroglyphs we discovered in South Carolina.

Fig. 1. South Carolina counties in which rock art was recorded
Fig. 2. The first petroglyph site recorded for South Carolina, 38GR9 in Greenville County

Fig. 3. The Pardo stone. Photograph by Stephen Stinson, courtesy of Spartanburg Regional History Museum
The Area of Survey: A Natural Selection

The Piedmont and Blue Ridge mountain regions of South Carolina are geologically separated from the coastal plain by the fall line, a narrow band of ocean-deposited sand dunes associated with an erosional scarp that extends from New Jersey to Alabama. The fall line is so-called because of the many waterfalls and rapids created by the abrupt drop in elevation that occurs between the Piedmont and the lower elevations of the coastal plain. Distinct from either the Piedmont or coastal plain, the fall line derives its unique geological and botanical character from the xeric sand dunes that were deposited by the ocean during the Miocene epoch between 22.7 and 5.3 million years ago (*South Carolina Naturally* 2001). In South Carolina the fall line divides the state geographically in a southwest to northeast direction (fig. 4), and serves as a natural boundary between the hard Paleozoic metamorphic rocks of the Appalachian Piedmont and the softer, gently dipping Mesozoic and Tertiary sedimentary rocks of the coastal plain (U.S. Geological Survey 2000).

North of the fall line, the land rises abruptly to form the Piedmont, a landscape of rolling hills dissected by numerous streams. The Piedmont extends north-northwest from the fall line for approximately 125 miles to the Blue Ridge Mountains. The Piedmont region accounts for approximately one third of South Carolina’s landmass, and it is topologically and geologically vastly different from the coastal plain. South of the fall line, elevations on the coastal plain drop sharply, and the landscape becomes increasingly flat. On the Piedmont and in the mountains, granite, schist, gneiss, diorite, amphibolites, gabbros, and quartz rocks are abundant (Horton and Dicken 2001), thus the potential for rock art occurring in those areas is excellent. As we approach the fall line, these rock formations dip drastically below the earth’s surface, so on the coastal plain there is little exposed rock amenable to the creation of petroglyphs. Thus the state’s natural landscape dictated the boundaries of the South Carolina Rock Art Survey, and all the rock art we discovered is located north of the fall line (fig. 4) with the majority being found in the counties of Fairfield, Greenville, Laurens, Oconee, Pickens, and Spartanburg (see table 1 and figs. 1, 5, and 8).

The Survey

Our first excursion into the field was in January 1997. A short afternoon outing was preceded by an organizational meeting at the home of John and Patty Walker. I was joined on this initial foray by several citizen-volunteers, a class of anthropology students from nearby Furman University, and their instructor, Dr. Brian Siegel. The only thing that we were sure of was that rock art would be carved or painted on rock. With the excitement of undertaking a much-anticipated venture, we preceded to the upper reaches of the Middle Saluda River in Greenville County. This location has an abundance of large boulders adjacent to the river, and the property was owned by one of our supporters, making it accessible and a great place to practice. We divided
our group in two so we could simultaneously inspect both sides of the stream. Optimistically we studied rock after rock, the tops of which were most often covered with green moss, lichens, leaves, layers of humus, or combinations thereof. At the end of the day, we had found not the slightest scratch on any rock. For several weeks thereafter, we continually expanded our search area, combing fields and stream banks, investigating near springs, and inspecting just about any rock that we could reach—all the while enduring the same lack of success. Soon most of the volunteers abandoned the survey, and those remaining were becoming skeptical of our chances for success. By early February it was clear that our investment of time and funds were not producing the results we had hoped for. It was time to rethink our methodology. We decided to approach the University of South Carolina Media Relations with a request that they distribute an article about the survey to newspapers across the South Carolina upstate. The article was widely published in February 1997, and shortly thereafter we began receiving reports of “markings on rock.”

Our first report was of two portable petroglyphs, one a historic-period circle-and-line (fig. 65) and the other a small, inscribed portable stone considered to be

Fig. 4. South Carolina physiographic zones
prehistoric (fig. 53). Information about other petroglyphs soon followed but they were of historic-period glyphs consisting of names, initials, circle-and-line “tar-burner” rocks, and even an unfinished gristmill stone—each visible to the unaided eye. These reports ultimately lead us too less obvious and previously unknown prehistoric glyphs. It was while investigating the gristmill stone on a rainy day that we inadvertently discovered our first prehistoric rock-art site (site 38PN81).

Encouraged by the public response, we solicited additional information by placing notices in post offices as well as in rural stores frequented by hunters, fisherman, and campers. We instigated more news articles as well as television coverage. We gave lectures at many civic functions, schools, and museums. These activities created awareness, and some brought requests to examine rocks that were thought to host rock art. Our treks took us to many different landforms and into most of the counties located in the northwestern portion of South Carolina. We received no reports of possible rock art from several upstate counties where we thought we might find it, nor did our limited field survey within those counties discover any. This was somewhat surprising, because all the Piedmont and Blue Ridge counties have abundant

---

Fig. 5. Locations of South Carolina rock-art sites
Discovering South Carolina’s Rock Art

rock suitable for hosting rock art. Most of our survey was conducted on public property, but we also searched private lands with permission from the owners.

The entire area that we surveyed amounts to a minuscule fraction of 1 percent of the total landmass of the Piedmont and Blue Ridge regions of our state. The fact that we ultimately recorded numerous examples of rock art demonstrates that many other rock-art sites surely await discovery. Because of the difficulty of getting to sites located near mountain crests and the danger of inspecting them at night using lights (a common procedure at the less dangerous lowland sites), exploration of such hard-to-reach areas was limited to the hours of daylight. Reasons for avoiding these precarious heights at night are obvious in figure 6 and plate 3.

