State High School Mathematics Tournament

Round 2 - University of South Carolina

February 3, 2018

TH CAR

Round 2 – University of South Carolina State High School Mathematics Tournament

Given that

x + y + 2z = 3,x + 2y + z = 4,2x + y + z = 5,

what is x + y + z?

Answer. 3, with x = 2, y = 1, z = 0.

A

Answer. 3, with x = 2, y = 1, z = 0. Add all three equations to get

$$4x + 4y + 4z = 12$$
,

and divide by 4.

A unique circle goes through the following three points:

A unique circle goes through the following three points:

What is its diameter?

Answer: $5\sqrt{2}$.

UNIVERSITY OF SOUTH CAROLINA

Answer: $5\sqrt{2}$.

 $\overline{AB} \perp \overline{CD}$ at E = (3.5, 3.5), with $\overline{AE} = \overline{BE} = \frac{3}{2}\sqrt{2}$ and $\overline{CE} = \frac{1}{2}\sqrt{2}.$ UNIVERSITY OF

Round 2 - University of South Carolina State High School Mathematics Tournament

Answer: $5\sqrt{2}$.

 $\overline{AB} \perp \overline{CD} \text{ at } E = (3.5, 3.5), \text{ with } \overline{AE} = \overline{BE} = \frac{3}{2}\sqrt{2} \text{ and}$ $\overline{CE} = \frac{1}{2}\sqrt{2}.$ $\overline{AE} \cdot \overline{BE} = \overline{CE} \cdot \overline{DE}, \text{ so } \overline{DE} = \frac{9}{2}\sqrt{2}.$ UNIVERSITY OF

Question 2-3

In the figure, \overline{AD} and \overline{CE} are perpendicular to \overline{DE} ; $\overline{AD} = 5$, $\overline{DE} = 3$, and $\overline{CE} = 4$. Find the area of $\triangle BDE$.

Answer: 10/3. Drop a perpendicular from *B* to *DE*:

We have $\frac{EF}{BF} = \frac{ED}{AD} = \frac{3}{5}$ and $\frac{DF}{BF} = \frac{DE}{CE} = \frac{3}{4}$.

Answer: 10/3. Drop a perpendicular from *B* to *DE*:

We have $\frac{EF}{BF} = \frac{ED}{AD} = \frac{3}{5}$ and $\frac{DF}{BF} = \frac{DE}{CE} = \frac{3}{4}$. So *EF* and *DF* are in a 4 : 5 ratio, and since DE = 3 we have $EF = \frac{4}{3}$ and $DF = \frac{5}{3}$.

UNIVERSITY OF

Round 2 – University of South Carolina State High School Mathematics Tournament

Answer: 10/3. Drop a perpendicular from *B* to *DE*:

We have $\frac{EF}{BF} = \frac{ED}{AD} = \frac{3}{5}$ and $\frac{DF}{BF} = \frac{DE}{CE} = \frac{3}{4}$. So *EF* and *DF* are in a 4 : 5 ratio, and since *DE* = 3 we have *EF* = $\frac{4}{3}$ and *DF* = $\frac{5}{3}$. So $BF = \frac{5}{3}EF = \frac{20}{9}$, and the area of $\triangle DBE$ is $\frac{1}{2} \cdot 3 \cdot \frac{20}{9} = \frac{10}{3}$.

Hint. We have

$$10^{11} = 10000000000 = 23 \cdot 4347826087 - 1.$$

Э

→ < E → < E</p>

< • • • **•**

Hint. We have

$$10^{11} = 10000000000 = 23 \cdot 4347826087 - 1.$$

The fraction $\frac{1}{23}$ can be written as a repeating decimal

$$\frac{1}{23} = 0.\overline{0434782608695652173913},$$

where the 22 digits under the bar repeat infinitely many times.

НСАБ

Hint. We have

$$10^{11} = 10000000000 = 23 \cdot 4347826087 - 1.$$

The fraction $\frac{1}{23}$ can be written as a repeating decimal

$$\frac{1}{23} = 0.\overline{0434782608695652173913},$$

where the 22 digits under the bar repeat infinitely many times. What is the sum of these 22 digits?

UNIVERSITY OF

Э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

A

$$\frac{1}{23}=0.\overline{0434782608695652173913},$$

Э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

A

$$\frac{1}{23} = 0.\overline{0434782608695652173913},$$
$$\frac{22}{23} = 0.\overline{9565217391304347826086},$$

Э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

A

INA ৩৭৫ The following figure consists of nine line segments:

The following figure consists of nine line segments:

All of the triangles in the picture are congruent. What is the largest angle in any of these triangles?

UNIVERSITY OF

Round 2 – University of South Carolina State High School Mathematics Tournament

Answer. $\frac{5}{9}\pi$ or 108°.

< E

臣

JA

Round 2 – University of South Carolina State High School Mathematics Tournament

< 口 > < 🗇

Answer. $\frac{5}{9}\pi$ or 108°.

