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The Wasserstein gradient flow

PDE:

6
op

with energy functional:

1
5w>:3/ aUn(p(x)) + p)V(x) + 5 (W + p)(x)(x) | o,
¢ diffusion drift M
aggregation

The PDE (1) is a gradient flow with an energy dissipation law
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Background: JKO scheme for Wasserstein gradient
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The JKO scheme [JKO98]

The Jordan-Kinderlehrer-Otto scheme, or minimizing movement scheme,
proposed in [JKO98] is a variational time implicit scheme:

Definition: Variational time implicit (JKO) scheme. Denote At >0 as a
time step size. Consider the scheme below:

n __ . 1 . n—1 2
p" = arg min Sz Distws (" 0)" + E(p). (4)

where the distance functional Distw,(p" 1, p)? is the Wasserstein-2
distance between current density p and previous step density p" .

Positivity, mass conservation and energy dissipation are inbuilt in the
JKO scheme, which are nontrivial to preserve.

The Wasserstein distance term involves solving a costly optimal transport
problem at each step, which is a serious numerical difficulty for the
practical implementation of the JKO scheme.

Background: JKO scheme for Wasserstein gradient
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The dynamic JKO scheme [BCL16; Car+22]

The (dynamic) Benamou-Brenier formulation [BB00] of the
Wasserstein-2 distance functional:

1
Disty, (p°, p')? := inf / /HV(X,T)Hzp(X,T)dXdT,
VP 0 Q
where the infimum is taken among p, v such that

an(X,T)—I—V-(p(X,T)V(X,T)) =0, p(X7O) :pO(X)7 p(X,l) :pl(X)'

Using this definition, the JKO scheme can be converted to an (convex)
control problem with linear constraints [BCL16; Car+22]:

L8[ m(x, )2
n —ar min 7/ / IR PN dxdr + € ’ 53
P gpAup(-,T),m(.J) 2 ) Ja p(X77-) (PAt) ( )
such that

O-p(x,7)+ V- -m(x,7) =0, 7€]0,At], p(x,0)= pnfl(x)‘ (5b)

Background: JKO scheme for Wasserstein gradient
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One-step relaxation of JKO [LLW20; CGT20]

[LLW20; CGT20] introduced the following one-step relaxation of the JKO
scheme to further drive down the computational cost.

Definition: One-step relaxation of variational time implicit schemes.
Consider

1 m
pr=are o 2At/Q p(x) dx +E(p), (62)

A 5x; Distw, (p,p"1)?

where the minimization is over all functions m, p such that
p(x) = p"(x) + V - m(x) = 0, (6b)

This scheme forms a first-order implicit time scheme for Wasserstein
gradient flows (1). With appropriate spatial discretization, the scheme
(6) can then be efficiently solved using classical first-order proximal
splitting methods [PPO14], e.g., ADMM/ALG2 [FG83], PDHG [CP11].

Background: JKO scheme for Wasserstein gradient
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Dissipative reaction-diffusion equation

We now extend the previous framework to the following dissipative
reaction-diffusion equation:

& o€

Oep=V- (Vl(p)V(;p () — Vz(p)%(p)

Here we require the two mobility functions V4 (p) and V5(p) to be
non-negative, so that the energy dissipation law is still value:

d

Variational time implicit scheme for dissipative
Guosheng Fu (ND) systems
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The metric distance operator

Definition: Distance functional. Define a distance functional
Disty, v, : M x M — R, as below. Consider the following optimal
control problem:

Disty, v, (0°, p*)?

