State High School Mathematics Tournament

University of South Carolina

February 3, 2018

IHCAR

æ

500

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

You will be asked one question whose answer is a positive integer, and you will have 60 seconds to answer.

- You will be asked one question whose answer is a positive integer, and you will have 60 seconds to answer.
- Solving it exactly within 60 seconds is probably impossible.

- You will be asked one question whose answer is a positive integer, and you will have 60 seconds to answer.
- Solving it exactly within 60 seconds is probably impossible.
- Try to solve it approximately, as accurately as you can, and make an educated guess.

- You will be asked one question whose answer is a positive integer, and you will have 60 seconds to answer.
- Solving it exactly within 60 seconds is probably impossible.
- Try to solve it approximately, as accurately as you can, and make an educated guess.
- The answer(s) closest to the truth (in either direction) win the tiebreaker.

UNIVERSITY OF

How many pairs of integers (m, n) satisfy the following two properties?

How many pairs of integers (m, n) satisfy the following two properties?

• The integer $m^2 + n^2$ is one plus an integer multiple of 4.

How many pairs of integers (m, n) satisfy the following two properties?

- The integer $m^2 + n^2$ is one plus an integer multiple of 4.
- We have

$$m^2+n^2\leq 2018.$$

Pairs (m, n) with m² + n² ≤ 2018 correspond to lattice points inside (or on) the circle m² + n² ≤ 2018.

- Pairs (m, n) with m² + n² ≤ 2018 correspond to lattice points inside (or on) the circle m² + n² ≤ 2018.
- ► The number of such lattice points is approximately the area of the circle, 2018π.

- Pairs (m, n) with m² + n² ≤ 2018 correspond to lattice points inside (or on) the circle m² + n² ≤ 2018.
- ► The number of such lattice points is approximately the area of the circle, 2018*π*.
- ▶ m² + n² will be one plus an integer multiple of 4 if and only if m and n are of opposite signs, so we should count only half the lattice points.

- Pairs (m, n) with m² + n² ≤ 2018 correspond to lattice points inside (or on) the circle m² + n² ≤ 2018.
- ► The number of such lattice points is approximately the area of the circle, 2018*π*.
- ▶ m² + n² will be one plus an integer multiple of 4 if and only if m and n are of opposite signs, so we should count only half the lattice points.
- So the answer is approximately

 $1009\pi = 3169.86...$

UNIVERSITY OF

- Pairs (m, n) with m² + n² ≤ 2018 correspond to lattice points inside (or on) the circle m² + n² ≤ 2018.
- ► The number of such lattice points is approximately the area of the circle, 2018*π*.
- ► m² + n² will be one plus an integer multiple of 4 if and only if m and n are of opposite signs, so we should count only half the lattice points.
- So the answer is approximately

$$1009\pi = 3169.86...$$

UNIVERSITY OF

Doing better requires brute force or a computer.