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Abstract— Two elementary algorithms are introduced for image compression each of which

is based on efficient, lossless encoding of quantized bi-orthogonal wavelet coefficients. Application

of this type of algorithm is applied to several standard test images using regular and hyperbolic

wavelet bases, and comparisons are given to Shapiro’s EZW algorithm. Peak signal to noise ratio

improvements typically of 0.6–0.8 dB are demonstrated. Generalizations of this type of algorithm to

non-square images and higher dimensions are also briefly described.

1. Introduction

Image compression is important in many applications, such as image transmission, feature
extraction and denoising of data [6, 8, 11, 3]. Our original intent was to develop reliable data
compression algorithms for three-dimensional time-dependent scalar and vector fields with gen-
eral index limits (i.e. non-dyadic). In particular, a requirement for 3D data compression arose
in our development of utilities for the interactive tracking and steering of remote simulations over
small bandwidth or congested communication connections [14, 15]. The underlying rationale is
that scientists and practitioners need the capability to quickly assess a simulation and correspond-
ingly terminate or alter its progress. Interactive work on large scale simulators typically require
data compression algorithms which permit a careful analysis of three dimensional data at various
frequencies and resolutions. Wavelet analysis is a natural framework for these studies.

In our investigations, we developed various encoding algorithms for multi-dimensional data and
tested them in the two-dimensional case by comparing the performance with existing algorithms
for 2-D images. We obtained the somewhat surprising results that these algorithms performed very
well in the tests, although they were much more simple to implement and generalize. The basic
steps of our image compression algorithm include (1) application of discrete bi-orthogonal wavelet
transformations to an extension of the image data, (2) a one-step quantization according to the
precision required, (3) a natural ordering of the coefficients by index, (4) a preprocessing procedure
of encoding the space-frequency correlations of the coefficients, followed by (5) an application of
a Q-coder algorithm. The reconstruction (to within quantization) involves the simple inversion of
these operations in the reverse order.

Steps 1 and 3-5 are generally lossless, but in practice noise may be present in the original image.
The information loss occurs in the quantization stage, which may be estimated by approximation
results of DeVore et al. (see [7] and inequality (21) below). As we show, the combined algorithm
is very easy to implement and, compared to other algorithms, is computationally efficient even for
multidimensional data.

1This work was supported in part by Martin Marietta Subcontract SK966V, DOE Grant DE-FG05-95ER25266,
ONR Grant N00014-96-1-1003, and DoD Grant N00014-97-1-0806.
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In the following sections we will discuss each of these steps. Section 2 outlines the multiresolu-
tion analysis for images based on tensor-products. Section 3 discusses the quantization and error
estimate, while Section 4 describes the ordering of the quantized data without storing the location
of each datum. We have developed preprocessing algoritms which have many variants, two of these
are described in Section 5. In Section 6, we present the results of computational experiments with
these encoders and compare their effectiveness with published results of Shapiro and an implemen-
tation of that algorithm. We provide concluding remarks and observations in Section 7 which relate
the encoding technique with entropy and data complexity. A preliminary version of this research
was reported earlier in [12]. We would like to express our thanks to Ronald DeVore for discussions
concerning the results of this paper.

2. Wavelet Transforms

In this section we briefly describe biorthogonal locally supported wavelets and the corresponding
multiresolution analysis (see [2, 16, 22] for details and additional references). We begin with an
outline of the development in the univariate case with an emphasis on how to implement both
decomposition and reconstruction of discrete data, and complete the section by describing 2D
tensor product bases for images.

2.1 Multiresolution analysis.

A multiresolution analysis of L2(R) is defined as a ‘ladder’ of closed subspaces Vk which satisfy
the following properties:

(1.a) There exists a scaling function ϕ with a non-vanishing integral, so that the closure of the
span of its integer translates (ϕj(x) := ϕ(x − j)) is V0. For computational purposes we
will assume that ϕ has compact support. Moreover, we assume the collection {ϕj |j ∈ Z}
is a Riesz basis for V0: there are constants C1, C2 so that if f ∈ V0, then f =

∑
j cjϕj

and

C1 ‖{cj}‖�2 ≤ ‖f‖L2(R) ≤ C2 ‖{cj}‖�2

(1.b) Vk ⊂ Vk+1, k ∈ Z

(1.c)
⋃
k∈Z

Vk = L2(R) ,
⋂
k∈Z

Vk = {0}

(1.d) f(x) ∈ Vk ⇐⇒ f(2x) ∈ Vk+1 for all k ∈ Z

Although some of these properties are redundant, this formulation is best for our purposes. For a
given scaling function ϕ, property (1.b) (with k = 0) implies that a refinement relation holds

(2) ϕ(x) = 2
∑

j

αjϕ(2x − j).
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By property (1.a) the coefficients must be unique. We assume further that the coefficients αj satisfy
the property ∑

j∈Z

αj = 1 .