1
= [ [||vl(x,f)|2v1(p(x,f))+|vz(x,T)|2v2(p(x,7))}dx(dﬂ)
9a

where the infimum is taken among p: Q x [0,1] — R,

vi, va: Q x [0,1] — RY, such that p satisfies a reaction-diffusion type
equation with drift vector field vy, drift mobility V4, reaction ratio vs,
reaction mobility V5, connecting initial and terminal densities po, pl:

{an(x,r) + V- (Vilp(x, )wvi(x, 7)) = Va(p(x, 7)) va(x,7), 7€0,1],
p(x,0) = p°(x), p(x,1) = p'(x).
(9b)

Variational time implicit scheme for dissipative
Guosheng Fu (ND) systems



One-step relaxation of variational time implicit schemes

Definition: One-step relaxation of variational time implicit schemes.
Consider

oo L meIP ISP
Pl [vl(p(x))+ Va(p(x))

d 1
0 At ), Jax+e(p),  (109)
zﬁDist\/lyvz(p,p”*l)2

where the minimization is over all functions m: Q@ — R9, s: Q — R, and
p: Q — R, such that

p(x) = p"1(x) + V - m(x) = 5(x). (10b)

Theorem 1 (Time implicit scheme entropy dissipation)
Denote the solution {p"}nen solving the variational implicit scheme (10).
For any stepsize At > 0, we have

E(p") <E(p"Y),  forn€N,.

Variational time implicit scheme for dissipative
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Dissipative reaction-diffusion equation: examples

Vi(p) = p.

(i) Va(p) = cp” where ¢ > 0 and v € R, with a general £(p) given in
(2). Here v =1 corresponds to the Wasserstein-Fisher-Rao metrics
used in [Chi418], and v = 0 is related to unnormalized optimal
transport [Lee+21].

(ii) Va(p)=c lf&;) where ¢ > 0 with a general £(p) given in (2).

(iii) Va(p) = Z(lﬁg_(?)v with linear diffusion

E(p) = [q ap(x)(log(p) — 1)dx, where a > 0. This model is the
following Fisher—KPP equation; see [LLO22, Example 7]:

5. — V- (aVp) = p(1 - p). (11)

Variational time implicit scheme for dissipative
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Strongly reversible reaction-diffusion system

We consider M different chemical species Xi, ..., Xy reacting according
to R mass-action laws:

af Xy + -+ aMXM = ﬂfxl + -+ By X, (12)
where p=1,--- , R is the number of possible reactions,
af =(af, - ,ak,),BP = (B0, -, Bh) € N are the vectors of the

stoichimetric coefﬁaents and k7, kP the positive forward and backward

reaction rates. We restrict ourselves to the strongly reversible case where
kP = kP = kP > 0.

Combining the mass-action laws (12) with (independent) isotropic linear
diffusion with energy &(pi) = [ pi(log(pi) — 1) dx for each density p; of
species X;, we get the following reaction-diffusion system:

)
Oepi — V- (%p,vé Eipi ) Z kP(a? — BP)(p™" — pP7), (13)
for 1 < i< M, where p=(p1,--- ,pM) and the multi-index notation
P M af .
pa = Hi:l Pi is usedVarlatmnal time implicit scheme for dissipative

Guosheng Fu (ND) systems



System reformation

We recast the above system (13) back to a system version of the general
dissipative form (7) using appropriate mobility functions. We introduce

the following function; see [Miell]:

Iog(x);:ﬁg(y) forx #y,

Ux,y) =
y for x =y,

and denote the following mobility functions:
Vi i(pi) = vipi, V1<i<M,
Vaplp) = ko€ (p,p""), VI<p<R.

Using these notations, it can be shown that (13) is equivalent to

Oepi =V - (Vl,,-(p,-)V(SS,-(p,-)>

op
R M S
=Y " Van(p)(af = B0) D (af — B)—Eilpi)-
p=1 =1 op

Variational time implicit scheme for dissipative
Guosheng Fu (ND) systems
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Energy dissipation for reaction-diffusion systems

