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ABSTRACT. Two theorems on nonlinear m-term approximation in L, , 1 < p < oo,
are proved in this paper. The first one (Theorem 2.1) says that if a basis ¥ := {41}
is Lp-equivalent to the Haar basis then near best m-term approximation to any
f € Ly can be realized by the following simple greedy type algorithm. Take the
expansion f =3 ;cr¢r and form a sum of m terms with the biggest ||c;r|lp out of
this expansion.

The second one (Theorem 3.3) states that nonlinear m-term approximations with
regard to two dictionaries: the Haar basis and the set of all characteristic functions
of intervals are equivalent in a very strong sense.

1. INTRODUCTION

This paper deals with nonlinear approximation in Banach spaces. Let B be a
separable Banach space and D be a system of elements in B such that spanD = B.
Consider the best m-term approximation of an element f € B with regard to the
given system (dictionary) D

0m(f,D)p :=inf||f — chngB om=12 ..., o(f,D)s:=|flls ,
i=1
where inf is taken over elements g; € D and coefficients ¢;,7 = 1,...,m. The

quantity o, (f, D)p gives the best possible error of approximation of f by a linear
combination of m elements from the given dictionary D. The fundamental question
in this study is how to construct an algorithm which provides an error of approx-
imation of f comparable with o,,(f,D)g. The answer to this question in some
particular cases is simple. For instance if B = H is a Hilbert space, and D is an
orthonormal basis then the Pure Greedy Algorithm which picks the m biggest in
absolute value Fourier coefficients of f with regard to D realizes the best m-term
approximation. In the paper [T1] we studied the performance of Pure Greedy Al-
gorithm with regard to the trigonometric system 7 := {ei(k"”)}kezd in the Banach
spaces L,(T%),1 < p < co. We proved there the inequality for approximation of
individual function

If = Gl £, Dllp < (1L +3m" o (£,T), ,1<p< oo,

where h(p) := |1/2 — 1/p|. This inequality is sharp (in the sense of order) and can
be extended to other orthonormal uniformly bounded bases. We note here that the
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use of Pure Greedy Algorithm G, for approximation in L, seems reasonable in the
case of uniformly bounded basis {¢;} because in this case we have

M < ¢l < l1djllp < l¢5lle0 < M.

This means that L,-norm of each summand (f, ¢;)¢; is of order of |(f, ;)|
In this paper we consider another important class of bases. A typical represen-

tative of this class is the Haar basis H := {H}s, where I are dyadic intervals of
the foorm I =[(j —1)27",527"), j=1,...,2%n=0,1,... and I =0, 1] with

Hpqy(z) =1 forze(0,1)

i g e - 127 (- 1/2)27)
Hij—ty2-njo—my = —2"%, z€[(j—1/2)27",j27")
0, otherwise.

For the Haar basis ‘H we define for each 1 < p < oo the Greedy Algorithm G?
which acts as follows. Denote

erl0) = (00 = [ f@) i)

and

c1(f,p) = ller(f)Hillp
Let A be a set of m dyadic intervals I for which ¢;(f,p) take the biggest values.
We set
GP(f,H) = er(f)Hr
IeA

Remark 1.1. There is an algorithm which for any f € L, gives an I with the
biggest ||cr(f)Hrl|lp after finite number of steps provided we can calculate each cr(f)
and the L,-norm of a function in finite number of steps.

We describe this algorithm now. Let f # 0. We find a nonzero coefficient ¢z (f)
and denote € := |c;(f)|. Next, we find n such that

If = > er(HHil, <e

|I|Z27'n,

This guarantees that for all |[I| < 27™ we have ||c;(f)H[||, < € and, therefore, we
can restrict our search for the biggest ||c;(f)H ]|, to the finite number of I with
7] > 27",

In Section 2 we prove that for any 1 < p < oo we have for f € L,

If = GL(f, H)lp < C()om(f, H)p

This means that the Greedy Algorithm G?, realizes near best m-term approxima-
tion. We also prove that the same inequality holds for bases equivalent to the Haar
basis.



In Section 3 we study the following general problem in one special case. Assume
we have two dictionaries D7 and D5 in B and want to compare their efficiency for m-
term approximation. Let us introduce the following quasinorm in B for 0 < a < o
and 0 < 3 < o0

f30,8,D,B| := (If1° + > (2% 09 (£, D)8)")"/7.
n=0

We call two dictionaries D; and D5 (a, 3)-equivalent if for any f € B the quasinorms
|f;e,8,D1, B| and |f; a, 3, Ds, B| are equivalent. In particular, («, co)-equivalence
means that

om(f,D1)B < m™*

if and only if
Um(fa D2)B < m~ 2.

