State High School Mathematics Tournament

Round 2 - University of South Carolina

February 3, 2018

Question 2-1

Given that

$$
\begin{aligned}
& x+y+2 z=3, \\
& x+2 y+z=4, \\
& 2 x+y+z=5,
\end{aligned}
$$

what is $x+y+z$?

Round 2 - University of South Carolina

Solution 2-1

Answer. 3, with $x=2, y=1, z=0$.

Solution 2-1

Answer. 3, with $x=2, y=1, z=0$.
Add all three equations to get

$$
4 x+4 y+4 z=12
$$

and divide by 4 .

Question 2-2

A unique circle goes through the following three points:

Question 2-2

A unique circle goes through the following three points:

$$
(2,5),(4,4),(5,2)
$$

What is its diameter?

Solution 2-2

Answer: $5 \sqrt{2}$.

Solution 2-2

Answer: $5 \sqrt{2}$.

$\overline{A B} \perp \overline{C D}$ at $E=(3.5,3.5)$, with $\overline{A E}=\overline{B E}=\frac{3}{2} \sqrt{2}$ and $\overline{C E}=\frac{1}{2} \sqrt{2}$.

Solution 2-2

Answer: $5 \sqrt{2}$.

$\overline{A B} \perp \overline{C D}$ at $E=(3.5,3.5)$, with $\overline{A E}=\overline{B E}=\frac{3}{2} \sqrt{2}$ and $\overline{C E}=\frac{1}{2} \sqrt{2}$.
$\overline{A E} \cdot \overline{B E}=\overline{C E} \cdot \overline{D E}$, so $\overline{D E}=\frac{9}{2} \sqrt{2}$.

Question 2-3

In the figure, $\overline{A D}$ and $\overline{C E}$ are perpendicular to $\overline{D E} ; \overline{A D}=5$, $\overline{D E}=3$, and $\overline{C E}=4$.
Find the area of $\triangle B D E$.

(not drawn to scale)

UNIVERSITY OF SOUIHCAROLINA

Solution 2-3

Answer: 10/3. Drop a perpendicular from B to $D E$:

We have $\frac{E F}{B F}=\frac{E D}{A D}=\frac{3}{5}$ and $\frac{D F}{B F}=\frac{D E}{C E}=\frac{3}{4}$.

Solution 2-3

Answer: 10/3. Drop a perpendicular from B to $D E$:

We have $\frac{E F}{B F}=\frac{E D}{A D}=\frac{3}{5}$ and $\frac{D F}{B F}=\frac{D E}{C E}=\frac{3}{4}$. So $E F$ and $D F$ are in a $4: 5$ ratio, and since $D E=3$ we have $E F=\frac{4}{3}$ and $D F=\frac{5}{3}$.

Solution 2-3

Answer: 10/3. Drop a perpendicular from B to $D E$:

We have $\frac{E F}{B F}=\frac{E D}{A D}=\frac{3}{5}$ and $\frac{D F}{B F}=\frac{D E}{C E}=\frac{3}{4}$. So $E F$ and $D F$ are in a $4: 5$ ratio, and since $D E=3$ we have $E F=\frac{4}{3}$ and $D F=\frac{5}{3}$. So $B F=\frac{5}{3} E F=\frac{20}{9}$, and the area of $\triangle D B E$ is

$$
\frac{1}{2} \cdot 3 \cdot \frac{20}{9}=\frac{10}{3}
$$

Question 2-4

Hint. We have

$$
10^{11}=100000000000=23 \cdot 4347826087-1
$$

Question 2-4

Hint. We have

$$
10^{11}=100000000000=23 \cdot 4347826087-1
$$

The fraction $\frac{1}{23}$ can be written as a repeating decimal

$$
\frac{1}{23}=0 . \overline{0434782608695652173913}
$$

where the 22 digits under the bar repeat infinitely many times.

Round 2 - University of South Carolina

Question 2-4

Hint. We have

$$
10^{11}=100000000000=23 \cdot 4347826087-1
$$

The fraction $\frac{1}{23}$ can be written as a repeating decimal

$$
\frac{1}{23}=0 . \overline{0434782608695652173913}
$$

where the 22 digits under the bar repeat infinitely many times. What is the sum of these 22 digits?

Solution 2-4

Answer. 99.

Round 2 - University of South Carolina

Solution 2-4

Answer. 99.

$$
\frac{1}{23}=0 . \overline{0434782608695652173913}
$$

Solution 2-4

Answer. 99.

$$
\begin{aligned}
& \frac{1}{23}=0 . \overline{0434782608695652173913} \\
& \frac{22}{23}=0 . \overline{9565217391304347826086}
\end{aligned}
$$

Solution 2-4

Answer. 99.

$$
\begin{gathered}
\frac{1}{23}=0 . \overline{0434782608695652173913}, \\
\frac{22}{23}=0 . \overline{9565217391304347826086}, \\
\frac{1}{23}+\frac{22}{23}=0 . \overline{9999999999999999999999}
\end{gathered}
$$

Question 2-5

The following figure consists of nine line segments:

Round 2 - University of South Carolina

Question 2-5

The following figure consists of nine line segments:

All of the triangles in the picture are congruent. What is the largest angle in any of these triangles?

Solution 2-5

Answer. $\frac{5}{9} \pi$ or 108°.