It is now clear that the above system is purely dissipative as for the scalar
case (7). That is, the first-time derivative of the energy functional is
nonnegative and satisfies

d M )
a;gi(pi('at)) = ;L|V®E,(p),(X, t)H2V1.,i(Pi) dx

2

M

§
> (aj’—ﬁf)ypgi(ﬂf) Va,p(p) dx.
=1

Variational time implicit scheme for dissipative
Guosheng Fu (ND) systems



One-step relaxation of variational time implicit schemes

Definition: One-step relaxation of variational time implicit schemes for
system (16). Consider

M
. IIfThII2 / HSpH
p" = argpen[u/[w SAL (Z/ Vii(p) +Z Vo(p +§&(P:),

(18a)
where the minimization is over all functions m: Q — [R9]M,
s: Q — [R]R, and p: Q — [R,]M, such that
R
pi(x) =PI () + Vomi(x) = (af — BP)sp(x), V1<i< M. (18b)
p=1

Variational time implicit scheme for dissipative
Guosheng Fu (ND) systems
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ALG2 [FG83]

We apply the augmented Lagrangian ALG2 algorithm [FG83] to solve the
optimization problems (6), (10), (18). All three problems are of the form

infsup F(u) — G(®) — (u, DP)q, (19)
v
where D(®) is a linear differential operator for ®, and (-, -)q stands for

the L%-inner product on the domain Q. For example, for scalar
reaction-diffusion (10), we choose

u=(p,m,s),

with

Ll P [ e
F) =5 | [+ oy | &+ e, 6(©@) = [ oax,

and

(u, Dd)q = /

[ —p® 4 (m, V) + scb] dx.
Q

Guosheng Fu (ND) Optimization solver: the ALG2 Algorithm



The augmented Lagrangian

The ALG2 algorithm starts with the dual formulation of the saddle-point
problem (19):

supdlnf* F*(u*) + G(®) + (u,DP — u*)q, (20)

u

where F*(u*) = sup,(u, u*)q — F(u) is the Legendre transform. The
saddle point of the above system is equivalent to the saddle point of the
following augmented Lagrangian form:

supqinf* L(®,u,u”), (21)

u

where the augmented Lagrangian
L(®,u,u") = F*(u*)+G(d>)+(u,D¢7u*)g+%(D¢7u*,D¢7u*)Q,
in which r is a positive parameter.

Guosheng Fu (ND) Optimization solver: the ALG2 Algorithm



The ALG?2 iteration

Algorithm 1 One iteration of ALG2 algorithm for variational implicit
scheme (21).

e Step A: update ®. Minimize L, (®, u, u*) with respect to the first
argument by solving the elliptic problem: Find ®¢ such that it solves

igf LD, u’~L w0,
This step is a linear, constant-coefficient reaction-diffusion problem.

e Step B: update u*. Minimize L,(®, u,u*) with respect to the last
argument by solving the nonlinear problem: Find u** such that it solves

inf L, (&%, v’ u).
-
e Step C: update u. This is a simple pointwise update for the Lagrange

multiplier u :
u’ = u" + (DO — uh). (22)

Guosheng Fu (ND) Optimization solver: the ALG2 Algorithm
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High-order finite element spaces/nodal basis
Approximate ® using high-order H'-conforming finite element space

Vi ={ve HYQ): v|T € QXT) VT € T1}, (23)

Approximate density/flux/source using high-order L?-conforming space
WE ={we 3(Q): w|reQXT) VT €T}, (24)

We equip the space W/ with a set of nodal basis {Lp,},N:V{ C W that
satisfies ;(§;) = 65, V1 <j < Ny, where Ny is the dimension of the
space W[, §; is the Kronecker delta function, and {&;}* is the
collection of Ny, Gauss-Legendre integration points with corresponding
weights {w;}M™ on the mesh Tj.