We discuss in Section 3 one concrete pair of dictionaries: D; = x := {|J|~/2x s, J
[0,1]} — the set of all characteristic functions of intervals (normalized in Ls); and
Dy = H — the Haar basis. It is clear that

(1.1) Om(f, H)p = 02m(f, X)p-

We prove that these two dictionaries are (a, 3)-equivalent for any o and .
We note that o,,(f, x), is closely related to approximation by splines with free
knots. This is based on the following simple remark.

Remark 1.2. For any set of intervals Jy,...,J, in [0,1] there exists a set of
disjoint intervals J2,. .., J§m+1, U?Z{H J;l = [0,1], such that any function f of the
form

m
f=Y cixu
=1

can be rewritten in the form
2m+1

f=> bix s
1=1

The proof of this remark can be carried over by induction on m.

Combining known results about approximation by splines with free knots (see
[DL], Ch. 12, s. 8, p. 388) and known results on m-term Haar approximation
and using Remark 1.2 we get that the dictionaries x and H are (a, (o + 1/p)™1)-
equivalent, 0 < a < 1.

2. GREEDY ALGORITHMS FOR BASES EQUIVALENT TO THE HAAR BASIS

Let ¥ := {41} be a basis in L,[0, 1] indexed by dyadic intervals I. We say that
U is Ly-equivalent to H if there exist two positive constants C;(p) and Cy(p) such
that for any finite set of coeflicients ¢; we have

(2.1) Cr Y erHillp < 1) erdilly < Ca(p)ll Y erHilly:
I I I
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One can find a discussion and some results about bases L,-equivalent to H in the
paper [DKT].
For a given basis ¥ we define the Greedy Algorithm GP(-, ¥) as follows. Let

=Y erf, ),
I

and
cr(f,p, V) = |ler(f, ).
Then ¢f(f,p,¥) — 0 as |I| — 0. Denote A,, a set of m dyadic intervals I such that

. i > .
(2:2) min e(f,p,¥) 2 max es(f,p, V)
We define GP(-, ¥) by formula
GE(f, %)== > er(f, )¢r.
I€A,

Theorem 2.1. Let 1 < p < oo and a basis ¥ := {11} be L,-equivalent to H.
Then for any f € L, we have

If = GL(f, 9y < Clp)om(f, ¥)p.

Proof. Let us take a parameter 0 < ¢t < 1 and consider the following greedy type
algorithm GP'' with regard to the Haar system. Denote A,,(t) any set of m dyadic
intervals such that

2.3 1 >t
(2.3) IeIngl(t)C](f,p)_ Jérjl\i)%t)CJ(f,p),

and define
ani(f) = S elf)Hr.

IeA,(t)

For a given function f € L, we define

g(f)=> eci(f, W) H.

I
It is clear that g(f) € L, and

(2.4) oml(9() )y < CL(p) (£, 0),.
Next, for any two intervals I € A,,,, J ¢ A,, by the definition of A,, we have
CI(fvpa \I;) Z CJ(fapv \Ij)
Using (2.1) we get from here
(2.5) ler(g(f)) Hillp = ller(f, ¥) Hillp > Co(p) ™ ler(£, ©)vall, =
— CQ (p)_IC[(f,p, \Ij) > 02 (p)_ch(f7p7 \Ij) =
= Co(p) " es (£, 9)9sllp = Cr(p)Calp) ™ llea(g(f)) Hillp.

This inequality implies that for any m we can find a set A, (t), where t = C1(p)Ca(p) L,
such that A,,(t) = A,, and, therefore,

(2.6) If = GL.(f£, W)y < Ca(p)lla(F) — GR (9(F))llp-
The relations (2.4) and (2.6) show that Theorem 2.1 will follow from Theorem 2.2.



Theorem 2.2. Letl <p<oo and 0 <t <1. Then for any g € L, we have

lg — GL(9)llp < Clp,t)om(g, H)p-

Proof. The Littlewood-Paley Theorem for the Haar system (see for instance [KS])
gives for 1 < p < oo

27 @I ler(@) Hil) 2Ny < llglly < CaoIQ ler(9)Hil*) ]l

We formulate first two simple corollaries from (2.7) :

(2.8) lglly < C5(P)(D_ ller(g)Hrlp)'/P, 1<p<2,

(2.9) lglly < Cs(p)_ ller(a)Hrl2)' 2, 2<p < co.

