Chromobacterium violaceum

General Information

Chromobacterium violaceum is a rare opportunistic human pathogen. It is a gram-negative beta-proteobacterium that forms smooth violet colonies on nutrient agar. *C. violaceum* is a facultative anaerobe, which tests positive for oxidase and catalase reactions. It is a saprophyte found mainly in soil and water (optimum temperature 30–35 °C). Although human infections are rare, mortality rates are high leading to *C. violaceum* being considered as an emergent pathogen.

Host Range

Humans and animals

Incubation Period

Unknown

Survival Outside Host

Can survive harsh environments.

Laboratory Hazards

Contact with broken skin (primary), inhalation, ingestion

Symptoms of Exposure

C. violaceum infection can cause fever, breathing problems, coughing, vomiting, cellulitis, and skin abscesses, with rapid progression to sepsis and multiple organ abscesses, predominantly in the lungs, liver, and spleen.

Lab Acquired Infections (LAIs)

None reported.

Personal Protective Equipment

Lab Coat

Gloves

Closed-toed

oed "*Eye Protection

Disinfection & Inactivation

Susceptible to 10% bleach and 70% ethanol.

Waste Management

Refer to <u>USC's Biological and Infectious Waste</u> <u>Management Plan.</u>

Lab Containment

<u>Biosafety Level 2 (BSL-2)</u> for activities with materials and cultures known or reasonably expected to contain *C. violaceum*.

Animal Containment

<u>Animal Biosafety Level 2 (ABSL-2)</u> for activities with experimentally infected animals.

Medical Surveillance/Treatment

<u>Surveillance:</u> *C. violaceum* infection can be confirmed by a positive mannitol test and API 20NE test

Prophylaxis: None

Vaccines: None

<u>Treatment:</u> Treatment of *C. violaceum* infections can prove challenging owing to its resistance to different antibiotics. It is known to be resistant to penicillins and cephalosporins.

Spill Procedures

See USC Biological Spill Procedures

Exposure Procedures

See <u>USC Protocol for Post Exposure Evaluation and Follow-up</u> Use of sharps should be strictly limited. A biosafety cabinet should be used when there is a potential to create aerosols or droplets.

References

V. Kothari, S. Sharma and D. Padia, "Recent research advances on Chromobacterium violaceum," *Asian Pacific Journal of Tropical Medicine*, vol. 10, no. 8, pp. 744-752, 2017...

E. H. a. Safety, "Chromobacterium-violaceum," University of Texas at Tyler, https://www.uttyler.edu/safety/files/bars/chromobacterium-violaceum.pdf

C. C. Moore, J. E. Lane and J. L. Stephens, "Successful Treatment of an Infant with Chromobacterium violaceum Sepsis," *Clinical Infectious Diseases*, vol. 32, no. 6, pp. e107-e110, 2001.

I. C. de Siqueira, J. Dias, H. Ruf, E. A. G. Ramos, E. A. Pires Maciel, A. Rolim, L. Jabur, L. Vasconcelos and C. Silvany, "Chromobacterium violaceum in Siblings, Brazil," *Emerging Infectious Diseases*, vol. 11, no. 9, pp. 1443-1445, 2005.

J. I. Campbell, N. Phu Huong Lan, P. Tu Qui, L. Thi Dung, J. J. Farrar and S. Baker, "A successful antimicrobial regime for Chromobacterium violaceum induced bacteremia," *BMC Infectious Diseases*, vol. 13, no. 4, 2013.

Last Revised: 1/24/2023