We denote the discrete L2(Q)-inner product (-, )y as

Ny

(4, V)n =D u(&)v(E)wr, (25)

i=1

High-order spatial discretization of variational time
Guosheng Fu (ND) implicit schemes



Fully discrete scheme for reaction diffusion equation
Given density approximation p$'¢ at the previous time step, find
up, uf € [WE*, and &), € V) such that

inf sup Ly n(p, up, up), (26a)
ueWit o eV ur e[Wi

where u, = (ph, mQ, m}, sy) is the collection of density/flux/source,

1, L.
(ph,mh ,my", sj) is its dual, and

Lr w(®n, up, up) = Fy(up) + Gup(Pp) + (up, DOp, — uj)s
+ E(Dq)h — UZ,'Dq)h — u,’j)h, (26b)

in which (-, )5 is the volume integration rule given in (25), the operators

Dq)h = (7¢h,aX0¢h,axl¢h, q)h), Gh((bh) = (pzld,(bh)h, (26C)

Fy(up) == sup (uy, up)n — Fp(un), (26d)
uhE[W:]“
[mpI? + |m 2 Si )
Frn(uy) := + 1) +AtE . 26e
o) ( 2Vi(pn) 2Va(pw)' /4, (o) (26e)

High-order spatial discretization of variational time
Guosheng Fu (ND) implicit schemes



Practical ALG2 implemenation

Algorithm 2 One iteration of ALG2 algorithm for (26a).

e Step A: update ®4. Find &} € V¥ such that, for all Vi, € V£,

(DO, Di)s = (u; = Tu ™ D)y — (A s (20)

e Step B: update uf. Find p such that it is the minimizer to the

following functional of py

1 — 2 (Impl* + [ml?) r* |sh)?
> (‘/)h*f/)hl rl)h+ (W;l h+ mAl h+At5h(/)h)A
(28)
Then update m®*, my“, st according to
ot _ Valphmmh) e _ rVa(p)Tmh o = rVa(phsh) (29)

- b m - b b
"+ Valpp) " r+ Vi(p}) r+ Va(py)

e Step C. Finally, update u;’ * according to u; =Ty — ul)r..

High-order spatial discretization of variational time
Guosheng Fu (ND) implicit schemes




Some remarks

@ One iteration of ALG2 Algorithm 2 amounts to one linear
reaction-diffusion equation solve (27), a point-wise update of the
nonlinear equation (28) per quadrature point, and some vector
updates. Hence one ALG iteration is of linear computational
complexity.

@ In practice we take the ALG parameter r = 1, and apply 200 ALG
iterations before moving to the next time step.

@ The framework can be generalized to the reversible reaction-diffusion
system case, where we apply further splitting in Step A/B of the
ALG2 algorithm so that only linear scalar reaction-diffusion
equations and point-wise scalar nonlinear minimization problems
needs to be solved. (still of linear complexity)

@ More details can be found in the preprint [FOL23].

High-order spatial discretization of variational time
Guosheng Fu (ND) implicit schemes
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Ex1: Spatial convergence rates, Fokker-Plank equation

We first consider the nonlinear Fokker-Plank equation
atp_ Ap3 =V (pX)a

on the domain Q = [—1,1] x [—1, 1] with homogeneous Neumann
boundary conditions. It is a Wasserestein gradient flow with energy

)= [ (3000° + 508+ 00000 o,

where x = (xp, x1). This problem reaches a steady state solution

2C — (g +x¢
psteady(X17X2) = \/( ( g 1))+’

that satisfies either
6 _3, . 1
5p 20 T2
or p = 0. Here the constant C depends on the total mass of the initial
condition, which we set to be C = 2 so that the solution on € is positive

and smooth.
Guosheng Fu (ND) Numerics

(x5 +x7)=C,



Ex1: Spatial convergence rates, Fokker-Plank equation

The L2-convergence in the density p is recorded in Table 1.

