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NONLINEAR m-TERM APPROXIMATION
WITH REGARD TO THE MULTIVARIATE HAAR SYSTEM!

V.N. TEMLYAKOV

Department of Mathematics, University of South Carolina, Columbia, SC 29208

ABSTRACT. We study efficiency of Lp-greedy algorithm with regard to a multi-
variate system which is equivalent to the multivariate Haar system. In a place of
multivariate Haar system we take the corresponding tensor product of univariate
Haar systems. We prove that for 1 < p < oo the L,-greedy algorithm GP provides
an error of m-term approximation of any function in L, such that it is at most
C(p,d)(log m)? times bigger than the best m-term approximation of that function.
We also prove that in the case p = 1 or p = oo efficiency of GP? is not as good as
in the case 1 < p < co. Namely, the extra factor jumps from (log m)d in the case
1 < p<ootomin the case p=1,00.

1. INTRODUCTION

This paper is a follow up to the paper [T1]. We recall the most important
notations from [T1] and formulate one result from [T1] which is a starting point
for this paper. Denote the univariate Haar system by H := {H;};, where I are
dyadic intervals of the form I =[(j —1)27",527"), j=1,...,2" n=0,1,...
and I = [0, 1] with

Hpqy(z) =1 forze(0,1)

iz, g e (- 1)27m (- 1/2)27)
Hjiyp-n jo-my = —2"%, z€[(j—1/2)277,j27")
0, otherwise.

Consider the multivariate Haar basis H% := H x - - - X H which consists of functions

d
HI(JS):HH[J.(JSJ'), Ilex---xId, $:($1,...,$d).

=1

For the Haar basis H? we define for each 1 < p < oo the Greedy Algorithm GP
which acts as follows. Denote

fr={f,H) = / f(x)H(x)dz

[0,1]*
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Let A be a set of m dyadic intervals I for which || frHl||, take the biggest values.
We set
Go(f,HY) = frH;

IcA

In order to get an idea about efficiency of Greedy Algorithm GP we compare
the error of its approximation ||f — GZ,(f,H%)||, with the best possible error of
approximation by a linear combination of m Haar functions. Denote

(1.1) om(f 1Y)y =it ||f = > erHill,, m=1,2,...,

where inf is taken over coefficients ¢; and sets A,, of dyadic intervals of cardinality
#A,, = m.
It was proved in [T1] that for any 1 < p < oo we have for f € L,

(1.2) If = o, H)llp < C(p)om(f, H)p

What means that the Greedy Algorithm GP realizes near best m-term approxima-
tion. In this paper we study efficiency of Greedy Algorithm GP with regard to
multivariate Haar system H?. A simple example suggested by R. Hochmuth (see
Section 4) shows that we do not have the relation (1.2) for H¢, d > 2, anymore
and

(1.3) em(GP, H?) = sup (1 = GE(f Hp/om (f, HY)p) =

C(p, d)(log m)I"/2=1/PIa=1),

for 1 < p < o0.
In Section 2 we use one general inequality to prove that

em(GP,HY) < C(p, d)(logm)®.

This inequality shows that efficiency of GP with regard to H¢ is not far from the
optimal.

An interesting open question here is the following. What is the correct order of
the quantity e,,(G?, H?)?

Conjecture. For 1l < p < oo we have
(1.4) em(GP, 1Y) < (logm)t/2=1/pl(d=1),

The lower estimate in (1.4) follows from (1.3) what means we need to prove the
complimentary upper bound in (1.4) in order to prove the conjecture. In Section 3
we prove the conjecture in the case d = 2 and 4/3 < p < 4.

Similarly to [T1] we prove our results in a more general setting: for a system
¥ Ly-equivalent to H<¢ and for Greedy Algorithm GP replaced by t-thresholding
Greedy Algorithm GP-t. For details see Sections 2 and 3.



