State High School Mathematics Tournament

University of South Carolina

February 3, 2018

Tiebreaker Rules

 UNIVERSITY OF SOUIHCAROLINA

Tiebreaker Rules

- You will be asked one question whose answer is a positive integer, and you will have 60 seconds to answer.

Tiebreaker Rules

- You will be asked one question whose answer is a positive integer, and you will have 60 seconds to answer.
- Solving it exactly within 60 seconds is probably impossible.

Tiebreaker Rules

- You will be asked one question whose answer is a positive integer, and you will have 60 seconds to answer.
- Solving it exactly within 60 seconds is probably impossible.
- Try to solve it approximately, as accurately as you can, and make an educated guess.

Tiebreaker Rules

- You will be asked one question whose answer is a positive integer, and you will have 60 seconds to answer.
- Solving it exactly within 60 seconds is probably impossible.
- Try to solve it approximately, as accurately as you can, and make an educated guess.
- The answer(s) closest to the truth (in either direction) win the tiebreaker.

Tiebreaker Question

How many pairs of integers (m, n) satisfy the following two properties?

Tiebreaker Question

How many pairs of integers (m, n) satisfy the following two properties?

- The integer $m^{2}+n^{2}$ is one plus an integer multiple of 4 .

Tiebreaker Question

How many pairs of integers (m, n) satisfy the following two properties?

- The integer $m^{2}+n^{2}$ is one plus an integer multiple of 4 .
- We have

$$
m^{2}+n^{2} \leq 2018
$$

Tiebreaker Answer

Answer. 3176 (ask a computer).

Tiebreaker Answer

Answer. 3176 (ask a computer).

- Pairs (m, n) with $m^{2}+n^{2} \leq 2018$ correspond to lattice points inside (or on) the circle $m^{2}+n^{2} \leq 2018$.

Tiebreaker Answer

Answer. 3176 (ask a computer).

- Pairs (m, n) with $m^{2}+n^{2} \leq 2018$ correspond to lattice points inside (or on) the circle $m^{2}+n^{2} \leq 2018$.
- The number of such lattice points is approximately the area of the circle, 2018π.

Tiebreaker Answer

Answer. 3176 (ask a computer).

- Pairs (m, n) with $m^{2}+n^{2} \leq 2018$ correspond to lattice points inside (or on) the circle $m^{2}+n^{2} \leq 2018$.
- The number of such lattice points is approximately the area of the circle, 2018π.
- $m^{2}+n^{2}$ will be one plus an integer multiple of 4 if and only if m and n are of opposite signs, so we should count only half the lattice points.

Tiebreaker Answer

Answer. 3176 (ask a computer).

- Pairs (m, n) with $m^{2}+n^{2} \leq 2018$ correspond to lattice points inside (or on) the circle $m^{2}+n^{2} \leq 2018$.
- The number of such lattice points is approximately the area of the circle, 2018π.
- $m^{2}+n^{2}$ will be one plus an integer multiple of 4 if and only if m and n are of opposite signs, so we should count only half the lattice points.
- So the answer is approximately

$$
1009 \pi=3169.86 \ldots
$$

Tiebreaker Answer

Answer. 3176 (ask a computer).

- Pairs (m, n) with $m^{2}+n^{2} \leq 2018$ correspond to lattice points inside (or on) the circle $m^{2}+n^{2} \leq 2018$.
- The number of such lattice points is approximately the area of the circle, 2018π.
- $m^{2}+n^{2}$ will be one plus an integer multiple of 4 if and only if m and n are of opposite signs, so we should count only half the lattice points.
- So the answer is approximately

$$
1009 \pi=3169.86 \ldots
$$

- Doing better requires brute force or a computer.