Table 1: Convergence rates with different polynomial degree k applied to a 2D
steady Fokker Plank equation.

dim(V¥) | k=1 k=2 k=4

81 2.362e-03 - 2.400e-04 - 2.628e-05 -
289 5.923e-04 2.00 | 3.298e-05 2.87 | 1.424e-06 4.21
1089 1.482e-04 2.00 | 4.232e-06 2.96 | 5.589e-08 4.67
4225 3.705e-05 2.00 | 5.326e-07 2.99 | 1.884e-09 4.89

Guosheng Fu (ND) Numerics



Ex2: Aggregation-drift-diffusion equations

We consider Wasserstein gradient flow with five choices of energy (2)
that including aggregation effects.

Table 2: Example 2. Five choices of energies, domain size, and initial condition.

Case | aUm(p) | V(x) | W(x) | L I.C.
1 0 % — g 1 22—2 exp(—22—5|x|2)
2 0 X og(jx]) | 1.5 | 2 exp(—Z|x])
3 0 | —Liog(lx]) | B —log(x]) | 15| 2 exp(—%|x)
4 | 01p | —Liog(|x]) | L —tog(lx]) | 15| 2 exp(—Z|x]?)
5 0.1p° 0 —exp(—|x[?)/m | 4 | 0.25X[_33]x[-33]

Guosheng Fu (ND)

Numerics



Ex2: Aggregation-drift-diffusion equations

For all cases, we take a computational domain with a 32 x 32 uniform
square mesh, and use polynomial degree k = 4.

242 030 114 197
LA LA I LN

a) Case 1. Left to right time: t = 0.5,1.5,3.0,6.0, 10

DEEOE

) Case 2. Lefttorlghttlme t =0.2,0.5,1.5,2.0,3.0

Figure 1: Snapshots of density contour at different times for different test cases.
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| |
000 0.00

a) Case 3. Left to right time: t =0.2,0.5,1.5,2.0,3.0

04 034 @u @z. oz
LS LR | | |
000 000

) Case 4. Left to right time: t =0.2,0.5,1.5,2.0,3.0

254
|
000

) Case 5. Left to right time: t = 2,4,6,10,15
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Ex3: Scalar reaction-diffusion equation

We take the Case 4 energy in Table 2, but consider the reaction-diffusion
equation. Three choices of mobility coefficient V5(p) are used in this
example, namely,

Type 1: Va(p) = 0.1,

Type 2: Va(p) = 0.1p, (30)
Type 3: Va(p) = 0.13575.

The same discretization setup as in the previous example is used, i.e.,
using polynomial degree k = 4 on a 32 x 32 uniform mesh with time step
size At = 0.05, and final time T = 3.

Guosheng Fu (ND) Numerics



043 030 016 @u @n
LN L | | !
) 000 000

) Case 4 energy, Type 1 reaction. Left to right time: t = 0.2,0.5,1.5,2.0,3.0

02 @2‘ @7,
| | |
) 000 000

) Case 4 energy, Type 2 reaction. Left to right time: t = 0.2,0.5,1.5,2.0,3.0

oz o1 o1
| | |
000 000 000

(c) Case 4 energy, Type 3 reaction. Left to right time: t =0.2,0.5,1.5,2.0,3.0

Guosheng Fu (ND) Numerics



Ex4: Fisher-KPP equation

The PDE:
atp - Alaxoxop - >‘26X1X1p = Mp(l - p)

Diffusion parameters \; = 0.1, \, = 0.01, and p > 0 is the reaction
coefficient to be specified. Initial condition is a flat top Gaussian:

1, if x2+4x? <0.25
exp(—10(xZ + 4x2 — 0.25)), otherwise

po(x0,x1) = {

The computational domain is a rectangle Q = [—2,2] x [—1, 1], which is
discretized with a 32 x 16 square mesh. We use polynomial degree k = 4
We take time step size At = 0.1 and final time is T = 4.