In Section 5 we illustrate how the inequality (1.2) and some other results from
[T1] can be used for proving direct and inverse theorems in m-term approximation.
We prove two lemmas (see Lemmas 5.1 and 5.2) which establish the inequalities
between the errors o,,(f), of best m-term approximation and the nonincreasing re-
arragement of {|| frHr||,}. These lemmas allow us to reduce the problem of studying
approximation errors to the problem of comparing two decreasing sequences. We
use standard technique to derive from these lemmas some new and also some known
results on direct and inverse theorems.

In Section 6 we consider the case p = 1 or p = oo and prove that efficiency of
greedy algorithms G? is not good in this case. Namely, we prove that

em(GP,HY), < m, p=1,00.

2. EFFICIENCY OF MULTIVARIATE GREEDY ALGORITHM

Let W := {¢;}; be a basis in L,([0,1]?) indexed by dyadic intervals I. We say
that W is L,-equivalent to H if there exist two positive constants C;(p,d) and
C5(p,d) such that for any finite set of coefficients ¢; we have

(2.1) Cr(p, ) erHill, <1 erdbally < Calp, d)I| Y erHillp.
I I I

For a given basis ¥ and 0 < ¢t < 1 we define the ¢-thresholding Greedy Algorithm
GP'(-, W) as follows. Let

f:ZCI(f,\I;)i/)]
I

and

cr(f,p¥) = ller(£, ¥)drllp-

Then cr(f,p, ¥) — 0 as |I| — 0. Denote A,,(t) a set of m dyadic intervals I such
that

(2.2) min c;(f,p,¥) >t max cy(f,p, V).

IeA,,(t) JEA,,(t)

We define GP'(-, ¥) by formula

GRHf, W) = Y er(f, 9)¢r.

IeA,,(t)

Denote

(2:3) em(GP, ) = sup (I = GEI (D)o /om (£, 9)p),

where 0,,,(f, ¥), is the best m-term approximation of f with regard to ¥ which is
defined similarly to (1.1).



Theorem 2.1. Let 1 <p < oo and a basis ¥ be L,-equivalent to HE. Then there
exist two positive constants C(p,d) and ¢(p,d) such that

em(GPE, W) < C(p,d) sup em(GPT,HY).
Gr7,r>te(p,d)

Proof. This proof repeats the arguments in the proof of Theorem 2.1 from [T1].
For a given function f € L, we define

g(f) =Y er(f, W)Hr.

It is clear that g(f) € L, and

(2.4) Tm(g(f), H)p < Cr(pd) " om(f, ),

Next, for any two intervals I € A,,(t), J ¢ A,,(t) by the definition of A,,(t) we
have

CI(f7p7 \II) > tCJ(f7p7 \I!)
Using (2.1) we get from here

(2.5) lg(F)H1llp = ller(f, ©) Hillp = Co(p, d) ™ ez (f, ©)¢ull, =

= CQ(p7 d)_lcl(f7p,\11) > tCQ(pv d)_ch(f7p7\Ij) =
= tCa(p,d) " |les (£, 9) s llp = tC1(p, d)Ca(p,d) " |lg(f) 7 Ho lp.

This inequality implies that choosing c(p,d) := C1(p,d)Cs(p,d)~! we have for any
m that for I € A,,,(t) and J ¢ A,,(¢)

lg(f)rH1llp = te(p, d)|lg(f)sHillp,

and, therefore,

(2.6) If = G O)llp < Calp,d)  sup  |lg(f) — GET(a(F), H)lp-
Gr:7 7 >te(p,d)

The relations (2.4) and (2.6) imply Theorem 2.1.
Theorem 2.2. Letl <p<oo and 0 <t <1. Then for any f € L, we have

If = GBI 1)y < Clp,t,d)(log m) o, (£, ),

Proof. Denote

Irp = Z LRGN ¥
Tea

and

)

where sup and inf are taken over all sets A of dyadic intervals I with the same
cardinality #A = k. We prove first the following inequality.

u(m,p,d) := sup (Slip lgap

<m

/0 l9



Lemma 2.1. Letl <p < oo and 0 <t <1. Then for any f € L, we have
If =GR HD e < Clpst, d)u(m, p, d)orm (£, HY) .

Proof. Let T, be the m-term Haar polynomial of best m-term approximation to f
in L, (for existence see [D]):

Tp=> aiH;, #A=m.
IcA

For any finite set () of dyadic intervals we denote by S¢g the projector

Sq(f) = fiHr.