Solution 2-5

Answer. $\frac{5}{9} \pi$ or 108°.
The figure is symmetric, and can be inscribed in a circle:

Each of these angles is subtended by an arc consisting of $\frac{5}{9}$ of the circle, hence of measure $\frac{5}{9} \cdot 2 \pi$.

Solution 2-5

Answer. $\frac{5}{9} \pi$ or 108°.
The figure is symmetric, and can be inscribed in a circle:

Each of these angles is subtended by an arc consisting of $\frac{5}{9}$ of the circle, hence of measure $\frac{5}{9} \cdot 2 \pi$.
Oops! $\frac{5}{9} \pi=100^{\circ}$. Fortunately, a student found and pointed out the mistake on the spot.

Question 2-6

How many digits are in the base 10 number 20^{18} ?

Round 2 - University of South Carolina

Solution 2-6

Answer: 24.
Solution. We have

$$
20^{18}=262144000000000000000000
$$

which is 2^{18} with 18 zeroes after it.

Solution 2-6

Answer: 24.
Solution. We have

$$
20^{18}=262144000000000000000000
$$

which is 2^{18} with 18 zeroes after it.

$$
2^{18}=2^{10} 2^{8}=1024 \cdot 256 \sim 1000 \cdot 250=250000
$$

with six digits, and $18+6=24$.

Question 7

What is the last digit of 3^{2018} ?

Solution 7

Answer. 9.
Solution. Notice that $3^{4}=81$, with last digit 1 .

Solution 7

Answer. 9.
Solution. Notice that $3^{4}=81$, with last digit 1 . Since

$$
3^{2018}=3^{4 \cdot 504+2}=(81)^{504} \cdot 9
$$

the last digit of 3^{2018} is $1^{504} \cdot 9=9$.

Round 2 - University of South Carolina

Question 8

Consider (again) a Rubik's cube, where each of the six faces has sixteen corner points, illustrated by the intersections of the line segments as follows:

Question 8

Consider (again) a Rubik's cube, where each of the six faces has sixteen corner points, illustrated by the intersections of the line segments as follows:

How many corner points are there on the cube total?

Solution 8

Answer. 56.
Solution. On each face, there are 16 corner points. Of these:

Solution 8

Answer. 56.
Solution. On each face, there are 16 corner points. Of these:

- 4 are on that face alone, and $4 \cdot 6=24$;

Solution 8

Answer. 56.
Solution. On each face, there are 16 corner points. Of these:

- 4 are on that face alone, and $4 \cdot 6=24$;
- 8 are shared with one other face, and $8 \cdot 3=24$;

Round 2 - University of South Carolina

Solution 8

Answer. 56.
Solution. On each face, there are 16 corner points. Of these:

- 4 are on that face alone, and $4 \cdot 6=24$;
- 8 are shared with one other face, and $8 \cdot 3=24$;
- 4 are shared with two other faces, and $4 \cdot 2=8$.

Solution 8

Answer. 56.
Solution. On each face, there are 16 corner points. Of these:

- 4 are on that face alone, and $4 \cdot 6=24$;
- 8 are shared with one other face, and $8 \cdot 3=24$;
- 4 are shared with two other faces, and $4 \cdot 2=8$.

$$
24+24+8=56
$$

Question 9

The squares of three consecutive positive integers are added, to obtain 770.
What is the smallest of these integers?

Solution 9

Answer. 15,

$$
15^{2}+16^{2}+17^{2}=225+256+289=770
$$

Solution 9

Answer. 15,

$$
15^{2}+16^{2}+17^{2}=225+256+289=770
$$

Note that if n denotes the middle number, we have

$$
\begin{aligned}
& (n-1)^{2}+n^{2}+(n+1)^{2}=\left(n^{2}-2 n+1\right)+n^{2}+\left(n^{2}+2 n+1\right)=3 n^{2}+2 \\
& \text { so } 3 n^{2}=768, n^{2}=256, \text { and } n=16
\end{aligned}
$$

Question 10

You flip two coins. One is fair; the other is weighted and is more likely to come up heads than tails.

If the probability of flipping at least one heads is 80%, what is the probability of flipping both heads?

Solution 10

Answer. $\frac{3}{10}$.
Solution. Let p be the probability that the weighted coin comes up heads.
The probability of flipping no heads is

$$
\frac{1}{2}(1-p)=\frac{1}{5}
$$

so $1-p=\frac{2}{5}$ and $p=\frac{3}{5}$. The probability of flipping two heads is thus

$$
\frac{1}{2} \times \frac{3}{5}=\frac{3}{10} .
$$

Question 11

What is

$$
1-2+3-4+5-\cdots+2017-2018 ?
$$

Round 2 - University of South Carolina

Solution 11

Answer. - 1009. Write it as

$$
(1-2)+(3-4)+(5-6)+\cdots+(2017-2018)
$$

which is -1 added 1009 times.

Round 2 - University of South Carolina

Question 12

There are unique integers a and b for which

Question 12

There are unique integers a and b for which

$$
(1+\sqrt{5})^{3}=a+b \sqrt{5}
$$

What is $a+b$?

Solution 12

Answer. 24.

Round 2 - University of South Carolina

Solution 12

Answer. 24. We have

$$
(1+\sqrt{5})^{3}=1+3 \sqrt{5}+3(\sqrt{5})^{2}+(\sqrt{5})^{3}=16+8 \sqrt{5}
$$

Round 2 - University of South Carolina