Guosheng Fu (ND) Numerics



(c) Reaction coefficient ;1 = 1.0. Left to right time: t =1,2,3,4

Figure 4: Snapshots of density contour at different times for different reaction
coefficients.
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Figure 5: Evolution of total energy (left) and total mass (right) over time.
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Ex5: Two-component reversible reaction-diffusion system

We consider the two-species model [LWW21]:

M A m
Orpr — - Bp1’ = — (kip1p3 — k-p3),
Oepa — 12 Lp2 = (ki prps — k_p3).
It can be equivalently written as

0&1 0& )

= (Vialo) V5 00)) = Valoror) (200 - 2

Orp2 =V - <V1,2(P2)V(i5€pz(ﬂz)> + Va(p1, p2) (%%( 1) — %%(02))

where V11(p1) = 71(p1)™, Va2(p1) = v2p2, Va(p1, p2) = L(K1p103, K203),
with &i(p;) = pi(log(kipi) — 1), and ¢(x,y) = m.
We take parameters ky =1 and k- =0.1, 43 = 0.2, 7o = 0.1.

Guosheng Fu (ND) Numerics



0.0622 00811
& q
0.0662 00781

(a) Vi,1(p) = 71p. Left to right time: t =0,0.5,1,1.5,2

0.2747 0.1340
< g q
0.0367 X 0.0689

(c) Va,1(p) = v1p®. Left to right time: t = 0,0.5,1,1.5,2

Guosheng Fu (ND) Numerics



Ex5: total energy/mass evolution

le-a+a
1.0
-13.1
0.8
-13.2
>
3 % 0.6
2-133
5 £
2 ]
T o4
£-13.4 2
- — m=1
-13.5 0.2 —m=2
— m=3
—m=4
~13.6 0.0
0.00 025 050 0.75 1.00 1.25 1.50 1..75 2.00 0.00 025 050 0.75 1.00 1.25 1.50 1.75 2.00

time time

Figure 6: Example 5. Evolution of total energy (left) and total mass (right)
over time with V4 1(p) = 711p".
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Ex6: Reversible Gray-Scott model

We consider the 4-component reversible Gray-Scott model [Lia+22]:
depr = 1 Dp1 — (Kiprps — kLp3) — (kK3 p1 — K2 pa),
Dep2 = 12 Bp2 + (kiprpy — kLp3) — (Kip2 — K2 p3),

O3 = (K3p2 — kK2p3),  Owpa= (K3p1— k> pa).
The physical parameters are chosen to be the following:
71 =1,7 = 0.01,k} =1,k% =0.084, k3 = 0.024, k' =103k}.

This provides a good approximation to the irreversible Gray-Scott model:

depr = 11Bp1 — ki p1ps — k3 (p1 — 1),
Oep2 = 2lpa + kip1p3 — K2 pa,

which is widely used in pattern formations.

Guosheng Fu (ND) Numerics



Ex6: density contour

..........

) 1D results. Left to right time: t = 200, 400, 800, 1600.

3.131 1.988)
0.015| 0.003]

) 2D results. Left to right time: t = 100, 200, 300, 400, 500

Figure 7: Snapshots of second-component density contour p, at different times
for 1D (top) and 2D (bottom) simulations.
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Ex6: total energy evolution

1le5
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time
Figure 8: Evolution of total energy in 1D (left) and 2D (right).
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Dynamic Mean Field Planning

The goal of mean field planning (MFP) is to minimize a total cost

inf / / (t,x), m(t,x)) + A(p(t, x)) dxdt. (31)

(p,m)
among all feasible density and flux (p, m) such that
atp+vxm:0 in [07 1] XQ7 p(07'):p07p(17'):p17

given initial and terminal densities pg and p;.

2
@ The dynamic cost function L(p, m) = % is related to optimal

transport (and Wasserstein gradient flow).
@ The interaction cost function A(p) is usually taken to be convex.

@ We are interested in the transport density p(t,-) for all t € (0,1).
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Dynamic Mean Field Game (MFG)

For MFG, the terminal density p; is not explicitly provided but it satisfies
a given preference. The goal of MFG is to minimize the total cost

it /0 /Q [L(p, m) + A(p)] dudt + /Q Mo(Lx)dx,  (32)
N —

=R(p(1,))

among all feasible (p, m) such that
Op+V-m=0, in[0,1] xQ, p(0,-) = po.