Ie@

The Littlewood-Paley Theorem for Haar system (see for instance [KS]) gives for
l<p<o

(2.7) Ca(p, I 1FrHIP) Ny < Ifllp < Calp, I 1FrH) 2.
1 I

From (2.7) we get
(2.8) NI = Sa(Dllp = IF = Ton = Saf = Ton)llp < [Hd = Shllpmspom (£, 1) <

04 (p: d)03 (p7 d)_lam(fa 7—[d)p:
where Id denotes the identical operator. Further, we have

GLHF) = Sa,.w(f),

and

(2.9) 1f = GEHOlp < 1= Sa(F)llp + 15a(f) = Sa,.. ey ()l

The first term in the right side of (2.9) has been estimated in (2.8). We estimate
now the second term. We represent it in the form

SA(f) = San)(f) = Saa. (0 (f) = Sa.n\alf)

and remark that similarly to (2.8) we get

(2.10) 198, na (F)llp < Cs (P, d)om(f, HY)p-

We estimate now ||Sa\a,, (1) (f)|l, and prove that

(2.11) ISa\a. (o (Dllp < Clp,t, d)u(m, p, d)|[ Sy, )\a(F)lp-
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Denote

A= H
rehax | frH1ps
and
B .= ' Hill..
IEAT(%\A”ff 1llp

Then by the definition of A,,(t) we have
(2.12) B > tA.

Using the Littlewood-Paley inequality (2.7) we get on one hand

(2.13) 1Sa\Am () (Dl < Allgara,, (6.0l

and on the other hand

(2.14) 158, (n\a(Hllp > Bllga,, n\apllps

with the constants depending on p and d. Using (2.12) we obtain (2.11) from (2.13)
and (2.14).
Theorem 2.2 follows from Lemma 2.1 and the following Lemma 2.2.

Lemma 2.2. For any A, #A = m, we have for

grp =y [I"*7PH,

IeA
the inequalities
(2.15) mP < lgapll, € mP(logm)?, 2 <p < oo;
(2.16) m'/P(logm) ™ < ||gapll, < M/, 1 <p<2;

with constants depending on p and d.

Proof. The following two simple corollaries of the Littlewood-Paley Theorem are
well known

(2.17) I£1lp < Colp. )Y N fHH)VP,  1<p<2,
1

(2.18) 1£1le = Cr(p, )Y I HAD)YP, 2 <p < oo
I

These inequalities imply the lower estimate in (2.15) and the upper estimate in
(2.16). We prove now the upper estimate in (2.15) and then by duality arguments
derive from it the lower estimate in (2.16). This proof is based on one embedding
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type inequality. In order to formulate it we introduce some notations. For a given
[ denote D; the set of dyadic intervals of length 27, i.e.,

Dy:={I=[-1)2""527",j=1,...,2"}, 1>1,  Do:={[0,1],0,1)}.
For a vector s = (s1,...,584), where s1,...,s4 are nonnegative integers, denote
Ps::{[:I]_X"'XICh Ij€D5j7j:]‘7"'7d}'
Let f € L,([0,1]%), denote

55(f) = Z fIH].
IeP,

The following inequality is known (see [T2], Lemma 2.3). Let 1 < g < p < o0; then
for f € L,(]0,1]%) we have

(2.19) I£1lp < Cla,p, d)(D_(18:(£) 20 a7/ P sl )2y 1/,

s

We will also need an upper bound on the constant C(q,p,d) in this inequality.
Examining the proof of inequality (2.19) (see [T3], pp.24-26) we get

(2:20) Clg,p,d) < C(d)(1/q—1/p)~"

Now we are in the position to prove the upper estimate in (2.15). Let 2 < p < o0
and

g = U"PTVPH, H#A=m.
IeAn

Denote

As = ANP,, ng = #A,.

E ns = m.
S

Then

Next, for any s and ¢ we have

(2.21) IS 12 YP | = nl/allsl (/=17
IEA,

Using (2.19) and (2.21) with ¢ < p we obtain
lp < Cla,p, d)(Y_ n/4)HP < C(q,p, d)ym*/ 9= Pm!/?.