The figure is symmetric, and can be inscribed in a circle:

Each of these angles is subtended by an arc consisting of $\frac{5}{9}$ of the circle, hence of measure $\frac{5}{9} \cdot 2\pi$.

UNIVERSITY OF

Answer. $\frac{5}{9}\pi$ or 108°.

The figure is symmetric, and can be inscribed in a circle:

Each of these angles is subtended by an arc consisting of $\frac{5}{9}$ of the circle, hence of measure $\frac{5}{9} \cdot 2\pi$.

Oops! $\frac{5}{9}\pi = 100^{\circ}$. Fortunately, a student found and pointed out the mistake on the spot.

UNIVERSITY OF

How many digits are in the base 10 number 20¹⁸?

Answer: 24.

Solution. We have

which is 2^{18} with 18 zeroes after it.

Answer: 24.

Solution. We have

which is 2^{18} with 18 zeroes after it.

$$2^{18} = 2^{10}2^8 = 1024 \cdot 256 \sim 1000 \cdot 250 = 250000,$$

with six digits, and 18 + 6 = 24.

What is the last digit of 3^{2018} ?

< E

Round 2 – University of South Carolina State High School Mathematics Tournament

Solution. Notice that $3^4 = 81$, with last digit 1.

Answer. 9. Solution. Notice that $3^4 = 81$, with last digit 1. Since

$$3^{2018} = 3^{4 \cdot 504 + 2} = (81)^{504} \cdot 9,$$

the last digit of 3^{2018} is $1^{504} \cdot 9 = 9$.

Consider (again) a Rubik's cube, where each of the six faces has sixteen *corner points*, illustrated by the intersections of the line segments as follows:

UNIVERSITY OF

Consider (again) a Rubik's cube, where each of the six faces has sixteen *corner points*, illustrated by the intersections of the line segments as follows:

UNIVERSITY OF

How many corner points are there on the cube total?

Round 2 – University of South Carolina State High School Mathematics Tournament

Solution. On each face, there are 16 corner points. Of these:

• 4 are on that face alone, and $4 \cdot 6 = 24$;

- 4 are on that face alone, and $4 \cdot 6 = 24$;
- ▶ 8 are shared with one other face, and $8 \cdot 3 = 24$;

- 4 are on that face alone, and $4 \cdot 6 = 24$;
- ▶ 8 are shared with one other face, and $8 \cdot 3 = 24$;
- 4 are shared with two other faces, and $4 \cdot 2 = 8$.

- 4 are on that face alone, and $4 \cdot 6 = 24$;
- ▶ 8 are shared with one other face, and $8 \cdot 3 = 24$;
- 4 are shared with two other faces, and $4 \cdot 2 = 8$.

$$24 + 24 + 8 = 56.$$

The squares of three consecutive positive integers are added, to obtain 770. What is the smallest of these integers?

Answer. 15,

$$15^2 + 16^2 + 17^2 = 225 + 256 + 289 = 770.$$

Э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

A

Answer. 15,

$$15^2 + 16^2 + 17^2 = 225 + 256 + 289 = 770.$$

Note that if n denotes the *middle* number, we have

$$(n-1)^2 + n^2 + (n+1)^2 = (n^2 - 2n + 1) + n^2 + (n^2 + 2n + 1) = 3n^2 + 2,$$

so $3n^2 = 768$, $n^2 = 256$, and n = 16.

НСА

You flip two coins. One is fair; the other is weighted and is more likely to come up heads than tails.

If the probability of flipping at least one heads is 80%, what is the probability of flipping both heads?

Answer. $\frac{3}{10}$.

Solution. Let p be the probability that the weighted coin comes up heads.

The probability of flipping no heads is

$$\frac{1}{2}(1-p)=\frac{1}{5},$$

so $1 - p = \frac{2}{5}$ and $p = \frac{3}{5}$. The probability of flipping two heads is thus $\frac{1}{2} \times \frac{3}{5} = \frac{3}{10}$.

UNIVERSITY OF

What is

$1 - 2 + 3 - 4 + 5 - \dots + 2017 - 2018?$

JA

SOUTH CAROLIN

< E

Round 2 – University of South Carolina State High School Mathematics Tournament

Answer. -1009. Write it as

$$(1-2) + (3-4) + (5-6) + \cdots + (2017 - 2018),$$

which is -1 added 1009 times.

There are unique integers a and b for which

There are unique integers a and b for which

$$(1+\sqrt{5})^3 = a + b\sqrt{5}.$$

What is a + b?

Answer. 24.

Э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Round 2 – University of South Carolina State High School Mathematics Tournament

Answer. 24. We have

$$(1 + \sqrt{5})^3 = 1 + 3\sqrt{5} + 3(\sqrt{5})^2 + (\sqrt{5})^3 = 16 + 8\sqrt{5}.$$

臣

JA

SOUTH CAROLIN

< E

< 口 > < 🗇