@ The MFG problem (32) is identical to a JKO step of Wasserstein
gradient flow (4) if we take the terminal cost to be At&(p(1,-)) and
remove the interaction cost A(p) = 0.

@ But this time, we are more interested in the evolution of density
along t € [0, 1]. Hence we typically do not use the one-step
relaxation approach (6), which is of first-order accuracy in time.
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The augmented Lagrangian formulation of MFG [BC15]

We reformulate the problem (32) into a saddle-point problem:

inf sup F(u) + R(p1) = G(¢) = (u, D)o 1)<, (33a)

in which u = (p, m), and

1
Flu) = /0 /Q [L(p, m) + A(p)] dxct, (33b)
6(6)i= [ Fo10mb) + o0 X)mb b, (330)
Do = (0;9, V,®) is the space-time gradient (33d)

This problem is of the form (19) and can be tackled via the ALG2
algorithm [BC15].
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High-order computation for MFG

@ Our contribution in [Fu+23] is to discretize the saddle-point problem
in (33) using high-order space-time finite element spaces on
[0,1] x Q.

@ In particular, we discretize ® using a high-order space-time
continuous finite element space V,f‘, and the other physical variables
using a high-order nodal discontinuous integration rule space W/\.

@ It achieves high-order accuracy in both space and time. (first in the
literature)

Guosheng Fu (ND) High-order computation of OT/MFP/MFG



HO-JKO

47/61

4.3. MFG with obstacles

We consider a similar setting as in Example [L2, where we consider a
MFG problem with terminal cost

) = p—pr)* ifp>0,
: +00 otherwise,

where the target density

- _ 2 _ _0.3)12
pri= sy (cxp( 551® = (0.65,0.3)]%) + exp( 2,2""' (0.65,-0.3)| ))

with ¢ = 0.1. Note that we allow pr and py to have different total masses
here.

awercg = =017
Coe 24D =6 )=y S0
At(pr) = exp(p* /e = 1),
Case 4: A(p) = ¢/p.  A*(p*) = {;2\/7,7‘ i: /,;: fg’

Case 3: A(p) = cplog(p).

0 0SSP puae 4. .
Cases:A(p)={+m TR A = )

«O>r «Fr o«

DA
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(a) Case
(d) Case

(b) Case 2

) Case

Figure 4: Example 3. Snapshots of p at ¢ = 0.1,0.3,0.5,0.7,0.9 (left to right)
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A MFP Example between mascot images

0.0
(a) ND (Leprechaun) (b) UCLA (Bruins) (c¢) USC (Gamecocks)

Figure 5: Example [£:4. Initial/final densities.
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A MFP Example: ND— UCLA

(b) Case 2: A(p) = 0.01plog ;)) ND — UCLA

EN &. » =

(c) Case 3: A(p) =0.01/p. ND — UCLA
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A MFP Example: UCLA— USC

(c) Case 3: A(p) =0.01/p. UCLA — USC
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A MFP Example: USC—ND o vises

(c) Case 3: A(p) =0.01/p. USC — ND
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© Background: JKO scheme for Wasserstein gradient flow

© Variational time implicit scheme for dissipative systems

© Optimization solver: the ALG2 Algorithm

@ High-order spatial discretization of variational time implicit schemes
© Numerics

@ High-order computation of OT/MFP/MFG

@ Conclusion
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Conclusion

@ A high-order spatial FEM discretization of variational time implicit
schemes for dissipative reaction-diffusion systems.

@ A high-order space-time FEM discretization of OT/MFP/MFG.

@ Proximal splitting optimization solver (ALG2) with linear complexity
for each ALG iteration.

Thanks for your attention!
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