In practice, one usually determines coefficients with desirable properties for the resulting scale (and
wavelet) functions and show that the above properties are satisfied. As contrasted with the usual
orthogonal development of wavelets, the theory of biorthogonal wavelets instead makes use of two
ladders of subspaces, one for the primal space and another for its dual. In the case of Hilbert spaces
L2, these spaces may be regarded as coinciding.

2.2 Univariate bi-orthogonal decompositions.

A biorthogonal wavelet analysis begins with two dual scale functions ϕ, ϕ̃ which each provide a
multiresolution analysis Vk, Ṽk, respectively of L2. Actually, one should think of Vk as providing a
decomposition of L2 and Ṽk performing a similar role for its dual. We denote by α̃j the coefficients
following from property (2) for the scale function ϕ̃. We define corresponding dual wavelet functions
by

(3.a) ψ(x) = 2
∑
j

βjϕ(2x − j) , ψ̃(x) = 2
∑

j

β̃jϕ̃(2x − j)

where

(3.b) βj = (−1)jα̃1−j , β̃j = (−1)jα1−j .

We also assume that the dual scale functions ϕ, ϕ̃ have the following properties:

(4)
∫

R
ϕ(x) ϕ̃(x − j) dx = δ0j

then it follows that

(5)
∫

R
ψk,j(x) ψ̃l,i(x) dx = δi,jδk,l.

where we are using the standard notation

(6) φk,j(x) =
√

2kφ(2kx − j)

for the L2-normalized translated-dilates of a function φ. Here the index k denotes the scale and j
indicates the integer shift. For our computational purposes we assume that each of the refinement
sums in (2) is finite with an even number of symmetric ‘filter’ coefficients αj , α̃j :

(7) ϕ(x) = 2
u∑

j=1−u

αj ϕ(2x − j), ϕ̃(x) = 2
ũ∑

j=1−ũ

α̃j ϕ̃(2x − j).

The scale and wavelet functions ϕ and ψ generate corresponding spaces Vk,Wk defined by the closed
linear spans

Vk = span{ϕk,j : j ∈ Z}
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Wk = span{ψk,j : j ∈ Z}

Similarly, we denote by Ṽk, W̃k the collection of spaces corresponding to ϕ̃ and ψ̃, respectively. It
follows from the properties of the dual scale functions and the definitions of the dual wavelets that

(8) Vk+1 = Vk ⊕ Wk, Ṽk+1 = Ṽk ⊕ W̃k.

Although Wk may not be the orthogonal complement of Vk, the following relationships hold:

(9) W̃k ⊥ Vk, Ṽk ⊥ Wk.

The decomposition (8) is repeated recursively to show for each nonnegative n ∈ Z

(10) Vn = Vn−1 ⊕ Wn−1

= Vn−2 ⊕ (Wn−2 ⊕ Wn−1)
...
= V0 ⊕ (W0 ⊕ · · · ⊕ Wn−1) .

Each f ∈ Vn may then be written uniquely as

(11)

f =
∑
j∈Z

cn
j ϕn,j

=
∑
j∈Z

cn−1
j ϕn−1,j +

∑
j∈Z

dn−1
j ψn−1,j

=
∑
j∈Z

cn−2
j ϕn−2,j +

⎛⎝∑
j∈Z

dn−2
j ψn−2,j +

∑
j∈Z

dn−1
j ψn−1,j

⎞⎠
...

=
∑
j∈Z

c0
j ϕ0,j +

n−1∑
k=0

⎛⎝∑
j∈Z

dk
j ψk,j

⎞⎠.

which is called its biorthogonal wavelet decomposition.

2.3 Decomposition stage for discrete functions.

For an discrete function c = {cn
j }2n−1

j=0 we associate the function f ∈ Vn defined by

f =
∑
j∈Z

cn
j ϕn,j

where the coefficients are extended symmetrically at the two boundaries j = 0 and j = 2n − 1 by
the formula

(12) cn
j =

⎧⎪⎨⎪⎩
cn
−1−j , j = −1,−2, . . . ,−ũ

cn
2n+1−j−1, j = 2n, 2n + 1, . . . , 2n + ũ − 1

0, otherwise

in order to allow a systematic procedure for producing the next coarser level scale and wavelet co-
efficients as one procedes recursively through each step represented by the individual lines in (11).
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From the biorthogonality, we may reproduce c through ‘sampling’ f by integration against the cor-
responding ψ̃n,j. In particular, as k = n, n−1, . . . , 1 the wavelet and scale coefficients, respectively,
at the next coarser level k − 1 are generated by