Analogs of these inequalities for the trigonometric system are known (see, for in-
stance, [T2], p. 37). The same proof gives (2.8) and (2.9).
The dual inequalities to (2.8) and (2.9) are

(2.10) lgll, > Cr(p)(Y_ ller(a) Hil2)'?,  1<p<2,
I

(2.11) lglls = Cs(p)(D_ ller(g) HrlE)V?,  2<p < .
I

We proceed to the proof of Theorem 2.2. Let T}, be an m-term Haar polynomial
of best m-term approximation to g in L, (for existence see [D]):

T =Y arHy, |Al=m.
IEA

For any finite set () of dyadic intervals we denote by Sg the projector

So(f) =Y er(f)Hr.

I€Q

From (2.7) we get
(2.12)  |lg = Sa(9)llp = [lg = T = Sa(g = Tm)lp < [Hd = Sillp—pom(9: H)p <

Ca(p)Cs(p) " om(g, H)p,
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where Id denotes the identical operator. Further, we have
GPH(g) = Sa,.(1)(9),
and
(2.13) lg = GEHDlp < llg = Sa(a)llp + [1Sa(9) = S, (5)(9)lp-

The first term in the right side of (2.13) has been estimated in (2.12). We estimate
now the second term. We represent it in the form

Sa(g) = Sanv(9) = Sa\a,.()(9) — Sa,.\a(9)
and remark that similarly to (2.12) we get

(2.14) 154, (\a(9)llp < Co(p)om(g, H)p-
The key point of the proof of Theorem 2.2 is the estimate
(2.15) [1Sa\a,. 0 (@lp < Co, )IISA,. 1\a(9) I

which will be derived from the following two lemmas.

Lemma 2.1. Consider
f=Y cH, Q=N
IeQ
Let 1 <p < o0. Assume
(2.16) lerHrllp < 1, I eq.

Then
I1£]lp < Cro(p)N'/P.

Lemma 2.2. Consider
f=> eHy, Q| =N.
IeQ
Let1 <p < oo. Assume
||CIH]||p >1, Ie Q

Then
I£llp > Cra(p)N'/P.

Proof of Lemma 2.1. We note that in the case 1 < p < 2 the statement of Lemma
2.1 follows from (2.8). We will give a proof of this lemma for all 1 < p < co. We
have
lerHallp = leg||T]/P71/2.
The assumption (2.16) implies
jer] < |12 P,
Next, we have
(217) 171 < IS lerHrllly < IS 77 x0(@)
IeQ I€eQ
where x(x) is a characteristic function of the interval I
(z) = { 1, el
XM= V0, z¢l

In order to proceed further we need a lemma.
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Lemma 2.3. Let ny < ng < --- < n, be integers and let E; C [0, 1] be measurable
sets, j =1,...,8. Then for any 0 < g < oo we have

1 s s
/ (3 275y, (2))7dz < Cra(g) 327 |5
0 7j=1 7j=1

Proof. Denote
) = Zan/qXEj(iB)
Jj=1

and estimate it on the sets

Er = E\Uj 1 By, 1=1,...,s—1;, E] :=FE,.

S

We have for z € E,”
l

Z 9mi/1 < C(q)2m/1.

Therefore,

S S

| Playas < oy Y2 pr| < clay Y 27 B,

=1 =1
what proves the lemma.

We return to the proof of Lemma 2.1. Denote by ny < ng < --- < ny all integers
such that there is I € Q with |I| = 27" . Introduce the sets

Ej =U T

IeQ;|I|=2""i

Then the number N of elements in () can be written in the form
(2.18) N =) |E;2m.
7=1

Using these notations the right hand side of (2.17) can be rewritten as

S

Y — (/0 (Z an/prj(:v))pdx)l/p.

i=1
Applying Lemma 2.3 with ¢ = p we get
I, <Y < Cra(p)(D_ 1E4[2) P = Cua(p) NP
7=1

On the last step we used (2.18). Lemma 2.1 is proved now.
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Proof of Lemma 2.2. We derive Lemma 2.2 from Lemma 2.1. Define

U= Z 5[|C[|_1|I|1/p_1/2H[,
Ieq

where the bar means complex conjugate number. Then for p’ = p%l we have

lerler| =M VP2 H |l = 1
and by Lemma 2.1
(2.19) lully < Cro(p)N .