Lowland sites, located near the bases of mountains and on the Piedmont, were much safer to survey, and we were able to inspect them by day and night. Rainy days (as we inadvertently learned) were especially good for our surveys because, when rock is wet and under subdued light, it is sometimes possible to see glyphs that are invisible in full daylight (see plate 1). We also used mirrors to reflect sunlight across rocks, creating shadows in petroglyph grooves so we could see them. However, because so many of the sites are located in deeply shaded areas and because the glyphs on lowland sites are so eroded, using mirrors proved much less efficient than inspecting rocks on a rainy day.

Fig. 6. Michael Bramlett inspecting rock domes for petroglyphs
Elevations and Landforms

Although far from conclusive, current data indicate that the optimum locations where South Carolina’s prehistoric petroglyphs may be found are on two vastly different landforms. One is the mountain crests, where they are found on large bald rock domes; the other is the much lower mountain foothills and Piedmont, where petroglyphs are found on smaller boulders that are primarily located near streams and springs. The mountain crests where rock art was recorded are at elevations of approximately twenty-five hundred feet above sea level or higher. Lowland is a relative term here because sites in the foothills and Piedmont were all found at elevations of up to approximately twelve hundred feet (see figs. 7 and 8). Between these two elevation extremes, there is an intermittent zone characterized by steep mountain slopes, an area with many outcrops of large predominately gneiss boulders and a large number of rock shelters—seemingly an ideal location for rock art. Considerable time was devoted to searching among these rock formations, but no rock art was found (see plate 2). Given the frequent discovery of prehistoric pottery and chipped stone in rock shelters on this terrain, the lack of rock art was surprising.

Different Elevations, Different Rock Art

We discovered significant physical differences between petroglyphs found near mountain crests and those located on lowland sites. Most petroglyphs on the high
elevation sites were boldly pecked into the rock. Although they have suffered considerable erosion, they are clearly identifiable even during periods of bright midday sunlight, a condition under which more highly eroded, or less boldly carved, petroglyphs are invisible. Unlike their highland counterparts, the lowland petroglyphs are almost without exception invisible during the day without some kind of enhancement. We do not know why petroglyphs at the high elevations are more boldly formed than those on the lowland sites. The host rocks at most South Carolina petroglyph sites are gneiss, and it seems logical that, sharing common climate conditions, petroglyphs on the same type of rock should erode at a somewhat similar rate whether highland or lowland. If this assumption is true, then the highland examples may have been more boldly formed to begin with, or they may have been periodically rejuvenated, or they may be of more recent vintage and therefore less eroded than the lowland glyphs; in fact a combination of these factors may apply. Limited survey of high sites on rainy days failed to find evidence of glyphs in a state of near invisibility, like most of those on the lowland sites, but the possibility cannot be excluded that there are such glyphs at highland sites.
Petroglyphs on the Highland Sites

The prehistoric petroglyph motifs represented on the highland and lowland sites are as different from one another as the landforms on which they occur. The highland petroglyphs we found consist predominately of circles that are variable in size and often asymmetrical; a few have lines radiating outward in a “sunburst” manner (figs. 30 and 32). Occasionally a triangle, a square, or another geometric form is carved among the circles, but the great majority are simple circles having no additional attributes (figs. 9 and 29). When we first discovered these sites, the sheer numbers and the repetitiveness of these simple circular motifs gave rise to a degree of skepticism, a belief that they were not a result of human intent but rather the result of some natural occurrence. After careful inspection of other rock domes, both near and at some distance, however, we ruled out the possibility that these circles might be natural. Although similar rock domes occur on all sides of these mountains, our present findings indicate that the circle-dominated petroglyph sites are limited to those rock domes allowing expansive, unobstructed, and predominately westward views. Circle petroglyphs do occur on domes that are oriented north and south, but even on these, the westward views are unobstructed, and landforms having westward views do appear to be preferred for these circles. Then there is the carving of the veins of quartz associated with the host gneiss rock: quartz is much harder than the surrounding gneiss matrix, but despite the marked difference of hardness, the circles are cut through the quartz as well as the gneiss. If the circles had been created by some natural process, the petroglyph grooves would be less deep in the quartz than in the gneiss. Furthermore the rock within the circles’ interiors is identical in appearance to that outside the circles. What form of erosion, wearing away a common surface, could create hundreds of doughnut-shaped indentations while leaving the centers intact? These highland domes also have natural circles, which were created by water flowing down the slopes along narrow, shallow depressions or troughs. These dishpan-shaped depressions were formed when the water skipped down the channels “bouncing” from one pan to another (fig. 10). The doughnut-shaped petroglyphs do not occur in these channels, only on the elevated areas between them, and the water-created, dishpan-shaped circles do not occur on adjacent elevated rocks.

Petroglyphs on the Lowland Sites

Displaying a much greater diversity of motifs than those found on mountain crests, lowland petroglyphs varying from simple unadorned circles to complex abstract, anthropomorphic, and zoomorphic forms, as well as cupules (cup-shaped petroglyphs). Cupules may stand alone, be associated with other petroglyphs (figs. 44–47) or be incorporated into petroglyphs by connecting grooves that lead to or through the cupules (figs. 19, 20, 44, and 46). Cupules have thus far not been found on the highland sites in South Carolina, but at a nearby mountaintop site in North Carolina, they are numerous. Given this close proximity, it is reasonable to believe they might also exist at South Carolina highland sites.