(13) dk−1
j =

√
2

u∑
l=1−u

β̃l ck
2j+l, ck−1

j =
√

2
ũ∑

l=1−ũ

α̃l ck
2j+l

where 0 ≤ j ≤ 2k−1 − 1. Similar to (12) above, we use the symmetric extension of the coefficients
at each level:

(14) ck
j =

{
ck
−1−j , j = −1,−2, . . . ,−ũ

ck
2k+1−j−1

, j = 2k, 2k + 1, . . . , 2k + ũ − 1

to provide the necessary terms so that the process may proceed level-by-level. Symbolically this
may be represented by the following diagram:

{cn
j } −→ {cn−1

j } −→ · · ·
↘

{dn−1
j }

{ck
j } −→ {ck−1

j } −→ · · ·
↘

{dk−1
j }

{c1
j} −→ {c0

j}
↘

{d0
j}

.

2.4 Reconstruction stage for discrete functions.

A discrete function is reconstructed as represented by the following diagram by moving from
the coarse to the fine levels (k = 0, 1, . . . , n − 1):

{c0
j} −→ {c1

j}
↗

{d0
j}

−→ · · · {ck−1
j } −→ {ck

j } −→ · · ·
↗

{dk−1
j }

{cn−1
j } −→ {cn

j }
↗

{dn−1
j }

using the reconstruction filters

(15)

ck
2j =

√
2

⎛⎜⎝ �u
2
�∑

l=−�u−1
2

�
α2l ck−1

j−l +
� ũ

2
�∑

l=−� ũ−1
2

�
β2l dk−1

j−l

⎞⎟⎠

ck
2j+1 =

√
2

⎛⎜⎝ �u−1
2

�∑
l=−�u

2
�
α2l+1 ck−1

j−l +
� ũ−1

2
�∑

l=−� ũ
2
�
β2l+1 dk−1

j−l

⎞⎟⎠
for the range of j from 0 to 2k−1 − 1. Here again we take for the discrete function {ck−1} its even
symmetric extension according to (14), but for the wavelet coefficients {dk−1} we must use the odd
symmetric extension.

2.5 Images and Tensor Products of Wavelet Bases

A square image can be represented by its pixel values cij , (i, j = 0, 1, . . . , 2n −1) where all these
values are integers in the interval [0, 255]. If we write these pixel values in a matrix M0 and apply
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the scaling and wavelet transforms (13) to each row of M0, we obtain matrices M1 and M2 of scale
and wavelet coefficients in the x-variable with y held fixed:[

M0 M1 M2

]
.

In each of M1 and M2 we arrange the coefficients first according to scale (finest to lowest) and
then by position (left to right). Applying the univariate wavelet transform next to the columns of
M0, M1, and M2, we obtain six additional matrices M3, . . . ,M8:

(16)

⎡⎢⎣ M0 M1 M2

M3 M4 M5

M6 M7 M8

⎤⎥⎦ ,

where M1,M2 have dimension 2n×(2n−1), M3,M6 have dimension (2n−1)×2n, and the remainder
have dimension (2n − 1) × (2n − 1). Any 2n × 2n linearly independent basis elements form a basis
for a two dimensional wavelet transform. Although it is an abuse of terminology, we say that the
coefficients are linearly independent when the corresponding collections of scaling and/or wavelet
functions are linearly independent. Two bases generally used are the hyperbolic and regular bases.
To form the hyperbolic decomposition, one uses all the coefficients in the matrix M8 (i.e, tensor
products of wavelets from all scales), the last row in M5 (all wavelets in x tensored with the coarsest
scale function in y), the last column in M7 (all wavelets in y tensored with the coarsest scale function
in x) and the coefficient in the lower right corner of M4 (product of the coarsest scale functions in
x and y). The regular basis decomposition is the more standard one employed in image processing
and uses all the coefficients corresponding to the functions ϕ(x)ψ(y), ψ(x)ϕ(y), ψ(x)ψ(y) scaled
appropriately with square support, (i.e., corresponding elements in M5, M7 and M8), together with
the additional coarsest scale coefficient in the lower right corner of M4. These two bases will be
compared in our computational experiments in Section 6.

3. Quantization.

After an application of wavelet transforms, we obtain an indexed collection of real-valued coef-
ficients. In the bivariate case, if N = 2n and a function f is represented as

f(x, y) =
N−1∑
i,j=0

cn
ij ϕ(2nx − i)ϕ(2ny − j)

then, for convenience, we may write it as

(17) f(x, y) =
N2−1∑
k=0

ak φk(x, y)

where the functions φk are chosen to form either a hyperbolic or regular basis, and are normalized in
the Lebesgue space Lp for a specific p in the interval (0,∞). In the seminal paper ([7], see also [6])
on the application of nonlinear approximation to wavelet compression, DeVore et al established,
among many other results, that if f belongs to the Besov smoothness space Bα

q (Lq(I)) and is
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represented as in equation (17) and if f̃ has a similar representation with coefficients ãk which
satisfy

(18) |ak − ãk| < δ1/q ,

then

(19) ‖f − f̃‖Lp = O(δα/2).