Consider (f,u). We have on one hand

(2.20) (fou) =D ler[1]VP712 =3 " lerHill, = N,

IeQ IeQ

on the other hand

(2.21) (Fu) < N lpllully-

Combining (2.19) — (2.21) we get the statement of Lemma 2.2.

We complete now the proof of Theorem 2.2. It remained to prove the inequality
(2.15). Denote

A= H
Ieg\liimlh(g) 1llps
and
B = i Hyll...
reiin ler(9)Hrllp

Then by the definition of A,,(t) we have

(2.22) B > tA.

Using Lemma 2.1 we get

(223)  [Sa (@)l < ACKEIA\ An(®]7 < 7 BCI(p)|A\ Am(B)]7.

Using Lemma 2.2 we get

(2.24) 158, 0\ (@)l = BC1L(9)[Am(8) \ A,

Taking into account that |A,,(t) \ A| = |A\ A (t)| we get from (2.23) and (2.24)
the relation (2.15).
The proof of Theorem 2.2 is complete now.

We discuss now the multivariate analog of Theorem 2.1. There are several natural
generalizations of the Haar system to the d-dimentional case. We describe here that
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one for which the statement of Theorem 2.1 and its proof coincide with the one-
dimensional version. First of all we include in the system the constant function

Hpae(z) =1, z€[0,1)%

Next we define 2¢ — 1 functions with support [0,1)¢. Take any combination of
intervals Q1,...,Q4 where Q; = [0,1] or Q; = [0,1) with at least one Q; = [0, 1),
and define for Q = Q1 X -+ X Qq, = (21,...,24),

Hg(z) = HHQi (z4)-

We shall also denote these functions by H[]f) 1)(,(:10), k=1,...,2¢9 — 1. We define

the basis of Haar functions with supports on dyadic cubes of the form
(2.25) J=[(1 —1)27™,5127") x - X [(ja — 1)27™, 54277,

ji=1,...,2" n=0,1,...

For each dyadic cube of the form (2.25) we define 2¢ — 1 basis functions
Hj(x) :=2"?H 1 2z — (i —1,.. ., ja—1)277), k=1,...,2¢ 1L

We can also use another enumeration of these functions. Let H[’B 1)d(al:) = Hp(x)
with

Q:QIX"'Xde Q2:[071)7 ZEE? QZ:[()?]']? ZE{l,d}\E, E#@
Consider a dyadic interval I of the form
(2.26) I'=IhLx--x1Ig ILi=[j:—1)27"527"), 1€E,

I = [(.71 - 1)2_n7j2'2_n]7 S {17d} \ E, E#0

and define H;(z) := H%(z). Denoting the set of dyadic intervals D as the set of
all dyadic cubes of the form (2.26) amended by the cube [0, 1]¢ and denoting by H
the corresponding basis {H;};ep we get the multivariate Haar system.

Remark 2.1. Theorem 2.1 holds for the multivariate Haar system H with the
constant C(p) allowed to depend also on d.

We studied in this section approximation in L,([0, 1]) and made a remark about
approximation in L,([0,1]?). We can treat in the same way approximation in

L,(R%).
Remark 2.2. Theorem 2.1 holds for approzimation in L,(R?).

Results on approximation of function classes using multivariate greedy algorithm

G? (-, ¥) can be found in [DJP].
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3. COMPARISON OF TWO DICTIONARIES

We begin this section by one result about approximation of functions from
A-(H,L,, A) by m-term Haar polynomials. Let 0 < 7 < oo; we denote by
A (H,L,, A) the set of functions f € L, such that

(3.1) 3 A H L) o= (3 ller(F) H )Y < A

It seems that the set of classes A, (#, L,, A) is a natural replacement for standard
Holder, Sobolev or Besov smoothness classes when we study nonlinear m-term ap-
proximation instead of linear approximation. This opinion is based on the following
two arguments. 1). The terms ¢y H; have the same weight in the definition of the
class A, (H,L,, A) for all I. 2). There are some results which describe the classes
of functions with a given decay of their best m-term approximation in terms of A,
classes. We illustrate this statement by a particular case of one well-known result
of Stechkin (see for instance [DT]). We have the equivalence

o0 O_m
Z (m—l—ll/2 T <oo& |fi Ar(H, L2)| < oo

m=0

Further results in this direction could be found in [DJP]. In particular, the following
Theorem 3.1 can be derived from Theorem 2.1 in [DJP]. We give here another proof
of Theorem 3.1.