HQA,p

Taking into account (2.20) and specifying g as 1/g — 1/p = (Inm)~! we get
lga,zll, < C(d)(Inm)?m'/?,

what completes the proof of upper estimate in (2.15).
The lower estimate in (2.16) follows from the upper estimate in (2.15) which has
been proved and the inequality

m = Inp9np < llgapllpllgny e -

[0,1]7

Theorem 2.2 is proved now.



PROOF OF CONJECTURE IN THE CASE d = 2 AND 4/3 < p < 4

The upper estimate
em(G?, H?) < (logm)It/2~1/7!

for 4/3 < p < 4 follows from Lemma 2.1 and the following Lemma 3.1.
Lemma 3.1. Let4/3 <p <4 andd=2. For any A, #A = m we have

(3.1) m'/P < |lgaplly < m/P(logm)! 2T 2 <p <4

(3.2) m!/P(log m)!/27HP < lgapll, < m!/P, 4/3 <p<2.

Proof. We prove only the upper estimate in (3.1) and remark that it implies the
lower estimate in (3.2) in the same way as in the proof of Lemma 2.2.
We consider first the case p = 4. Let

gra = [V Hy, #A =m.
IeA

Denote as above Ay := AN P,, ng := #A; and A; := Urep,l. Then

Z (|I|M4 Hp)? = 2llsll/2y
I€A,

where x 4 is a characteristic function of a set A. By the Littlewood-Paley Theorem
we have

(3.3) llga 4ll4 <</ (Z(|I|1/4HI)2)2d;c:/ () 2l /2y, )2da =
[0,1]

IeA (0,12

/ SOS allslhzy o2y, gy,
a2 55

Denote

oo 1= / XA,XA, d.
[0,1]?

Then we get from (3.3)

(3.4) lgaalli < Z Z 2(IISII1+|I8’|I1)/2JS,S,_

Let us estimate J, . It is obvious that
(3.5) Js o < min{mes A;,mes Ay} = min{ns2_”8”1,n512_”3/”1}.
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Next for any I € A, and I’ € A,/ we have

mes I AT < 2~ max(si,s})—max(sz,s})
and therefore
(3.6) Joo < nsns,2—maX(sl,s/l)—max(sz,s'Z).

We estimate now

)i= S T, g2l

Denote ||s|y = n. Then we have

I DL T SC LD SO

lls'[l1=F k<n lls'[lx=F k2>n lls'[lx=F
For s and s’ such that ||s|[; = n, ||s’|[1 = k we have
max(s1, s;) + max(sz, s5) > min(n, k) + |s; — s7|.
For fixed s with ||s||; = n introduce the notations
Vis):={s": |s'lh =k [s)—s1| <|k—n|+logm},

U(s):i={s": |Is'lL =k}\V(s).

We estimate a4 (s) now. Let k < n. Then we have

Z Js,s’ S Z min{nsns’Z_k_|51_5/l|:ns2_n} §

lIs’ll1=F lls'[l1=F

Z ng2™ " + ng Z m2k-lsi—al « (n—k+logm)n2 ™" +n2™"
s'eV(s) s'€U(s)

and therefore

5) K Z 2k /2 Z Js 50 K n52_”/2 logm = n52_”5”1/2 log m.
k<n Is'[|1=F

Hence

(3.7) 201(8)2”5”1/2 < mlogm.

k]

We proceed to estimating as(s) now. We have k£ > n and

Z JS’SI S Z min{nSnS,Q_n_LSl_S;')ns’2_k} S

lls' Il =k lls' Il =k



Z ng27F + n, Z m2 " lsi=sil o

s'€V(s) s’eU(s)
2~k Z ng + nSQ_k.
s'eEV(s)
Therefore
g« Y e, e 0 Y u,
k>n k>n s'eV(s)
and
EER SECTORERS RS DL DERD DD DR P
s k>n [Is]li=n s’ €V (s)
m+22"/2 22 k/2 Z ng (k. —n +logm).
k>n [|s"|l1=F
Introducing the notation Ny := -, _; ns we get from (3.8)
22” sl /2a2 <<m+z2 k/222"/2 —n +logm)N; < mlogm.
n<k

This completes the proof in the case p = 4.
Let now 2 < p < 4. By Littlewood-Paley Theorem we have

< (303 22elh/o )iz, = / y 222“ Sl /oy, 4 VP2 )\,

s I€eA,

A= HQA,pl P

Using the Holder inequality with 1/¢ = 4/p — 1 we get

(3.9) Z 2slle/py , < (Z 2||S||1XAS)4/P—1(Z ollslle/2y , 2=4/p,

8 S S

= Z 22||S||1/pXAs'

Using (3.9) and applying the Hélder inequality with 1/¢ = 2 — p/2 we get

(3.10) AP <</ hg/Qda:S/ hITPR 2 gy
[0,1]2 [0,1]2

Denote

< (/[0 . thx)Q_p/2(/ h2dz)P=2)/2,

[0,1]?

/ hg =m,
[0,1]2

and by the above considered case p = 4

/ hidx < mlogm.
[0,1]2

Therefore we have from (3.10)

Next,

AP < m(logm)P/?71,
This completes the proof in the case 2 < p < 4.
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4. THE LOWER ESTIMATE IN CONJECTURE

We will give here an example which provides the estimate (1.3). As we mentioned
in Introduction this example was constructed by R. Hochmuth. For each n € N we
define two sets A and B of dyadic intervals I as follows

A:={I: mesl=2""}
B:={I: I¢AVI#T'wehavelINI =0; #B=#A}.
Let 2 < p < oo be given. Denote m = #A and consider

f=94ap+29Byp

where gy ,, is defined in Section 2 (see for instance Lemma 2.2). Then we have on
one hand

an(fv}ld) = QQB,P

and

(1) I = G H L = lgaslls > m/?(log m) /2 /miaD),
On the other hand we have

(4:2) O (£, HY)p < 208,51, < m'/P.

The relations (4.1) and (4.2) imply the required lower estimate in the case 2 < p <
co. The remaining case 1 < p < 2 can be handled in the same way considering the

function f =294, + gBp-

5. SOME DIRECT AND INVERSE THEOREMS IN m-TERM APPROXIMATION

In this Section we prove necessary and sufficient conditions for f to have a
prescribed decay of {o,(f,¥),}. These conditions are formulated in terms of
ller(f, ¥)¢r|lp, what is convenient in numerical applications. We formulate a gen-
eral statement and then consider several important particular examples of rate of
decrease of {o,(f,¥),}. We use a method which is based on results from [T1].
The same method can be used for approximation in the multivariate case of tensor
product of univariate bases, for instance, in the case of #%. The necessary and
sufficient conditions are also can be given in terms of ||cf(f, ¥)¥y||, but to the con-
trary to the one-dimensional case or to the case of multivariate wavelet bases with
isotropic supports these conditions do not coincide. In this case instead of results
from [T1] one is supposed to use results from Sections 2 and 3 of this paper. We
give a presentation of results in this section in terms of Haar basis keeping in mind
that all results hold for any system ¥ L,-equivalent to H.

We begin by introducing some notations. For a monotonically decreasing to
zero sequence £ = {e;}p2, of positive numbers (we write £ € M DP) we define
inductively a sequence {N;s}22, of nonnegative integers:

(5.1)
1

No =0; Nsy1 is the smallest satisfying ey, , < 56N33 ng := Ngy1 — Ns.

We are going to consider the following examples of sequences.

11



Example A. Takeco=1and g =k™", r>0, k=12.... Then
Ns+1 :[21/7“Ns]_|_1 and ns:[2l/rNs]‘|‘].—N3.

What implies
N, < 25/"  and ng < 28/7,

Example B. Fiz 0 <b<1 and take ¢, =2~*", k=0,1,2,.... Then
N, =5 4+0(1) and n,=s'/1
Let f € L,. Rearrange the sequence || frH||, in decreasing order

IfnHrllp 2 1 fLHLllp = -

and denote
ar(f,p) = | fr. Hr,llp-

We prove now some inequalities for a,(f,p) and o,,(f, H),. In this section we use

brief notation o,,(f), := om(f, H)p and oo(f)y = || fl|,-

Lemma 5.1. For any two positive integers N < M we have

an(f,p) < Clp)on(f)p(M — N)~H7.

Proof. By Theorem 2.1 from [T1] we have for all m

If = GL(f, H)lp < C@)om(f)p-

From here and definition of G?, we get

(5.2) =1 Y fuHulle < Co)on(f)p+om(f)p)-
k=N+1

Next, we have for k € (N, M]

| fr. Hrllp > |fra Hryllp = ane(f,p)

and by Lemma 2.2 from [T1] we get from here
(5.3) an(f,p)(M — N)'/? < C(p)J.

Relations (5.2) and (5.3) imply the conclusion of Lemma 5.1.

12



Lemma 5.2. For any sequence my < my < ms < ... of nonnegative integers we

have
o0

O, (N)p £ C(0) Y amy (£,9)(mrsr —my)'/?.

l=s
Proof. We have
Ums(f)P < H Z fIkHIk“P < Z || Z fIkHIk“P'
k>m, I=s ke(mi,mit1]

Using Lemma 2.1 from [T1] we get from here

o)

O, (f)p < Zaﬂu(fap)(ml—i-l - ml)l/p

l=s
what proves the lemma.

Theorem 5.1. Assume a given sequence £ € MDP satisfies the conditions
en, > C127°, nsy1 < Cong, s=0,1,2,....
Then we have the equivalence

on(f)p <en = an,(fip) <2707,

Proof. We prove first =. We use Lemma 5.1 with M = N,;; and N = N

an, . (f,p) < CP)on, (Fpns P < C(p)27 (negr /Co)HP

what implies the statement of Theorem 5.1 in this direction.
We prove the inverse statement now <. Using Lemma 5.2 we get

on,(Fp <Y an (£,p)(Nipr — N)VP <Y 27 <270 < ey,

l=s l=s

and for n € [Ny, Ngy1)

on(flp <on,(flp K en, (flp €27° K €N,y (F)p < €ulf)p-

Corollary 5.1. Theorem 5.1 applied to Fxamples A, B gives the following rela-

tions:
(5A) O-m(f)p < (m + 1)_T < an(f7p) < n—r—l/p,
(5.B) om(f)y <27 = an(f,p) < 27 n(71/0/P,

13



Remark 5.1. Making use of Lemmas 5.1 and 5.2 we can prove a version of Corol-
lary 5.1 with sing < replaced by <.

Theorem 5.1 and Corollary 5.1 are in spirit of classical Jackson-Bernstein di-
rect and inverse theorems in linear approximation theory, where conditions on the
corresponding sequences of approximating characteristics are imposed in the form

(5.4) Eo(f)p <é€n, or |En(f)p/enlli. < oo.

It is well known that in studying many questions of approximation theory it is
convenient to consider along with restriction (5.4) the following its generalization

(5.5) 1En(f)p/€nlls, < oo

Lemmas 5.1 and 5.2 are also useful in considering this more general case. For
instance, in the particular case of Example A one gets the following statement.

Theorem 5.2. Let1 < p < oo and 0 < g < co. Then for any positive r we have
the equivalence relation

Zam(f)gmrq_l <o = Zan(f,p)gnrq_l"'q/p < 0.

Proof. Using Lemma 5.1 with M = 25t and N = 2% we get
Za2 (f, p)qQS(T’q+1/p) < C(p 202 f)azere

what proves the implication = in the theorem.
Using Lemma 5.2 with my =0 and ms = 2° for s = 1,2,... we get

D02 (£)p2 < C(p) D207 ax (£,p)p2'17)1270* <

s I>s

ZQqu Za2’ f p l(r-l—l/p)Q—lr)q <

I>s

by Holder inequality
C(p Z ZQQ' f.p)2 Ql(r-l-l/p)q 1< C(p ZGZ' f.p)2 21(7’+1/p)q
s I>s l
what completes the proof of Theorem 5.2.
Remark 5.2. The condition

> an(f,p)In" P < oo

n

with ¢ = 7:= (r + 1/p)~! takes a very simple form
(5.6) S anlhp = Sl < 2

Rewriting
frH il = | ol Y27 = || frHll- 1)

we get that the condition (5.6) is equivalent to f is in Besov space BL(L.).
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Corollary 5.2. Theorem 5.2 implies the following relation

Son(pn ™ <00 = feBIL),

where T := (r + 1/p)~L.

The statement similar to Corollary 5.2 for free knots spline approximation was
proved by P. Petrushev [P]. Corollary 5.2 and further results in this direction can
be found in [DP] and [DJP]. We want to remark here that conditions in terms
of a,(f,p) are convenient in applications. For instance, the relation (5.A) can be
rewritten using the idea of thresholding. For a given f € L, denote

T(e) = #{ar(fp) : axlf,p) > e

Then (5.A) is equivalent to

On(flp<(n+1)7" = T e (r+1/p) 70

6. EFFICIENCY OF GREEDY ALGORITHM IN THE CASES p=1OR p = o©

In this section we consider approximation with regard to the Haar multivariate
system H?. It turns out that efficiency of greedy algorithms GP?, p = 1,00, drops
down dramatically comparing to the case 1 < p < .

Theorem 6.1. Letp =1 or p=oc. Then we have

em(GP, HY) < m

Proof. We first prove the upper estimates. Let

th = ZC[H]

IcA

be a best m-term approximant to a given f € L,, p =1 or p = oo (for existence see
[D]). Denote A,, a set of m dyadic intervals I for which || f;Hy||, take the biggest
values. We need to estimate

§i=|f = Go(FHY =1 Y frHilly

I¢A,,
We have
(6.1) 6= ZfIHI — Z JrHr + Z frHp|p <
IgA IEALN\A IEA\A N

1D FeHilly 0 D fiHillo + 1 D fiHilly =61+ 8 + 8.

IgA IeA\A IEA\A,,
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Let p’ denote the dual to p (p' = o0 if p=1 and p’ =1 if p = 00). Then we have
(6.2) |(f = ta)1l < om(Fs H)pll Hr
and for I ¢ A we get

(6.3) 1] < om (£, H)pll Hollp -

Next, by the deffinition of A,, and by (6.3) we have

Hyll, < i H;ll, < d
max | f1 z||p_J€rgg1\A [frHsllp < om(fiH?)p

Therefore, for 6;,7 = 2,3 we get
(6.4) 8 < AN\ Ap)om(f,HY),, i=2,3.

It remains to estimate ;. We have by (6.2)

(6.5 S <|If —tallp + 1 D (F = ta)tHillp < 0nlf, HY)p + #ATw(f, HY) .
IeA

Combining (6.1),(6.4) and (6.5) we obtain

5§ < (3m 4 Dom(f, 1Y),

We prove now the lower bounds. We consider the two cases p = 1 and p =
separately. In both cases we construct an example for d = 1.

Case 1: p = 1. Let m be given. Consider two functions f; and f3. Denote
I :=[0,27%) and define

f1 = Z |Ik|_1/2HIk
k=1

It is easy to check that

P am+l _ 2 g e 0,27m1)
R ) z €271 1/2).

Let A be any set of m disjoint dyadic intervals J such that JN[0,1/2) = (. Denote

fai=Y_ |JI7V?H,

JeA

Consider m-term approximation in L of the function f = 2f; + fo. We have

(6.6) om(f,H)1 2| f1ll £ 4,
and
(6.7 1 = G )l = [ folly = m.
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Case 2: p = oco. We use functions similar to those from the previous case. Define

and

m

gi:= ) L[ Hy,
k=1

g2:= Yy |J['?H,
JeA

Consider the function g = ¢g; + 2g5. Then

(6.8)
and

(6.9)

lg — G5 (9, H)lloo = ||g1]] = m.

The relations (6.6), (6.7) and (6.8), (6.9) imply the lower estimates in Theorem

6.1.

[T3]
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