Here α is a measure for the smoothness of f (see [7] for a complete explanation).
Based on this estimate, uniformly scaled integers will be used to approximate the real-valued

coefficients in this representation according to a given precision ε. Let [a] denote the closest integer
to a real number a. For any ε > 0, we have:∣∣∣ a − 2ε [a/2ε]

∣∣∣ ≤ ε.

If we apply this with a = ak, and define the approximation f̃ by

(20) f̃(x, y) = 2ε
N2−1∑
k=0

[ak/2ε] φk(x, y)

then the coefficients ãk of f̃ satisfy inequality (18) and therefore the approximation result given
in (19) implies that

(21) ‖f − f̃‖Lp = O
(
εαq/2

)
.

This process is referred to as quantization and ε is called the threshold. Note that all coefficients of
f whose absolute value is smaller than the threshold are quantized to be zeros.

4. Ordering of Coefficients.

Many compression algorithms are based upon the assumption that a majority of the data after
quantization are zero. In [7] an algorithm was described which discarded quantized coefficients
whose magnitude was smaller than the threshold. The remaining quantized coefficients were ar-
ranged in decreasing order and their indices were recorded. A careful description was presented of
the types of quantization at each scale level and methods for packing the location of the quantized
coefficients to reduce the number of bits per pixel required to transmit the compressed image.

We avoid the overhead of ordering the coefficients and attempt to minimize the effort in the
transmission of the locations of the significant coefficients. Our approach uses the observation that
the data are naturally arranged in a rough increasing order when viewed relative to their locations
within the matrices described in Section 2.4. This rough estimate for a given function f is indicated
by the following elementary inequality

(22)
∣∣∣∣ ∫ fφ

∣∣∣∣ ≤ |b − a|1/2 ‖f − P‖2
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where φ is normalized in L2, has m vanishing moments and is supported in [a, b] and P is any
polynomial of degree at most m on [a, b]. The inequality follows from the standard approximation
argument. Since φ has m vanishing moments,

∫
P φ = 0 and∣∣∣∣ ∫ fφ

∣∣∣∣ =
∣∣∣∣ ∫ (f − P )φ

∣∣∣∣ ≤ ‖f − P‖Lq [a,b] ‖φ‖Lp

≤ |b − a|1/q ‖f − P‖∞.

Roughly speaking, inequality (22) says that the smaller the support of of a wavelet, the smaller
the coefficient of f corresponding to that wavelet. In the matrix of coefficients (16), however, the
support of each coefficient is directly related to their matrix positions, with the upper left corner
coefficients having the smallest support and those in the lower right corner the largest. Therefore,
as we index through the appropriate sub-matrices (for a given basis), we move from smaller to
larger supports to ensure that generally coefficients with small values occur first.

5. Encoding of Quantized Coefficients.

In this section, we describe two relatively simple approaches for encoding the quantized wavelet
coefficients resulting from the decomposition procedure described in the last section. We use to
our advantage the spatial-frequency localization of features to further condense the significant
information extracted by the decomposition procedure. The methods we describe are both lossless
encoders which pre-process the data to enhance the subsequent application of standard encoders,
such as Q-coder [17], for example. The first approach, which we refer to as “interleaving,”
compresses the rows (or columns) of the array of wavelet coefficients by recursively interleaving
adjacent coefficients in each row of the coefficient matrix and only retaining the significant bits.
The second approach, refered to as “bit-stream encoding,” makes use of the higher correlations
which exist in multivariate, logically rectangular data.

5.1 The Interleaving Method.

Many wavelet-based compression algorithms rely upon the assumption that a majority of the
quantized data vanish. Improving the approximation to f requires decreasing the threshold to
produce additional nonzero coefficients. Nevertheless, many of the quantized coefficients remain
zero, and the ones no longer zero will be small integers.

The first encoding method uses this empirical observation and the fact that small signed integers
require a small number of bits for their representation. The algorithm condenses pairs of these
integers to encoded integers, using the natural ordering within the matrices (16) as described in
the previous section. The procedure is continued until it is no longer possible, at which time both
the index and value of the coefficient which failed to be condensed in this manner are recorded.
We iterate this procedure until it is no longer efficient. Our computational experiments with
images have shown that a fixed value of four iterations provides near optimal results on standard
test images, but there are many variations that may be applied to tune this type of algorithm
depending on the class of images being analyzed.