Theorem 3.1. Let 0 < 7 < p < oo be given. There exists C(1,p) such that for
any m € N we have

Om(f,H)p < C(1,p)mM P77 | 3 AL (H, L))

Proof. We start with the case p < 1 (under the assumption 7 < 1). In this case
| - llp is @ quasinorm. We use the G?, algorithm defined in Section 1. Then

32 I =GR = [ 1 enrrn < 3 ler( il

IgA IgA
We use now the following simple and well-known lemma (see for instance [T2],

p.97).
Lemma 3.1. Lety; >y > --- >0 and for some 7 > 0

> yp <A
k=1

Then for any p > T we have

(Z yZ)l/p < Aml/p=1/7

k=m
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Using this lemma with y; := |1, (f)H1,||p, where
e (N1l > llew (5 HLllp >
we get from (3.2) the required estimate.

In the case 1 < p < 2 we use the above arguments with (3.2) replaced in accor-

dance with (2.8) by

(3.3) 1f = G2 (f, H)llp < Cs(P)(D ler(F) HilB)' /7.
IgA

Let us proceed to the remaining case 2 < p < oco. Our proof in this case will use
Lemma 2.1. We keep the above notation y;,7 = 1,2,.... Then we have

(3.4) = |f; A (H,L,) Zyj )

In particular, this implies

(3.5) Ym < AmTH7
Denote mg := m and denote by m;,l =1, 2,..., the index such that
Ymy 2 ym2_l7 Ymi+1 < ymz_l~

Then for m;_; < k < m; we have
(3.6) Ym2 7t < yp < ym27

Define N; := m; — m;_1. The relations (3.4) and (3.6) imply

(3.7) D (ym27) N < AT
=1

Further, we have

(3.8) S:=f =G (L= 1l D> e, (HHLl <> Al
j=m+1 =1
where we have denoted
my
fii= Z cr,(f)Hy,.
j=my_1+1

By Lemma 2.1 we get
- 1
1£illp < ym2 ™1 Cro(p) N, 2.
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From here and (3.8) we obtain

(3.9) 6 <2C10(p) Zme—lNll/p = 2C0(p Z N)YP(y, 271 =7/P <
=1 =1
<Cl’i'pz TNl/plf/p
=1

Using (3.7),(3.5) and (3.4) we get from (3.9)
6 < Cu(m,p)Am!P=HT = Gy (7, p)m! P A (M, L)

what completes the proof of Theorem 3.1.

We proceed now to studying approximation of linear combinations of characteris-
tic functions by m-term Haar polynomials. We introduce some notations convenient
for us. Denote for any interval J

Uy = |J7 2y
and for s € N
F(s,x):={f:f= ZbUJ, clo1]i=1,...,s}.
=1

Lemma 3.2. For any 0 < 7 < 1 < p < oo there exists C(1,p) such that for
[ € F(s,x) we have

|3 Ar(H, Lyp)| < C(1,p)s 77V £l

Proof. Consider first the Fourier-Haar expansion of Uy for some J C [0,1]. For
each level k of Haar functions Hy,|I| = 2%, at most two functions Hypiy) and
Hjz(5y will have nonzero inner product with U;. For these I'(J),i = 1,2, we have

(3.10) (0, Hra)l < min( e, ()

Thus we have for any 0| < 1/2 and 7 > 0

(3.11) Y (er@IL/19)%) < C(8,7)7

I

Consider now

f=Y bU,,.
=1
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Using Remark 1.2 we represent f in the form

2s+1

f = Z a’kUJ;j7
k=1

with disjoint J{,...,J§ ;. Then

2s+1 2s5+1
(3.12) A1E =D NlawUsgllp = laxl? TR P2
k=1 k=1

Take any 0 < 7 < 1 and estimate

(3.13) Z ler(£)HilL = Z ler(f)|7 1|7 /P=172).
I

I

We have
2s+1 2s+1

|C[ —|Zakc1UJ¢ |T<Z|ak| |C]UJ1|.

From here and (3.13) we get

2s5+1
> ller()Hilly < Z |ak|TZ|CI [T =
I
2s+1 |I|
Y arll TPy (len(U)|(Fr) VP27 <
k=1 I ' |Jk|
Using (3.11) with 6 = 1/p — 1/2 we continue
2s+1
< Cu(mp)” Y (allJE1P )T <
k=1
2s5+1
Ci(r,p)7 (28 + 1) TR(Y - (al [JE[VP72)P)P = Cu(r,p)7 (25 + 1) TR 1] 5,
k=1

what completes the proof of Lemma 3.2.
We use Lemma 3.2 and Theorem 3.1 to prove an upper estimate for o, (f, H),
in terms of o, (f, X)p-

Theorem 3.2. For any 1 < p < oo and r > 0 there exist positive C,C(p),C(p,r)
and 0(p) such that for any n =1,2,..., we have

~ r(n— _ n/2
oca (f,H)p < Clp.r) Y ooe (100277 + Cp) | f1]p27
k=0
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Proof. Let ¢ > 0 be an arbitrary number and let ¢z, k = 0,1,...,n, be a e-best
2*_term approximation of f with regard to x in the L,-norm:

If = tellp < min(oon (f,X)p + & [ £1l5)-

We represent f in the form

(3.14) f=f—ta+t,—tn_1+- -+t —tg+to.

We have

(3.15) If —tnllp < oon(f,x)p + 6

and

(3.16) Itk — te—1llp < 2006-1(f,x)p+2¢ , k=1,2,... n.

For t; we have

(3.17) ltollp < 20171l

For m = mg + my + --- + m,, we get from the representation (3.14)

(3.18) Om(F,H)p S —tullp + > O (b — te1, H)p + Ty (o, H) -
k=1

We choose now my, := [2(”+k)/2]. Then

m = ka < C2™.
k=0
Next,
tk — tk—l S F(Qk + Qk_l,X).

Using Lemma 3.2 and Theorem 3.1 with 7 = (2r + 1/p)_1 we get

2kz
(3.19) Oy, (L — ti—1, H)p < C(r, p)(

27
—_— tr —tp_ <
k) Hk k 1HP—

C(r,p)27 "8 (age 1 (f, x)p + ©)-
At the last step we used the definition of my, and (3.16).

Let us consider now o, (to, H),. We estimate first o4;(Uy, H),. Using (3.10) we
get

(3.20) ou(Up,H)p < Y NerUHillp + D ler(Us)Hilp <
[I|1<|J]|27! |I]>|J|2¢

< C(p)|J|1/P—1/22_l(1/2_|1/P—1/2|).
Next, tg = aUy and by (3.17)
jal <2l I 2747
From here and (3.20) with [ := [27/22] and 0(p) := (1/2 — |1/p — 1/2|)/4 we get
(3.21) Timy (o, H)p < C(p)27 @27,
Combining (3.15), (3.19) and (3.21) we complete the proof of Theorem 3.2.
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Theorem 3.3. For any a >0, 0<pg < oo we have for f € L,

Cila, B,p)|f; 0,8, x, Lp| < | 50,8, M, Lp| < Cola, B,0)|f; 0,8, x, Lp|.

Proof. The first inequality follows from Theorem 3.2 and LLemma 3.4 and the second
inequality follows from (1.1) .

Lemma 3.4. Let two sequences {a,}o>, and {b,}32, of nonnegative numbers sat-
18fy the inequalities

a, <Y b2 m=12,.,
k=1

with some r > 0. Then for any 0 < a <r and 0 < 3 < oo we have

(Z(Qan ) )l/ﬁ < C Z 2akb 1/6
n=1 k=1

Proof. Consider first the case 0 < 3 < 1. We have
o < 3 2ot

and - - -
Z(Qanan)ﬁ < Z 2(04—7’)[371 Z b§2ﬁrk —
n=1 n=1 k=1

[ee) ee]

Z b 2Pk i 2(27MB < Cla,r) D bR2P*,

k=1 n=k k=1

Let us proceed now to the case 1 < 3 < co. Take 0 := (r—«a)/2 and estimate using
the Holder inequality

a, < 0(9)(Z(bkg(r—f))(’c—n))ﬂ)l/ﬁ
k=1

Similarly to the above we get the required inequality.
It remains to consider 3 = co. Let b, <27°F  k=1,2,..., then

an < 22_0"‘3""7"(]“_") <Clr—a)27%", n=12,....
k=1

This completes the proof of Lemma 3.4 and Theorem 3.3.
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