The interleaving process is simply to take two signed integers (denoted, for example, by c1 and
c2) which each require l bits for their representation, and pack them into 2l bits, but we ensure
that the resulting integer (which we call cond(c1, c2)) is still relatively small. One method for
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implementing this is to use the highest and lowest order bits of the integer cond(c1, c2) for the sign
bits of c1 and c2, respectively. The sgn of c is defined to be ‘0’ if c is nonnegative, and ‘1’ otherwise.
Next we define for any signed integer c, val(c) = |c| − sgn(c). The positive integers val(c1) and
val(c2) are packed into the remaining bits of cond(c1, c2) by using the lowest odd bits for c1 and
the lowest even bits for c2. It is clear that if

−2l−1 ≤ ci < 2l−1, (i = 1, 2)

then
−22l−1 ≤ cond(c1, c2) < 22l−1.

For the purposes of illustration, let c1 = 2 and c2 = −4, then sgn(c1) = 0, sgn(c2) = 1 and,
in binary form, val(c1) = 010, val(c2) = 011. In this case, val (cond(c1, c2)) = 00011011 and
sgn (cond(c1, c2)) = 0.

This process on roughly-ordered quantized coefficients may be summarized as follows: Proceed-
ing through the appropriate matrices in (16), we find the first integer coefficient which is outside
the range [−128, 127] and record its index n1. We then condense the pairs of coefficients up to
that index by interleaving adjacent pairs. If ni is smaller than a given value (i.e. coarse enough, so
that few coefficients remain), we terminate the process, otherwise we repeat the procedure on the
resulting data set until stopping criteria are satisfied.

The final step of the algorithm applies Q-Coder2 [17] to the encoded data as well as to the
exceptional data and their locations, in order to obtain a final compressed data file. The recon-
struction process is straightforward and well-defined, since we keep the record of ni. The algorithm
as described is clearly lossless up to the original quantization procedure. Variants of the complete
procedure also provide lossless compression of data with progressive transmission. The algorithms
may be further tuned using various additional quantization methods preserving the approximation
error and varying the stopping criteria according the classes of image data.

5.2 The Bit-Stream Method.

The “bit-stream” encoding method relies on the spatial and frequency correlations among the
quantized wavelet coefficients, which are extracted by the wavelet decomposition process, and
should be expected to consistently perform better than the interleaving method just described.
For simplicity, we consider the regular wavelet basis and indicate how to modify the algorithm
for the hyperbolic basis at the end of this section. We briefly describe the general procedure and
then use an example to illustrate the details of the encoding process. We will begin with a matrix
A listing only quantized regular basis wavelet coefficients (i.e., any of the matrices M5, M7, or
M8, corresponding respectively to ϕψ, ψϕ, or ψψ). From A we generate a vector of nonzero
coefficients c, and three bitstream linear arrays which encode the index positions: the linear array
S will encode the strongly significant spatial correlations and implicitly contains some frequency
correlations, F encodes the frequency correlations, and R denotes the array which encodes weakly
significant spatial correlations.

Since the majority of the coefficients of A are zero, we write each nonzero coefficient into c
according to its index position (ordered first by rows, next by columns, and so on), after subtracting
one from each positive coefficient in order to slightly decrease its size for efficient packing. We use

2Our version of Q-coder was implemented by V. Zanev [23].
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X to denote the “indicator matrix” of A, i.e. the characteristic function of the support set of
indices of nonzero coefficients of A. For example, if we take the 7×7 matrix:

A =

0 0 1 -1
0 0 -3 5
1 0 0 0
0 4 6 7

0 -3
2 1

5

, (23)

the corresponding indicator matrix X is given by

X =

0 0 1 1
0 0 1 1
1 0 0 0
0 1 1 1

0 1
1 1

1

(24)

and the coefficient matrix with positive coefficients reduced by one becomes

Ã =

0 0 0 -1
0 0 -3 4
0 0 0 0
0 3 5 6

0 -3
1 0

4

(25)

which is encoded into the array c, corresponding to the “nonzero coefficients” of A,

c = (0 − 1 − 3 4 0 3 5 6 − 3 1 0 4).

Obviously, A may be recovered from c and the indicator matrix X.
The correlations within the matrix X are encoded by using two types of mappings, one for

locally encoding spatial correlations within a given frequency level:

adjacent symbol pairs encoded in encoded in the encoded in the
from matrix X(i)

j the matrix X(i+1)
j bitstream array S bitstream array R

0 0 0
0 1 1 0 0
1 0 1 0 1
1 1 1 1

(26)
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and another for the correlations among adjacent frequencies:

symbols in submatrices encoded in the encoded in the
from two levels of X(2)

j matrix Xj array F

0 0 0
0 1 1 0
1 0 1 -1
1 1 1 1

(27)

To illustrate the encoding procedure, we continue with the 7 × 7 example matrix X displayed
in (24). We set X0 = X and work our way up from the finest level (i.e. highest frequency) to the
coarsest by a recursive procedure. The finest level indices for X0 are those in its 4×4 upper left
submatrix. We apply the mapping (26) first to adjacent pairs in the rows of this submatrix, to
obtain

X0
1 := X0 =

0 0 1 1
0 0 1 1
1 0 0 0
0 1 1 1

0 1
1 1

1

=⇒

X(1)
1 =

0 1
0 1
1 0
1 1

0 1
1 1

1

, S = (11001), R = (10).

We next apply this procedure to the columns of X(1)
1 , appending to the appropriate bitstreams

S and R to obtain

X(1)
1 =

0 1
0 1
1 0
1 1

0 1
1 1

1

=⇒ X(2)
1 =

0 1
1 1

0 1
1 1

1

, S = (11001 110), R = (10 0).

At this stage we have encoded the horizontal and vertical spatial correlations within the current
frequency level. The next step of the process is to encode frequency information from the current
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level to the next coarsest using the mapping (27). This is accomplished by comparing the two 2×2
submatrices, position by position, from the two levels (with finer first):

X(2)
1 =

0 1
1 1

0 1
1 1

1

=⇒ X(3)
1 =

0 1
1 1

1
, S = (11001 110), R = (10 0), F = (111).

The matrix X0 is now reduced (i.e., reduced to X1 := X(3)
1 ) from having three frequency levels to

two, together with the bitstreams S, R, and F. Now we iterate these three steps to further reduce
the number of submatrices in X while appending to the bitstreams. It is clear that the process is
invertible at each stage and therefore the encoding is lossless. The full recursive process with our
simple example is to encode the horizontal spatial correlations as step 1,

X1 =
0 1
1 1

1
=⇒ X(1)

2 =
1
1

1
, S = (11001 110 01), R = (10 0 0), F = (111),

to encode the vertical spatial correlations as step 2,

X(1)
2 =

1
1

1
=⇒ X(2)

2 =
1

1
, S = (11001 110 01 1), R = (10 0 0), F = (111),

and to encode corresponding frequency correlations in step 3:

X(2)
2 =

1
1

=⇒ X2 = 1 , S = (11001 110 01 1), R = (10 0 0), F = (111 1).

At the last stage, we append to S the singleton entry of Xn−1 if n is the number of frequency
levels. To reconstruct the matrix A, we need only the bitstreams S, R, and F, together with the
integer coefficient array c. The original thresholded matrix of wavelet coefficients is obtained from
A and the threshold constant ε. Standard arithmetic encoders are used to compress both c and
the bitstreams S and F. The bitstream R has entries which are equally likely and therefore further
compression should not be expected to be effective on this array.

We wish to emphasize that this algorithm is quite simple to extend in order to handle higher
dimensional data. After computing X(2)

j+1 which encodes horizontal and vertical correlations, we
may apply the procedure again to obtain “depth” correlations. Another simple modification is to
handle all three matrices M5, M7, and M8, simultaneously, by consolidating the scaling-wavelet
correlations componentwise into an additional bitstream SW. The algorithm is also easily modified
to handle rectangular data by using a rectangular “template” to combine level to level instead of
the square “template” described above. When the dimensions are not a power of two, we use our
extension process to provide the additional data to allow the algorithm to proceed.

Finally, fixed bases representations other than “regular” bases can be handled with again only
slight modifications. The algorithm we have described for the “regular” basis uses wavelet (and
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scaling) basis elements of the same frequency to determine spatial correlations. Recall from section 2
that the “hyperbolic” basis consists of all wavelet coefficients plus two “wings” from the matrices
M5 and M7. We consider at each frequency level k those coefficients for which at least one of the
two frequencies of the tensor product factors is of level k. We reduce this template first in the
horizontal direction and then in the vertical using the operation (26) as was used for the pairs of
regular basis coefficients. As before we can then compare the resulting reduced k-th level to next
coarsest level component by component using the operation in (27).

We finish our description of the “bit-stream encoding” by stating a couple of observations
which are not apparent in our contrived 7×7 example indicator matrix displayed in (24). In our
experiments with standard test images, the bitstreams S consist primarily of zeros, since for these
images the pair (11) appears infrequently compared to the pairs (10) and (01) and therefore the
bitstream should compress significantly. A wavelet coefficient will normally be large when an edge
or sudden change occurs. Depending on the classification of the image, these changes typically
occur over lower dimensional sets which lead to high occurances of the patterns (10) and (01).

Shapiro observed in his quadtree formulation for the regular wavelet basis, that typically if a
coefficient is zero, then with high probabilty the quadtree branch below that node would consist
of zeros. Our experiments have shown that approximately 10% of the time, if an entry in the
coefficient array vanishes, then the coefficients in the higher frequencies which would be combined
in the reduction process with this coefficient (i.e. whose indexing dyadic squares are contained in
the indexing dyadic square of this coefficient) will all be zero. Since our process essentially builds
the graph structure of the nonzero entries, then the zero entries are essentially ignored, which
indicates that compression should be effective.

6. Computational Results.

In this section, we present computational results comparing an implementation (matching the
published results in [20]) of Sharpiro’s EZW algorithm, the simplified interleaving algorithm, and
the bit-stream encoding algorithm described in this paper. We apply these algorithms to both
regular and hyperbolic wavelets using the 6-10 biorthogonal filters (see Table I for the coefficients).
In each of these experiments, the resulting files are passed through the Q-coder algorithm to finalize
the compression. We have chosen four standard test images (see Figure 1) in order to compare
the compression rates and the PSNR (Peak Signal to Noise Ratio) of the methods. The PSNR is
considered to be a measure of image quality and is given by the formula

PSNR = 20 log10

(
255

‖f − f̃‖�2

)

where f is the original image, and f̃ is the reconstructed image from the compressed data, and
�2 is the least squares norm. The four test images range from relatively smooth to rough images
(Lena, Barbara, City, Destroyer). All experiments are performed by encoding and then decoding
512×512 square images for comparison. As mentioned above, we have implemented our own version
of Shapiro’s EZW algorithm which performs according to the published results in [20], while the
general Q-coder was implemented by our colleague Zanev [23] as described in [17].

We argue that our algorithms, using both regular and hyperbolic wavelets, are at least com-
parable to Shapiro’s EZW algorithm and are easy to implement in both software and hardware.

13



Furthermore, the methods are efficient and easily extendible to arbitrary m×n rectangular images
index limits and, perhaps more importantly, to higher dimensions.

In Table II, we compare compression rates of the Lena test image for Shapiro’s method in
[20], our implementation of his method, our elementary interleaving encoding, and our bit-stream
encoding using both regular and hyperbolic wavelets. Table III provides similar information about
the Barbara test image. These two images were selected since they are standard and were used
as test images in [20]. The reasoning behind the inclusion of the results from our implementation
of Shapiro’s method is to show that it performs consistent with published results in [20], for both
the Lena and Barbara images. We can then get an indication of the performance of that method
on other less smooth test images for which test results are not available in [20]. Tables IV–V
compares our implementation of Shapiro’s method against the encoding applied to both Regular
and Hyperbolic biorthogonal wavelet decompositions for the City and Destroyer test images. The
computational results for bit-stream encoding against Shapiro’s method is also presented in Plots 1–
3. The results of Table II are presented in Plot 1 which plots the PSNR against compression rate,
which ranges from 8 to 256. Plots 2–3 presents the corresponding information for the Barbara,
City and Destroyer test images, respectively. It is clear from these plots and tables that all six
methods are comparable with some advantage of the interleaving encoding for the Destroyer image.
Figure 2 compares the compressed Lena images by the five methods against the original image using
a compression rate of 128. Figure 3 performs the same role for the rougher Barbara image. These
figures give a qualitative measure of compression for the three methods holding the compression
ratio fixed.

The images we use were also selected since they have varying degrees of smoothness in Besov
spaces and the nonlinear approximation theory of DeVore [10] provides a basis for analysis of these
results. From the tables and plots we can see that generally the bit-stream method gives the
highest compression while the interleaving method gives the lowest, with the exception for the
Destroyer image. It is well known that the regular basis works better than the hyperbolic basis
for the ‘smooth’ Lena image, while hyperbolic basis is a better choice for ‘rougher’ Barbara image.
In combination with our algorithms, both interleaving and bit-stream encoding, this property is
retained.

To indicate the strong potential of using the encoders and multidimensional biorthogonal
wavelets for data compression, we apply these methods to a relatively rough contaminant con-
centration front invading the groundwater in a porous media (see Figure 4). The scalar data field
is evaluated on a nonuniform grid with 137 × 129 × 11 vertices. In this experiment, we use the
hyperbolic basis with the symmetric 6-10 filter in each coordinate and the interleaving method for
encoding the significant coefficients. We have rendered this scalar concentration field according to
the color map located at the bottom of each image. In this figure, we have compared the renderings
of the original file against those reconstructed from compressed files with compression rates of 172,
493, and 1200, respectively. Similar compression rates have been obtained for compression of the
grid data, with no visual loss of information. In practice, the original grid data are generated
from scattered data whose measurements contain varying degrees of error. One may then perhaps
argue that the compressed (denoised) grid provides at least as good a representation of the physical
grid as the original file. These same algorithms have been applied to video and to time-dependent
three-dimensional fields and will be reported on elsewhere.
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7. Remarks

As stated in the introduction, our original intent for this study was the development of reli-
able data compression algorithms for three-dimensional scalar and vector fields with general index
limits (i.e. non-dyadic) for use in interactive steering of simulations on remote massively parallel
supercomputers [14, 15]. In this report we have described two methods for encoding the biorthog-
onal wavelet coefficients and have demonstrated that they generally outperform other compression
methods. We also observe that bit-stream encoding is typically the superior of the two methods
for most images. Our algorithms, though primarily tested for 2 dimensional square images, have
natural extensions to higher dimensions for any logically rectangular data. These algorithms also
are well suited for use with adaptive bases, for example the minimal entropy basis [4] and adaptive
nonlinear bases [18].

Shannon’s entropy may be used to understand the effectiveness of the bitstream encoding. If S is
a random variable which takes k values v1, v2, . . . , vk with corresponding probabilities p1, p2, . . . , pk,
then the entropy of S may be defined as

H(S) = −
k∑

i=1

pi log2 pi

and is considered a measure of the complexity of S. The Noiseless Coding Theorem of information
theory [1, 19] guarantees that the minimal expected length of encoded data among all uniquely
decipherable binary encoding schemes may essentially be obtained by an extension of Huffman
encoding. Shannon’s theory states that if the size of the data is n, then nH(S) is the expected
number of bits required to represent S and is then called the complexity of S. This branch of
information theory also provides prefix encoders, such as Huffman encoding, which on average
provide minimal length encoding of the data (i.e. nH(S)). Datum in the data sets are treated
as values generated by repeated application of a random variable, that is, it is assumed that the
values are produced by independent, identically distributed random variables. In practice, the
probabilities are then estimated by the frequency table of the data. The bitstream preprocessor
may be regarded as a prefix encoder which extracts and encodes significant wavelet correlations by
means of a local space-frequency Huffman procedure (see definitions (26) and (27)) and thereby
prepares the data for an enhanced application of standard data compression algorithms such as
that which is incorporated in Q-coder.

Theoretically, we may describe the performance of the bitstream algorithm as follows. Given a
binary data set S with complexity nH(S), if we apply one step bitstream encoding on S, then S
will be represented as a 4-ary data set S′ whose size is n

2 . The complexity of S′ is n
2 H(S′). Under

these conditions, one can show [13] that n
2 H(S′) ≤ nH(S) and that bitstream encoding decreases

the complexity of the original data. This result not only assures the effectiveness of the bitstream
encoding, but also provides a parameter[13], which depends on relative ratios of the frequencies of
the four symbols, to measure its performance.

Typical data which we have encountered in large scale scientific simulations and medical im-
age processing may be quite sizable and has motivated further study of parallel versions of our
algorithms, as well as progressive transmission. These efforts will be reported on elsewhere.
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�a� �b�

�c� �d�

Figure �� Original test images used in computational experiments� �a� Lena� �b� Barbara�
�c� City� and �d� Destroyer�



�a� �b�

�c� �d�

�e� �f�

Figure �� Compression of Lena Image with a compression rate of ��� comparing methods� �a�
original image� �b� Shapiro �South Carolina implementation�� �c� Hyperbolic wavelets
with interleaving� �d� Regular wavelets with interleaving� �e� Hyperbolic wavelets with
bit�stream and �f� Regular wavelets with bit�stream�
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�c� �d�

�e� �f�

Figure �� Compression of Barbra Image with a compression rate of ��� comparing methods� �a�
original image� �b� Shapiro �South Carolina implementation�� �c� Hyperbolic wavelets
with interleaving� �d� Regular wavelets with interleaving� �e� Hyperbolic wavelets with
bit	stream and �f� Regular wavelets with bit	stream�



�a� �b�

�c� �d�

Figure �� Comparision of �D data compression� using the interleaving encoding� to orig�
inal �D scalar �eld with varying compression rates� �a� Original data� �b� 	
�
times compression� �c� ��� times compression� and �d� 	� times compression�
All images are rendered with the same orthogonal slices and an isosurface of
�� of maximum concentration percentage�
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Plot �� Plots of PSNR �Peak Signal to Noise Ratio� as a function of the compression
rate for the Lena test image using Shapiro�s EZM algorithm �dotted�� the USC
version of Shapiro EZM algorithm �solid� and the elementary encoding applied
to regular �dashed� and hyperbolic �dash�dotted� wavelets�
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Plot �� Plots of PSNR �Peak Signal to Noise Ratio� as a function of the compression
rate for the Barbara test image using Shapiro�s EZM algorithm �dotted�� the
USC version of Shapiro EZM algorithm �solid� and the elementary encoding
applied to regular �dashed� and hyperbolic �dash�dotted� wavelets�
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Plot �� Plots of PSNR �Peak Signal to Noise Ratio� as a function of the compression
rate using the USC version of Shapiro�s method �solid� and our encoding algo�
rithm applied to regular �dashed� and hyperbolic �dash�dotted� wavelets for	
�a� City image and �b� Destroyer image�


