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Abstract We develop an ELLAM �Eulerian�Lagrangian localized adjoint method� scheme to solve two�dimensional
advection�dispersion equations with all combinations of in�ow and out�ow Dirichlet� Neumann� and �ux boundary
conditions� The ELLAM formalism provides a systematic framework for implementation of general boundary condi�
tions� leading to mass�conservative numerical schemes� The computational advantages of the ELLAM approximation
have been demonstrated for a number of one�dimensional transport systems� practical implementations of ELLAM
schemes in multiple spatial dimensions that require careful algorithm development are discussed in detail in this pa�
per� Extensive numerical results are presented to compare the ELLAM scheme with many widely used numerical
methods and to demonstrate the strength of the ELLAM scheme�

� Introduction

Many di�cult problems arise in the numerical simulation of advection�dispersion equations�
which describe the transport of solutes in groundwater and surface water� the displace�
ment of oil by �uid injection in oil recovery� the movement of aerosols and trace gases in
the atmosphere� and miscible �uid �ow processes in many other applications� In indus�
trial applications� these equations are commonly discretized via �nite di�erence methods
�FDM� or �nite element methods �FEM� in large�scale simulators� Because of the enormous
size of many �eld�scale applications� large grid�spacings must be used in the simulations�
When physical dispersion dominates the transport process� these methods perform fairly
well� However� when advection dominates the transport process� these methods su�er from
serious numerical di�culties� Centered FDM �in space or time� and corresponding FEM
often yield numerical solutions with excessive oscillations� The classical space�upwinded �or
backward�in�time� schemes can greatly suppress the oscillations� but they tend to generate
numerical solutions with severe damping or a combination of both� Recent developments in
e�ectively solving advection�dispersion equations have generally been along one of the two
approaches	 Eulerian or characteristic methods� Eulerian methods use a �xed spatial grid
such as optimal test function methods of Christie and coworkers �
��
�� Barrett and Morton
�
����� Celia et al� �
����� and Bank et al� �
����� These methods attempt to minimize
the error in approximating spatial derivatives and yield an upstream bias in the resulting
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numerical schemes� Hence� they are susceptible to time truncation errors that introduce nu�
merical dispersion and the restrictions on the size of the Courant number� and they tend to
be ine�ective for transient advection�dominated problems� They generally require small time
steps for reasons of accuracy� because the time truncation error depends on high�order time
derivatives of the solutions that are large when a sharp front passes by� Other Eulerian meth�
ods� such as the Petrov�Galerkin FEM of Westerink and Shea �
����� Bouloutas and Celia
�
��
�� and the total variation diminishing scheme of Cox and Nishikawa �
��
�� attempt to
reduce the overall truncation error by using negative temporal numerical dispersion to cancel
positive spatial numerical dispersion� Therefore� they also su�er from the Courant number
restrictions� Also� included in the class of Eulerian methods is the streamline di�usion �nite
element method �SDM� of Hughes� Brooks� and Johnson� et al� �Hughes and Brooks 
����
Brooks and Hughes 
���� Hughes and Mallet 
��
� Hughes 
���� Hansbo and Szepessy 
����
Hansbo 
���� Johnson and N�avert 
��
� Johnson 
���� Johnson et al� 
���� Johnson and
Szepessy 
���� Zhou ��� and Zhou ���� Via a framework of space�time FEM� the SDM uses
piecewise polynomial trial�test functions over a partition on a space�time domain �spatial
domain � current time interval�� By de�ning the test functions delicately� the SDM adds
a numerical dispersion only in the direction of characteristics �streamline� to suppress the
oscillation and does not introduce any cross�wind di�usion� Therefore� this method possesses
many physical and numerical advantages other Eulerian methods do not have� However� this
method contains a undetermined parameter in the test functions that needs to be chosen
very carefully to obtain accurate numerical results� If the parameter is chosen too small� the
numerical solutions will exhibit oscillations� But if it is too large� the SDM will introduce
excessive numerical dispersion and seriously smear the numerical solutions� Unfortunately�
an optimal choice of the parameter is not clear and is heavily problem�dependent� Moreover�
the number of unknowns are doubled compared to many standard Eulerian or characteristic
methods�

Because of the hyperbolic nature of advective transport� characteristic analysis is nat�
ural to aid in the solution of advection�dispersion equations and has led to many related
approximation techniques� including the method of characteristics of Garder et al� �
�
���
Pinder and Cooper �
����� Benque and Ronat �
����� and Hervouet �
��
�� the charac�
teristic Galerkin method of Varoglu and Finn �
����� the Eulerian�Lagrangian method of
Neuman �
��
�� the transport�di�usion method of Pironneau �
����� the modi�ed method of
characteristics of Douglas and Russell �
����� and Ewing et al� �
����� the operator�splitting
method of Espedal and Ewing �
����� Wheeler and Dawson �
����� and Dahle et al� �
�����
and the Lagrangian�Galerkin method of Morton and coworkers �
����� Characteristic meth�
ods e�ectively solve the advective component by a characteristic tracking algorithm and treat
the di�usive term separately� These methods have signi�cantly reduced the time truncation
errors in the Eulerian methods� have generated accurate numerical solutions even if large
time steps are used� and have eased the Courant number restrictions of Eulerian methods�
Problems with many characteristic methods arise in the areas of rigorously treating bound�
ary �uxes when characteristics intersect in�ow or out�ow boundaries and of maintaining
mass conservation�

The Eulerian�Lagrangian localized adjoint method �ELLAM� was �rst introduced by Celia
et al� �
����� Russell �
����� and Herrera et al� �
���� for the solution of one�dimensional
�constant�coe�cient� advection�di�usion equations� The ELLAM formalism provides a gen�
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eral characteristic solution procedure for advection�dominated problems� and it presents a
consistent framework for treating general boundary conditions and maintaining mass con�
servation� Subsequently� Russell and Trujillo �
����� Wang �
����� and Wang et al� �
����
derived di�erent ELLAM schemes for one�dimensional linear variable�coe�cient advection�
di�usion equations with general in�ow and out�ow boundary conditions� based on di�erent
�forward or backward� techniques for the tracking of characteristics of the velocity �eld� Celia
and Ferrand �
����� and Healy and Russell �
���� extended ELLAM to a �nite�volume
setting for one�dimensional advection�di�usion equations� Ewing �
��
� and Dahle et al�

�
���� addressed the ELLAM techniques for one�dimensional nonlinear advection�di�usion
equations� Ewing and Wang �
��
� 
���a� 
���b� also developed ELLAM schemes for the
solution of one�dimensional advection�reaction equations with an initial condition and in�
�ow boundary condition� In addition� Celia and Zisman �
����� and Ewing and Wang
�
���c�
���� generalized ELLAM schemes for one�dimensional advection�di�usion�reaction
transport equations� Wang et al� �
���a�� and V�ag and coworkers applied ELLAM schemes
to solve the systems of one�dimensional reactive transport problems from bioremediation
and other applications �V�ag et al���

While the computational advantages of ELLAM approximations have been demonstrated
for one�dimensional advection�dominated problems by the extensive research mentioned
above� practical implementation of ELLAM schemes in multiple spatial dimensions requires
careful algorithm development� in which some research has been carried out in this direction�
Russell and Trujillo �
���� addressed various issues in multidimensional ELLAM schemes�
Wang �
���� developed an ELLAM simulator to solve two�dimensional linear advection�
dispersion equations with general in�ow and out�ow boundary conditions by combining
forward and backward tracking algorithms� Theoretically optimal�order error estimates for
the derived scheme were also proved� and various numerical experiments were performed�
Some of these results were reported in Ewing and Wang �
���a�
���b� and in Wang et al�

�
��
�� By using an explicit mapping of the �nite elements at the current time level to
the spatial grids at the previous time� Binning and Celia �Binning 
���� Binning and Celia

��
� reported on a �nite�volume ELLAM formulation for unsaturated transport in two
dimensions� Relations and di�erences between the two approaches are discussed in some
detail in Section � of this paper� In an upcoming paper Healy and Russell also developed
a �nite�volume ELLAM scheme for two�dimensional linear advection�dispersion equations
�Healy and Russell�� Celia �
���� also explored the development of an ELLAM scheme for
three�dimensional advection�dispersion equations�

A di�erent but related method is the �characteristic�mixed �nite�element� method of Ar�
bogast et al� �
����� Yang �
����� and Arbogast and Wheeler �
����� which uses piecewise�
constant space�time test functions� As with the standard mixed method� a coupled system
results for both the concentration and the di�usive �ux� The theoretically proven error
estimate is �O��x����� for grid size �x� which is suboptimal by a factor O���x������ For
ELLAM schemes with piecewise linear trial�test functions for one�dimensional advection�
di�usion equations� advection�di�usion�reaction equations� and �rst�order advection�reaction
equations� optimal�order error estimates of O���x��� have been proven by Ewing and Wang
�
��
�
���a�
��
�� Wang et al� �
���a�� and Wang and Ewing �
�����

Based on the approach presented in Wang �
����� an ELLAM scheme is developed in this
paper for the numerical solution of two�dimensional linear advection�dispersion equations
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with general in�ow and out�ow boundary conditions� We have organized this paper as fol�
lows	 we begin in Section � by presenting a space�time variational formulation of the model
equations� In Section � we derive a corresponding ELLAM scheme for this formulation with
implementational issues discussed in Section �� Section � provides a brief description of
some well studied and widely used methods� including the Galerkin �nite element method�
the quadratic Petrov�Galerkin method� the cubic Petrov�Galerkin method� and the stream�
line di�usion �nite element method� In Section 
 we carry out numerical experiments and
compare the performance of the ELLAM scheme with the numerical methods described in
Section �� In Section � we summarize our observations and results�

� Variational Formulation

A general linear� variable�coe�cient advection�dispersion partial di�erential equation in two
dimensions can be written as follows	

Lu�x� t� � �R�x� t�u�t �r � �V�x� t�u �D�x� t�ru� � f�x� t��

�x� t� � �x� y� t� � � � �� J�
���
�

where ut � �u
�t

� ru � ��u
�x
� �u
�y

�T � � is a spatial domain� J � ��� T  is a time interval� The

nomenclature is such that R�x� t� is a retardation coe�cient� V�x� t� � �V��x� t�� V��x� t��
is a �uid velocity �eld� D�x� t� � �Dij�x� t��

�
i�j�� is a di�usion�dispersion tensor� f�x� t� is

a given forcing function� and u�x� t� is the solute concentration of a dissolved substance�
Mathematically� R has positive lower and upper bounds� D�x� t� is a symmetric and positive
de�nite matrix with uniform lower and upper bounds that are independent of �x� t��

Let the space�time boundary ! � �� � J be decomposed as the union of an in�ow
boundary !�I�� an out�ow boundary !�O�� and a no�ow boundary !�N� �i�e�� ! � !�I��!�O��
!�N��� In general� an in�ow boundary during one time period might become an out�ow or
a no�ow boundary in the next time period or verse versa� At !�I� or !�O�� one of Dirichlet�
Neumann� or Robin ��ux� boundary conditions may be imposed by setting� respectively�

u�x� t� � g
�i�
� �x� t�� �x� t� � !�i��

�Dru�x� t� � n � g
�i�
� �x� t�� �x� t� � !�i��

�Vu �Dru��x� t� � n � g
�i�
� �x� t�� �x� t� � !�i��

�����

where n � n�x� is the outward unit normal� i � I or O represents the in�ow or out�ow
boundary� respectively� A no�ow boundary condition is speci�ed at !�N� by

�Vu�Dru��x� t� � n � �� �x� t� � !�N�� �����

In addition to the boundary conditions� an initial condition u�x� �� � u��x� is needed to
close Equation ���
��

The ELLAM formalism uses a time�marching algorithm� Let Nt be a positive integer�
We de�ne a partition of time interval J � ��� T  by

� � t� � t� � t� � � � � � tn � � � � � tNt�� � tNt
� T�
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With space�time test functions w that vanish outside �n � ��Jn with Jn � �tn��� tn and
are discontinuous in time at time tn��� one can write a space�time variational formulation
for Equation ���
� as follows	Z

�
�R u w��x� tn� dx �

Z
�n

rw � �Dru� dxdt

�
Z
!n

�Vu�Dru� � n w dS �
Z
�n

u �R wt �V � rw� dxdt

�
Z
�

�R u w��x� t�n��� dx �
Z
�n

f w dxdt�

�����

where !n � ��� Jn and w�x� t�n��� � lim
t�t�

n��

w�x� t��

In the ELLAM framework� one should de�ne the test functions w to satisfy the equation
Rwt�V �rw � �� so the last term on the left�hand side of Equation ����� vanishes� However�
in general one cannot track characteristics exactly for a variable�velocity �eld� Nevertheless�
this adjoint term should be small if one can track the characteristics reasonably well� and the
test functions are constant along the approximate characteristics� In fact� we have proved
an optimal�order convergence rate for the derived ELLAM scheme even if a one�step Euler
algorithm is used in the characteristic tracking and this adjoint term is dropped �Wang 
����
Ewing and Wang 
��
�� To conserve mass� the test functions should sum to one �Celia et al�


����� The scheme developed in this paper satis�es this condition� In this case dropping the
last term on the left�hand side does not a�ect mass conservation since that term vanishes if
w � 
 �Russell and Trujillo 
���� Wang 
�����

We are now in a position to rewrite Equation ������ Given a point �"x� "t�� with "t � �tn��� tn �
we consider the initial�value problem for the ordinary di�erential equation

dx

dt
� VR�x� t� � V�x� t�

R�x� t�
�

x�"t� � "x�

�����

which tracks the characteristics from �"x� "t�� We denote the solution of this equation at time
� � Jn by X��� "x� "t� �Healy and Russell 
����� This notation can refer to tracking either
forward or backward in time� In particular� we de�ne

x� � X�tn���x� tn��

#x � X�tn�x� tn����
���
�

Thus� �x� tn� backtracks to �x�� tn��� and �x� tn��� tracks forward to �#x� tn�� In the numerical
scheme� an exact tracking is preferred whenever possible� However� it is impractical in most
applications� In practice� one can use either a one�point Euler quadrature� a multiple micro�
time�step tracking within a global time step� or a Runge�Kutta quadrature in the tracking
of characteristics� Note that in many applications� Equation ���
� is usually coupled with an
associated potential or pressure equation� whose solution is often obtained via the mixed �nite
element method� In this case� a Raviart�Thomas space is often used for the velocity �eld�
which is calculated at each cell interface� Within each cell� V��x� t� �or V��x� t�� is piecewise
linear �or constant� in the x direction and piecewise constant �or linear� in the y direction�
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Under the assumption that the velocity �eld is steady� a semi�analytical technique has been
developed by Pollock �
����� Schafer�Perini and Wilson �
��
�� and Heally and Russell
�
����� to track the characteristics on a cell�by�cell basis� Recently� Lu �
���� extended
this semi�analytical approach to non�steady velocity �elds where velocity is assumed to vary
linearly in time within each time interval�

To accurately measure the time period taken for a particle to move along a characteristic
from the previous time level �or from the in�ow boundary� to the current time level �or
the out�ow boundary�� we introduce space�time location�dependent time steps� We use
Figure 
�a� to illustrate how these are de�ned� In this �gure� we use letters A�D to denote
points �i� at the future time step tn �points B and C� or �ii� on the out�ow boundary
�points A and D�� while A��D� will denote the corresponding feet of their characteristics�
In our example� we have set the rear planes x � a and y � c as the in�ow boundaries� with
the frontmost planes x � b and y � d as the out�ow boundaries� Time is represented in
the vertical direction� For any x � � at time tn� we de�ne a time step �t�I��x� � �t �
tn � tn�� if the characteristic X���x� tn� does not backtrack to the space�time boundary !n

during the time period Jn �this case is illustrated by point B at time tn in Figure 
�a�� and
�t�I��x� � tn � t��x� otherwise �see� for example� point C�� In the latter case where the
foot of the characteristic �point C�� lies on an in�ow boundary� t��x� � Jn is the time when
X���x� tn� intersects the boundary !n �i�e� X�t��x��x� tn� � !n�� Similarly� for any point on
the out�ow boundary �x� t� � !�O�

n �e�g�� points A or D�� we de�ne �t�O��x� t� � t�tn�� if the
characteristic X���x� t� does not intersect !n during the time period �tn��� t � otherwise we set
�t�O��x� t� � t� t��x� t�� The �rst case is illustrated by point A on the space�time boundary
x � b� while the second case is demonstrated by point D on the space�time boundary y � d�
Here we denote by t��x� t� � �tn��� t the time when X���x� t� intersects !n�

By enforcing the backward Euler quadrature at the current time tn and at the out�ow
space�time boundary !�O�

n � we approximate the space�time volume integral of the source term
�the second term on the right�hand side� in Equation ����� by an integral at time tn and
one at !�O�

n by following the characteristics� Here !�i�
n � !�i� � Jn �i � I�O�N� represents

the space�time in�ow� out�ow� and no�ow boundaries during the time interval Jn� To avoid
confusion in the following derivation� we replace the dummy variables x � � and t � Jn
in this term by y � � and � � Jn� Thus�

R
�n

f w�x� t� dxdt �
R
�n

f w�y� �� dyd�� Let

��O�
n � �n be the set of points in the space�time strip �n that will �ow out of �n during

the time interval Jn� We decompose �n to be the union of ��O�
n and �n � ��O�

n � For any
�y� �� � �n���O�

n � there exists a point x � � such that x � X�tn�y� ��� Thus� we can invert
this relation to obtain y � X���x� tn�� Similarly� for any �y� �� � ��O�

n � there exists a pair
�x� t� � !�O�

n such that y � X���x� t�� By splitting the space�time volume integral on �n as
one on �n � ��O�

n and one on ��O�
n and applying the backward Euler quadrature at time tn

�



for the �rst and at boundary !�O�
n for the second� we obtain the following equation

Z
�n

f�y� ��w�y� �� dyd�

�
Z
�n���O�

n

f�y� ��w�y� �� dyd� �
Z
��O�
n

f�y� ��w�y� �� dyd�

�
Z
�n���O�

n

f�X���x� tn�� �� w�X���x� tn�� �� dXd�

�
Z
��O�
n

f�X���x� t�� �� w�X���x� t�� �� dXd�

�
Z
�

�t�I��x� fn wn�x� dx�
Z
!�O�
n

�t�O��x� t� f w V � n dS � Ef�w��

�����

Here fn�x� � f�x� tn�� Ef is the truncation error from the application of the backward Euler
quadrature� In the derivation of Equation ������ we have used the fact that the test function
w is constant along the characteristics�

Similarly� we can rewrite the di�usion�dispersion term as

Z
�n

rw � �Dru��y� �� dyd�

�
Z
�

�t�I��x� rwn � �Dnrun��x� dx

�
Z
!�O�
n

�t�O��x� t� rw � �Dru� V � n dS � ED�u�w��

�����

where ED�u�w� is the truncation error term�

Substituting Equations ����� and ����� for the second terms on both the left� and right�
hand sides of Equation ������ we obtain the following variational formulation

Z
�
Rnun wn dx �

Z
�

�t�I��x� rwn � �Dnrun� dx

�
Z
!�O�
n

�t�O��x� t� rw � �Dru� V � n dS �
Z
!n

�Vu �Dru� � n w dS

�
Z
�n

u �R wt � V � rw� dxdt

�
Z
�
Rn��un�� w

�
n�� dx �

Z
�

�t�I��x� fn wn dx

�
Z
!�O�
n

�t�O��x� t� f w V � n dS � E�u�w��

�����

where E�u�w� � �ED�u�w� � Ef �w��

� An ELLAM Scheme

While the numerical scheme can be derived for a general domain � with a quasi�uniform
triangular or rectangular partition� we assume the domain � � �a� b� � �c� d� for simplicity
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to be a rectangular domain with a uniform rectangular partition	

xi � a � i�x� i � �� 
� � � � � Nx� �x �
b� a

Nx

�

yj � c � j�y� j � �� 
� � � � � Ny� �y �
d� c

Ny

�

where Nx and Ny are two positive integers� We de�ne the test functions wij to be piecewise�
linear $hat% functions at time tn �wij�xkl� tn� � �ik�jl where xkl � �xk� yl�� �ik � 
 if i � k
and � otherwise� and to be constant along the characteristics� At time tn� we also use
piecewise�linear trial functions U�x� tn��

��� Interior Nodes and No�ow Boundary

In this subsection we develop the scheme at the nodes inside � or on the no�ow boundary
!�N�
n that are neither related to the in�ow boundary !�I�

n nor the out�ow boundary !�O�
n � It

is assumed that the type of boundary �in�ow� out�ow� or no�ow� will be kept unchanged
during the time interval Jn� Let

!n�q� �
n

�x� t� � !n

���x � q
o

�
n

�x� t�
���x � q� y � �c� d � t � Jn

o
� q � a� b�

!n�q� �
n

�x� t� � !n

���y � q
o

�
n

�x� t�
���x � �a� b � y � q� t � Jn

o
� q � c� d�

���
�

We de�ne the Courant numbers

Cu�q�x � max
�x�t��!n�q�

jV��x� t�j�t

�x
� for q � a� b�

Cu�q�y � max
�x�t��!n�q�

jV��x� t�j�t

�y
� for q � c� d�

�����

If !n�q� �q � a� b� is an in�ow or out�ow boundary �which implies that Cu�q�x � ��� we
de�ne IC�q�

x to be IC�q�
x � �Cu�q�x  � 
� where �Cu�q�x  is the integer part of Cu�q�x � If !n�q� is

a no�ow boundary �which indicates that Cu�q�x � ��� we de�ne IC�q�
x � �� IC�q�

y is de�ned
similarly� In addition� we de�ne

&� � �a � IC�a�
x �x� b� IC�b�

x �x � �c � IC�c�
y �y� d� IC�d�

y �y �

�ij � �xi��� xi�� � �yj��� yj�� �

�����

Furthermore� let ��
nij be the prism obtained by backtracking �ij along the characteristics

from tn to tn��� and #�nij to be the prism obtained by tracing �ij forward along the charac�
teristics from tn�� to tn�

When �ij � &�� ��
nij or #�nij does not intersect !�I�

n or !�O�
n during the time period Jn�

The third and fourth terms on the left�hand side and the third term on the right�hand side
of Equation ����� vanish� Dropping the last terms on both sides of Equation ������ replacing
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the exact solution u and the general test function w by the piecewise�linear trial function U
and test function wij � we obtain the following equation

Z
�
RnUn wijn�x� dx �

Z
�

�t rwijn � �DnrUn��x� dx

�
Z
�

Rn��Un�� w
�
ij�n���x� dx �

Z
�

�t fn wijn�x� dx�

�����

with wijn�x� � wij�x� tn�� Note that in ������ the integrals at time tn are actually de�ned
on �ij �with the obvious modi�cation near the boundary ��� since �ij is the support of
wijn� The �rst term on the right�hand side is actually de�ned on the backtracked image
�at time tn��� of �ij at time tn� which can be of a very complicated shape and not aligned
with any elements in � at time tn�� due to the e�ect of the velocity �eld even though �ij is
rectangular� Consequently� the evaluation of this term is tricky and� in fact� crucial to the
accuracy and mass conservation property of the scheme� This will be discussed in detail in
Section �� At this point� one can easily see that the scheme has a ��banded� symmetric and
positive�de�nite coe�cient matrix�

��� In�ow Boundary Conditions

In contrast to many characteristic methods that treat boundary conditions in an ad hoc

manner� the ELLAM scheme naturally incorporates boundary conditions into its formulation�
Thus� one can approximate boundary conditions accurately� In fact� if ��

nij intersects the

in�ow boundary !�I�
n � the test function wij assumes nonzero values on portions of !n� Thus�

the fourth term on the left�hand side of Equation ����� does not vanish� For an in�ow �ux
boundary condition� the scheme becomes

Z
�
RnUn wijn�x� dx �

Z
�

�t�I��x� rwijn � �DnrUn��x� dx

�
Z
�
Rn��Un�� w

�
ij�n���x� dx �

Z
�

�t�I��x� fn wn�x� dx

�
Z
!�I�
n

g
�I�
� wij�x� t� dS�

�����

Keep in mind that the �rst term on the right�hand side of Equation ����� is now de�ned
on the image �at time tn��� of the portion of �ij that is not taken to the boundary !n�
The part of the integral that is missing from this term is picked up by the last term on the
right�hand side of Equation ������ which is de�ned on the image of the portion of �ij which
is taken to the boundary !n� Notice that the factor �t�I��x� at time tn now depends on x�
since X���x� tn� can encounter the boundary !n� �t�I��x� re�ects the time period over which
the di�usion�dispersion and source act� For an in�ow �ux boundary condition the derived
scheme still has a ��banded� symmetric and positive�de�nite coe�cient matrix�

Repeating the above derivation for an in�ow Dirichlet boundary condition yields the

�



following equation

Z
�
RnUn wijn�x� dx �

Z
�

�t�I��x� rwijn � �DnrUn��x� dx

�
Z
!�I�
n

�DrU� � n wij�x� t� dS

�
Z
�
Rn��Un�� w

�
ij�n���x� dx �

Z
�

�t�I��x� fn wijn�x� dx

�
Z
!�I�
n

V � n g
�I�
� wij�x� t� dS�

���
�

While all other terms in Equation ���
� are similar to those in Equation ������ the third
term on the left�hand side couples the unknown boundary di�usive �ux with unknown in�
terior function values� If one simply represents rU as a discrete gradient dependent on
imposed boundary values of U � one might introduce strong temporal truncation errors� To
overcome this di�culty� we approximate rU�x� t� at the in�ow boundary !�I�

n implicitly by
rU�X�tn�x� t�� tn� at time tn� This removes the di�culty of evaluating an unknown di�usive
boundary �ux� The error introduced is small since it is along the characteristics and� in fact�
does not a�ect the convergence rate of the scheme �Wang et al� 
����� Note that this term
introduces non�symmetry to the coe�cient matrix near the in�ow boundary�

As with the standard �nite element methods� the Dirichlet boundary condition is essential
and is imposed directly on the solution u with no degrees of freedom on the in�ow boundary
!�I�
n � However� the test functions should sum to one to conserve mass �Celia et al� 
�����

Thus� on each element �ij � �xi��� xi�� ��yj��� yj�� that has at least one vertex on the in�ow
boundary !�I�

n the test functions are chosen such that they sum to one on this element� For
example� suppose x � x� � a is an in�ow boundary� Then the interior nodes x��j � �x�� yj�
with x� � a � �x and 
 	 j 	 Ny � 
 are adjacent to the in�ow boundary x � a� In
this case� the corresponding test functions must satisfy w�j�x� y� � w�j�x�� y�� i�e� they are
constant in x direction over the interval �a� x� �

A similar derivation to that of Equation ����� yields a scheme for Equation ���
� with an

in�ow Neumann boundary condition� This di�ers from Equation ����� in that g
�I�
� is replaced

by g
�I�
� and an extra term

R
!�I�
n

U wij V �n dS appears on the left�hand side of the equations�

Because V � nj
!�I�
n

� �� this term has a di�erent sign from the �rst term on the left�hand

side of Equation ������

If !�I�
n can be decomposed as !�I�

n � !
�I�
n�� � !

�I�
n�� � !

�I�
n�� where in�ow Dirichlet� Neumann�

and Robin boundary conditions are imposed on !
�I�
n��� !

�I�
n��� and !

�I�
n��� respectively� one can

write out the scheme accordingly�

��� Out�ow Boundary Conditions

The situation at the out�ow boundary !�O�
n is di�erent from that at an in�ow boundary !�I�

n �
The number of spatial degrees of freedom crossing the out�ow boundary !�O�

n is essentially the

�	



Courant number in the normal direction� To preserve the information� one should discretize
in time at the out�ow boundary !�O�

n with about the same number of degrees of freedom�
More precisely� we de�ne

Cu�O� � max
�x�t��!�O�

n

� jV��x� t�j�t

�x
�
jV��x� t�j�t

�y

�
� �����

and IC�O� � �Cu�O� � 
� Then we de�ne a uniform local re�nement in time at the out�ow
boundary !�O�

n

tn�i � tn � i�t

IC
for i � �� 
� � � � � IC�

Of course� if one is not interested in accurate simulation near the out�ow boundary !�O�
n �

one need not re�ne in time at !�O�
n � This corresponds to the choice of IC � 
� In any case�

we de�ne the test functions wij to be the piecewise�linear $hat% functions at the nodes at
the out�ow boundary !�O�

n and to be constant along the characteristics� We de�ne the trial
functions U�x� t� for �x� t� � !�O�

n to be the piecewise�linear functions at !�O�
n � Incorporating

the out�ow Neumann boundary condition into Equation ����� yields a scheme for Equation
���
� with the stated boundary condition as follows	

Z
�
RnUn wijn�x� dx �

Z
�

�t�I��x� rwijn � �DnrUn��x� dx

�
Z
!�O�
n

�t�O��x� t� rwij � �DrU� V � n�x� t� dS �
Z
!�O�
n

U wij V � n�x� t� dS

�
Z
�
Rn��Un�� w

�
ij�n���x� dx �

Z
�

�t�I��x� fn wijn�x� dx

�
Z
!�O�
n

�t�O��x� t� f wij V � n�x� t� dS �
Z
!�O�
n

g
�O�
� wij�x� t� dS�

�����

Because U � not rU � is de�ned as unknowns at the out�ow boundary !�O�
n � it is di�cult to

approximate rU � nj
!�O�
n

numerically� To circumvent this di�culty� we utilize the boundary

condition Equation ����� to express rU � nj
!�O�
n

in terms of U j
!�O�
n

and the tangential com�

ponent of rU j
!�O�
n

� which can be computed by di�erentiating U on !�O�
n � To demonstrate

the ideas� we assume that !n�b� �i�e� the $eastern% boundary x � b� is an out�ow boundary�
The out�ow Neumann boundary condition in Equation ����� now reads

�Dru � n � �D��ux �D��uy � g
�O�
� �

from which one can express ru �nj
!�b�
n

� ux in terms of the tangential component of ru �uy

in this case� and u as follows

ux � �D��uy � g
�O�
�

D��

�

This yields

Dru �

�
��g�O�� �

jDjuy �D��g
�O�
�

D��

�
A

T

�

��



where jDj � D��D�� �D��D�� is the determinant of D�

Using the facts that the test functions wij satisfy the equation Rwt�V �rw � � and that
V�j!�b�

n
� �� since !�b�

n is an out�ow boundary� we can denote rwij � nj!�b�
n

in the third term

on the left�hand side of Equation ����� by wx � ��Rwt � V�wy��V�� Then we can rewrite
the third term on the left�hand side of Equation ����� as

Z
!�b�
n

�t�O��x� t� rwij � �DrU� V � n�x� t� dS

�
Z
!�b�
n

�t�O��x� t�
V�jDj
D��

wijyUy�x� t� dS

�
Z
!�b�
n

g
�O�
�

�
�Rwijt � V�wijy�� V�D��

D��

wijy

�
�x� t�dS�

�����

Substituting this equation for the third term on the left�hand side of Equation ������ we
obtain a numerical scheme for Equation ���
� with an out�ow Neumann boundary condition�
The derived scheme has a symmetric and positive�de�nite coe�cient matrix�

Since the numerical solution U is known at time tn�� from the computation at time tn���
there are no degrees of freedom on the boundary !�O�

n at time tn��� To conserve mass� the
test functions on !�O�

n that intersect � at time tn�� are chosen such that they sum to one�
this was discussed following Equation ���
��

Incorporating the �ux boundary condition into Equation ������ one can derive a scheme

similar to Equation ����� except that the last term on its left�hand side disappears and g
�O�
� is

replaced by g
�O�
� � Again� we need to express ru �nj

!�O�
n

and rwij �nj!�O�
n

by their tangential

derivatives and functional values� If we still assume that !�b�
n is an out�ow boundary� the

out�ow �ux boundary condition in Equation ����� now becomes

D��ux � D��uy � V� u� g
�O�
� �

which yields

ux � �D��

D��

uy �
V� u� g

�O�
�

D��

�

Combining these two equations gives

D ru �

�
V�u� g�O�� �

jDj
D��

uy �
D��

D��

�V�u� g�O�� �

	T

�

Similar derivation to Equation ����� results in the following equation

Z
!�b�
n

�t�O��x� t� rwij � �DrU� V � n�x� t� dS

�
Z
!�b�
n

�t�O��x� t�



V�jDj
D��

wijyUy �
V �
� D��

D��

wijyU � V��Rwijt � V�wijy�U

�
�x� t�dS

�
Z
!�b�
n

g
�O�
�

�
�Rwijt � V�wijy�� V�D��wijy

D��

�
�x� t�dS�

���
��

��



Substituting Equation ���
�� for the third term on the left�hand side of Equation ������

dropping the last term on its left�hand side� and replacing g
�O�
� by g

�O�
� � we obtain a numerical

scheme for Equation ���
� with an out�ow �ux boundary condition�

For Equation ���
� with an out�ow Dirichlet boundary condition� the equations at the
out�ow boundary de�ne the unknowns to be the normal derivatives of the solutions and
are decoupled from the equations at the interior domain given by Equation ������ They are
omitted here since they are only needed for mass conservation�

If !�O�
n can be decomposed as !�I�

n � !
�O�
n�� �!

�O�
n�� �!

�O�
n�� where out�ow Dirichlet� Neumann�

and Robin boundary conditions are imposed on !
�O�
n�� � !

�O�
n�� � and !

�O�
n�� � respectively� one can

write out the scheme accordingly�

� Implementation

��� Evaluation Of Integrals and Tracking Algorithms

Some integrals in the numerical scheme derived in Section � are standard in FEM and can
be evaluated fairly easily� while others can be di�cult� In this subsection� we discuss the
evaluation of the integrals in Equation ����� and will discuss the treatment of boundary
terms in Equations �����'���
�� in the next subsection�

Note that the trial function U�x� tn� and test functions wij�x� tn� are de�ned as standard
tensor products of piecewise�linear functions at time tn� the integrals in Equation ����� are
standard in �nite element methods except for the �rst term on the right�hand side� In this
term� the value of U�x� tn��� is known from the solution at time tn��� However� keep in mind
that the test functions w�

ij�n�� � limt�t�
n��

wij�x� t� � wij�#x� tn�� where #x � X�tn�x� tn��� is

the point at the head corresponding to x at the foot� The evaluation of this term becomes
much more challenging in multiple dimensions� due to the multi�dimensional deformation of
each �nite element �ij on which the test functions are de�ned as the geometry is backtracked
from time tn to time tn���

In modi�ed method of characteristics and many other characteristic schemes� this term
has traditionally been rewritten as an integral at time tn� with the standard value of wij�x� tn�
but backtracking to evaluate U�x�� tn��� where x� � X�tn���x� tn� is the point at the foot
corresponding to x at the head �Dahle et al� 
���� Douglas and Russell 
���� and Espedal
and Ewing 
����� As a matter of fact� it has been shown that in characteristic methods the
backward tracking algorithm is critical in the evaluation of this term� which is in turn crit�
ical to the accuracy of the scheme �Baptista 
����� Because of this� the backward tracking
algorithm has been used in many ELLAM works �Binning 
���� Celia et al� 
���� Dahle et

al� 
���� Ewing and Wang 
��
� 
���a� 
���b� 
���� Russell 
���� Wang et al� 
���� 
�����
However� for multidimensional problems the evaluation of this term with a backtracking
algorithm requires signi�cant e�ort� due to the need to de�ne the geometry at time tn���
which requires mapping of points along the boundary of the element and subsequent inter�
polation and mapping onto the �xed spatial grid at the previous time level tn��� Binning
and Celia �Binning 
���� Binning and Celia 
��
� used such a mapping in two dimensions
in a procedure that was computationally very intensive� especially when part or all of the

��



element being mapped intersects a space�time boundary !n� This approach is considered
impractical in two and three dimensions �Binning 
���� Celia 
����� For one�dimensional
problems� the evaluation of this term is relatively simple since the boundaries of the spatial
elements are points rather than lines or surfaces� In this case� these problems were overcome
in the works cited above�

The most practical approach for evaluating this term is to use a forward tracking algo�
rithm� which was proposed by Russell and Trujillo �
����� and was implemented by Heally
and Russell for a one�dimensional problem �Healy and Russell 
����� and by Ewing and
Wang �
���a�
���b�� and Wang �
���� for a two�dimensional problem� This would enforce
the integration quadrature at tn�� with respect to a �xed spatial grid on which Rn�� and
Un�� are de�ned� the di�cult evaluation is the test function w�

ij�n��� Rather than backtrack�
ing the geometry and estimating the test functions by mapping the deformed geometry onto
the �xed grid� discrete quadrature points chosen on the �xed grid at tn�� in a regular fashion
�say� standard Gaussian points� can be forward�tracked to time tn� where evaluation of wij is
straight�forward� Algorithmically� this is implemented by evaluating R and U at a quadra�
ture point xp at time tn��� then tracking the point xp from tn�� to #xp � X�tn�xp� tn��� at
tn and determining which test functions are nonzero at #xp at tn so that the amount of mass
associated with xp can be added to the corresponding position in the right�hand side vector
in the global discrete linear algebraic system� Notice that this forward tracking has no e�ect
on the solution grid or the data structure of the discrete system� Therefore� the forward
tracking algorithm used here does not su�er from the complication of distorted grids� which
complicates many forward tracking algorithms� and is a major attraction of the backtracking
in characteristic methods�

��� In�ow Boundaries

If �ij 
� &�� either ��
nij intersects the in�ow boundary !�I�

n � or #�nij intersects the out�ow

boundary !�O�
n � First� consider the former case given by Equations ����� or ���
��

The �rst term on the left�hand side of Equation ����� is standard in �nite element methods�
The second terms on both sides are standard except that the time step �t�I��x� de�ned
below Equation ���
� depends on x� In the numerical implementation� we calculate these
integrals with quadrature points at time tn� Hence� we evaluate �t�I��x� by backtracking
at these points� For each quadrature point xp � �ij at time tn� we need to track the
characteristic X���xp� tn� for � � Jn to determine if it reaches the boundary !n or not� If
so� we calculate the time t��xp� when the characteristic reaches the boundary !n and assign
�t�I��xp� � tn � t��xp�� otherwise� �t�I��xp� � �t� Notice that the backtracking algorithm
is used only to calculate �t�I��x�� which appears in the di�usion�dispersion term� and does
not a�ect mass conservation� The �rst term on the right�hand side of Equation ����� can
still be evaluated by a forward tracking algorithm as in Section ��
�

Notice that in the last term on the right�hand side of Equation ����� g
�I�
� �x� t� is de�ned

at the space�time boundary !�I�
n � but the test function wij�x� t� � wij�#x� tn�� where #x �

X�tn�x� t� is the point at the head at time tn corresponds to the point x at the foot at time
t� Therefore� we use a forward tracking algorithm to calculate this term� This would enforce
the integration quadrature at the space�time boundary !�I�

n with respect to a �xed spatial

��



grid on which g
�I�
� �x� t� is de�ned and track forward the discrete quadrature points chosen

on the �xed grid at the space�time boundary !�I�
n in a regular fashion to time tn� where one

evaluates wij �

Except for the last term on its left�hand side� the terms in Equation ���
� are similar to
those in Equation ������ The evaluation of this term is the same as that for the last term
on the right�hand side of Equation ����� except that one needs to use forward tracking to
evaluate both rU and the test function wij �

��� Out�ow Boundaries

Consider the case when �ij 
� &� and #�nij intersects the out�ow boundary !�O�
n � The nu�

merical scheme is given by Equations �����'���
��� We only discuss the evaluation of the
integrals in Equations ����� and ����� since the evaluation of the integrals in Equation ���
��
is similar�

The �rst term on the left�hand side of Equation ����� is standard� The second terms on
both sides of Equation ����� can be calculated as in Section ���� Keep in mind that the
integrals are local even though they are expressed as the integrals on � at time tn� Hence�
�t�I��x� � �t except at the corner of � � �a� b�� �c� d� where !�O�

n and !�I�
n intersect� The

fact that in�ow and out�ow boundaries can intersect in multiple spatial dimensions makes
the implementation more complicated than that for one�dimensional problems where in�ow
and out�ow boundaries do not meet �as long as the one�dimensional velocity �eld keeps a
de�nite sign�� As a result in evaluating the second terms on both sides of Equation ������ we
need to use a backward tracking algorithm to calculate �t�I��x� near the corner of � where
the in�ow boundary !�I�

n and out�ow boundary !�O�
n meet�

In Equation ������ the four integrals de�ned on !�O�
n �with the �rst !�O�

n integral given
by Equation ������ are standard since both the trial function U and the test functions
wij are de�ned on !�O�

n � We would enforce the integration quadrature on !�O�
n � Recall

that the factor �t�O��x� t� in some of these terms are de�ned by �below Equation ���
��
�t�O��x� t� � t � tn�� except when the characteristic X���x� t� meets !�I�

n � In this case
�t�O��x� t� � t� t��x� t� where t��x� t� � Jn is the time when X���x� t� intersects !�I�

n � In the
numerical implementation� we simply let �t�O��x� t� � t� tn��� except near the corner where
the in�ow boundary !�I�

n and the out�ow boundary !�O�
n intersect� At the corner region�

we use a backward tracking algorithm to locate t��x� t� and let �t�O��x� t� � t � t��x� t��
As mentioned in Section ���� the use of backtracking in the calculation of �t�I��x� and
�t�O��x� t� does not e�ect mass conservation�

The �rst term on the right�hand side of Equation ����� can be evaluated by a forward
tracking algorithm as in Sections ��
'���� However� notice that at each quadrature point
xp � �ij at time tn��� the characteristic X���xp� tn��� may intersect !�O�

n � In the current
context� we need to use a forward tracking to determine if X���xp� tn��� will or will not
intersect !�O�

n � In the latter case we evaluate wij�#xp� tn� as in Sections ��
'���� In the former
case� we need to locate the head of the characteristic at the space�time boundary !�O�

n and
calculate the values of wij at !�O�

n on which they are de�ned�

��



� Description of Some Other Numerical Methods

In this section we brie�y describe the Galerkin �nite element method �GAL�� the quadratic
Petrov�Galerkin method �Christie et al� 
��
� Barrett and Morton 
���� and Celia et al�


����� the cubic Petrov�Galerkin method �Westerink and Shea 
���� Bouloutas and Celia

��
�� and the streamline di�usion �nite element method �Hughes and Brooks 
���� Brooks
and Hughes 
���� Hughes and Mallet 
��
� Hughes 
���� Hansbo and Szepessy 
���� Hansbo

���� Johnson and N�avert 
��
� Johnson and Pitk�aranta 
��
� Johnson 
���� Johnson et al�


���� Johnson and Szepessy 
���� Zhou ��� and Zhou ���� For simplicity of representation�
we assume that in Equation ���
� R�x� t� � 
� The GAL� QPG� and CPG schemes can be
uni�ed as follows	Z

�
Un wij dx � ��t

�Z
�
rwij � �DnrUn� dx�

Z
�
VnUn � rwij dx




�
Z
�
Un�� wij dx� �
� ���t

�Z
�
rwij � �Dn��rUn��� dx

�
Z
�
VnUn � rwij dx



� �t

�
�
Z
�

fn wij dx � �
� ��
Z
�

fn�� wij dx



� boundary terms�

���
�

Here � � ��� 
 is the weighting parameter between the time levels tn�� and tn� In particular�
� � 
 and ��� yield the backward�Euler �BE�� and the Crank�Nicholson �CN�� schemes� re�
spectively� The trial function space consists of the standard continuous and piecewise�bilinear
polynomials� The test functions are also in the tensor product form wij�x� y� � wi�x�wj�y��
In the GAL scheme� wi�x� and wj�y� are the standard one�dimensional hat functions� In the
QPG wi�x� and wj�y� are constructed by adding an asymmetric perturbation to the original
piecewise�linear hat functions

wi�x� �

�����������
����������

x� xi��
�x

� 	
�x� xi����xi � x�

��x��
� x � �xi��� xi �

xi�� � x

�x
� 	

�x� xi��xi�� � x�

��x��
� x � �xi� xi�� �

�� otherwise �

�����

Here 	 � ��coth�V�x
�D

�� �D
V�x

 for constant V and D� For variable V and D� one replaces V
D

by
its mean on each element� A typical one�dimensional QPG test function is sketched in Figure

 �b�� As de�ned above� the two�dimensional QPG test function wij�x� y� is just a tensor
product of the two one�dimensional QPG test functions wi�x� and wj�y�� The CPG method
was derived for the Crank�Nicholson time discretization� In the CPG wi�x� and wj�y� are
de�ned as the original piecewise linear hat functions with a symmetric cubic perturbation

��



added to each nonzero piece

wi�x� �

�����������
����������

x� xi��
�x

� 

�x� xi����xi � x��xi�� � xi � �x�

��x��
� x � �xi��� xi �

xi�� � x

�x
� 


�x� xi��xi�� � x��xi � xi�� � �x�

��x��
� x � �xi� xi�� �

�� otherwise �

�����

Here 
 � �Cu� with Cu � V�t
�x

being the Courant number� For variable V one replaces V
by its arithmetic mean on each element� A typical one�dimensional CPG test function is
plotted in Figure 
 �c��

The SDM is a type of discontinuous Galerkin FEM and applies to a nonconservative
analogue of Equation ���
�� For the following nonconservative advection�dispersion equation

L�u�x� t� � ut �V�x� t� � ru�r�D�x� t�ru� � f�x� t�� �x� t� � ��

u�x� �� � u��x�� x � ��

u�x� t� � �� �x� t� � !�

���
��

the discontinuous trilinear SDM reads as follows	 �nd a piecewise�trilinear �linear in time�
function U�x� t� on the space�time slab �n � �� Jn� which is discontinuous in time at tn��
and tn and satis�es the homogeneous Dirichlet boundary condition� such that

Z
�n

h
Ut �V � rU

ih
W � ��Wt �V � rW �

i
dxdt �

Z
�n

rW � �DrU� dxdt

��
Z
�n

r � �DrU��Wt �V � rW � dxdt �
Z
�

U�
n��W

�
n�� dx

�
Z
�n

f
h
W � ��Wt �V � rW �

i
dxdt �

Z
�

U�
n�� W

�
n�� dx�

�����

for any test function W with the same form as U � Here W�
n�� � lim

t�t�
n��

w�x� t� and W�
n�� �

lim
t�t�

n��

w�x� t�� U�
� � u��x�� and � is typically chosen to be of O�h� with h being the diameter

of the space�time partition on the slab �n� The third term on the left�hand side is carried
out element�wise� since it is not well�de�ned for piecewise�trilinear functions�

The choice of � has signi�cant e�ects on the accuracy of the numerical solutions� If �
is chosen too small� the numerical solutions will exhibit oscillations� If � is too big� the
SDM will seriously damp the numerical solutions� Unfortunately� an optimal choice of � is
not clear and is heavily problem�dependent� Extensive research has been conducted on the
SDM� including proper choices of � �Hughes and Brooks 
���� Brooks and Hughes 
����
Hughes and Mallet 
��
� Hughes 
���� Hansbo and Szepessy 
���� Hansbo 
���� Johnson
and N�avert 
��
� Johnson and Pitk�aranta 
��
� Johnson 
���� Johnson et al� 
���� Johnson
and Szepessy 
���� Zhou ��� and Zhou ���� Since the theme of this paper is not on the

��



development of the SDM� in our numerical experiments we use a generally accepted choice
of � which may not be best possible for a given problem� According to Johnson 
���� Johnson
et al� 
���� and Zhou ��� we set

� �
Khq


 � jVj�
� �����

if the mesh Peclet number jVjh � jDj and � � � otherwise� K is typically to be 
 or ����
In our numerical experiments� we will use these values along with several others to indicate
the general behavior� Moreover� the SDM generally increases the dimension of the problem
by one �although the measure in this dimension is small�� For Problem ���
�� which is two�
dimensions in space� Equations ����� are de�ned on three�dimensional space�time domain
�n� Numerically� one has to partition the three�dimensional $thick slices% into tetrahedra or
prisms� Usually this will double the number of unknowns in GAL� QPG� CPG� and ELLAM
schemes�

While the SDM can capture a jump discontinuity of the exact solution in a thin region�
the numerical solution may develop over� and under�shoots about the exact solution within
this layer� A modi�ed SDM with improved shock�capturing properties was proposed in
���� ��� �� � which consists of adding a $shock�capturing% term to the di�usion by introducing
a $cross�wind% control that is close to the steep fronts or $shocks%� This modi�ed SDM
scheme performs much better in terms of catching the steep fronts or the jump discontinuities
of the exact solutions� however� it leads to a nonlinear scheme even though the underlying
governing PDE is linear and involves another undetermined parameter� Thus� we will not use
this scheme in our comparison and just remind the reader that in particular cases the SDM
may perform better than those shown in the examples here if the appropriate modi�cations
and optimization schemes are used�

� Computational Results

In this section we present one� and two�dimensional numerical experiments to investigate
the performance of the ELLAM scheme developed in this paper and to compare it with
the numerical methods described in Section �� The numerical experiments contain both
examples �with analytical solutions� that are either smooth or have steep fronts�

��� The One�Dimensional Transport of a Di�used Square Wave

To observe the performance of all the methods in Section � and ELLAM scheme for problems
with analytical solutions that have a steep front� this example considers the transport of a
one�dimensional di�used square wave� The initial condition u��x� is given by

u��x� �

�����
����


� if x � �xl� xr � �a� b��

�� otherwise�

�
�
�

We assume that the one�dimensional transport equation has constant coe�cients so that we
can �nd the analytical solution in a closed form� Homogeneous in�ow and out�ow Dirichlet
boundary conditions are speci�ed at x � a and x � b� As long as the di�used square

��



wave does not intersect the out�ow boundary during the time interval ��� T  � the analytical
solution u�x� t� can be expressed as

u�x� t� �

p

��Dt

Z �

��
u��x� V t� s� exp

��s�
�Dt

	
ds

�



�



erf

�
x� V t� xlp

�Dt

	
� erf

�
x� V t� xrp

�Dt

	�
�

�
���

where erf�x� � �p
�

R x
� exp��s��ds is the error function�

In the numerical experiments the data are chosen as follows	 The space domain is �a� b� �
��� ��� the time interval ��� T  � ��� 
 � R � 
� V � 
� D � 
��	� and f � �� In Equations
�
�
� and �
���� xl � ��� and xr � ���� so that the di�used square wave essentially vanishes
at the out�ow boundary x � b during the time period of ��� T  � The grid size �x � �

���
is chosen so that the analytical solution can be represented properly� The backward�Euler
Galerkin linear �nite element �BE�GAL�� quadratic Petrov�Galerkin �nite element �BE�
QPG�� and cubic Petrov�Galerkin �nite element �BE�CPG� solutions are plotted against
the analytical solution in Figures � �a�'�c� for �t � �

���
� �

��

� and �
����

� respectively� The

ELLAM solution is also plotted in Figure � �a� for �t � �
�� � which gives a Courant number


� and a Peclet number 
��� The Crank�Nicholson Galerkin linear �nite element �CN�
GAL�� quadratic Petrov�Galerkin �nite element �CN�QPG�� and cubic Petrov�Galerkin �nite
element �CN�CPG� solutions are plotted in Figures � �a�'�c� for �t � �

���
� �
���

� and �
����

�
respectively� To view the numerical solutions clearly� we do not plot the analytical solution
in these �gures� One can compare the CN�GAL� CN�QPG� and CN�CPG numerical solutions
with the analytical one in Figures � �a�'�c�� The streamline�di�usion �nite element �SDM�
solutions are plotted in Figures � �a�'�b� for �t � �

��
and �t � �

���
� The SDM solution is

also plotted in Figure � �c� for �x � �t � �
��

to further observe the e�ect of the choice of
the parameter ��

It is observed that the BE�GAL� BE�QPG� and BE�CPG schemes generate almost identi�
cal numerical solutions� With a time step of �t � �

���
� the backward Euler schemes generate

over�damped numerical solutions without any observable overshoot or undershoot� As the
time step �t is reduced to �


��
and �

����
� the numerical dispersion is reduced considerably

and the numerical solutions are quite close to the analytical solution� With a time step
of �t � �

���
� the CN�GAL and CN�QPG solutions display overshoot and undershoot� The

maximum and minimum values of CN�GAL and CN�QPG solutions are 
��
�� 
�
��� ����
��
and ���
��� respectively� The CN�CPG solution also has many wiggles but with a much
smaller magnitude �Its maximum and minimum values are 
���� and �����
�� As the time
step �t is reduced to �

���
� the undershoot and overshoot of the CN�GAL solution are reduced

by about ��( �The maximum and minimum values are 
�
�� and ���
���� The undershoot
and overshoot of CN�QPG solution are reduced by ��( �the maximum and minimum values
are 
���� and ������� and are comparable to those of CN�CPG solution �whose maximum
and minimum values are 
���� and �������� As the time step �t decreases to �

����
� the

undershoot and overshoot of CN�GAL solution are further reduced but those of CN�QPG
and CN�CPG solutions do not change much� In essence� when the time step is relatively
large �the Courant number is up to one�� the CN�CPG scheme yields better solutions than
the CN�GAL and CN�QPG schemes�

��



With a time step �t � �
��

� the SDM solution starts to approximate the analytical solution�
As the K in � decreases from 
 to ����
� the smearing in the numerical solutions is reduced
considerably and the overshoot�undershoot is also reduced slightly �from 
����� and �������
to 
���
� and ������
�� Thus� the optimal value of K seems to be ����
 �the smallest of
the three K values�� As the time step �t decreases to �

���
� the SDM solutions become

more accurate and have much less damping� But in this case some wiggles appear near the
locations where the analytical solution has steep fronts� Reducing K in � from 
 to ����

gives a smaller L� error in the SDM solution but increases the overshoot�undershoot slightly
�from 
����� and ������� to 
����� and ��������� In Figure � �c�� the magnitude of the
overshoot and undershoot in SDM solutions is almost doubled �from 
����� and �������
to 
����� and �������� when K is reduced from 
 to ����
� Unfortunately� there is no a
universal rule on the choice of the K� As we mentioned above� the modi�ed SDM with a
$shock capturing% property should generate better numerical solutions than those shown
here� However� one has to solve a nonlinear system even though the underlying PDE is a
linear one� and must face choosing an additional undetermined parameter� In contrast� with
a fairly large time step �t � �

��
the ELLAM scheme yields a very accurate numerical solution

that is better than any one of the GAL� QPG� CPG� and SDM solutions with even much
�ner time steps� Moreover� the ELLAM scheme uses only half the number of unknowns as
in the SDM and does not require optimization of inde�nite constants�

��� A Two�Dimensional Rotating Gaussian Pulse

This example considers the transport of a two�dimensional rotating Gaussian pulse� The
spatial domain is � � ������ ����������� ����� the rotating �eld is imposed as V��x� y� � ��y�
and V��x� y� � �x� The time interval is ��� T  � ��� ��� � which is the time period required
for one complete rotation� The initial condition u��x� y� is given by

u��x� y� � exp

�
��x� xc�

� � �y � yc�
�

���

	
� �
���

where xc� yc� and � are the centered and standard deviations� respectively� The corresponding
analytical solution for Equation ���
� with R � 
� a constant di�usion coe�cient D� and
f � � is given by

u�x� y� t� �
���

��� � �Dt
exp

�
��"x� xc�

� � �"y � yc�
�

��� � �Dt

	
� �
���

where "x � x cos��t� � y sin��t� and "y � �x sin��t� � y cos��t��

In the numerical experiments� the data are chosen as follows	 D � 
��	� xc � ������
yc � �� � � ������ which gives ��� � ������� A uniform spatial grid of �x � �y � �

�	
is

used �in all the plots and most of the experiments in Table 
�� unless it is speci�ed otherwise�
in which case a uniform spatial grid of �x � �y � �

��
is used� It is easy to see that the

u��x� y� de�ned by �
��� is centered at �xc� yc� with a minimum value � and a maximum
value 
� Its surface and contour plots are presented in Figures � �a�'�b�� Figures � �c�'�d�
are the surface and contour plots for the analytical solution� which has a minimum value �
and a maximum value ���
�� �due to the e�ect of di�usion��

�	



This problem provides an example for a homogeneous two�dimensional advection�dispersion
equation with a variable velocity �eld and a known analytical solution� Moreover� this prob�
lem changes from the advection dominance in most of the domain to the di�usion dominance
in the region that is close to the origin� These types of problems often arise in many important
applications and are more di�cult to simulate compared with purely advection�dominated
problems� This example has been used widely to test for numerical artifacts of di�erent
schemes� such as numerical stability and numerical dispersion� spurious oscillations� and
phase errors�

In our experiments� we have systematically varied the time steps to examine the perfor�
mance of each method� using a uniform spatial grid of �x � �y � �

�	
in most experiments�

This is because the temporal errors dominate the numerical solutions with all the methods
other than the ELLAM schemes� In this case the maximum grid Peclet number reaches ����
The grid Peclet number at the center of the Gaussian Pulse is about 
�
� We also perform
some experiments with a �ner spatial grid of �x � �y � �

��
� In this case the maximum grid

Peclet number reaches ��� and the grid Peclet number at the center of the Gaussian Pulse
is about 
��� All comparative methods tested yield strongly non�symmetric systems while
the ELLAM scheme inherently symmetrizes its discrete algebraic system� We use a precon�
ditioned conjugate gradient square algorithm �PCGS� to solve these systems even though
this places ELLAM at a disadvantage� In Table 
 we present the minimum and maximum
values of the numerical solutions with each method� and the per time step CPU and the
overall CPU each method consumed� which was measured on a SGI Indigo Workstation� We
realize� of course� that some code optimization may be possible but feel that these timings
are representative of each scheme�s e�ciency on these model problems� The surface and
contour plots for selected runs of each method in Table 
 are presented in Figures � ' 
��

����� The ELLAM Simulation

The ELLAM�Euler solution is obtained by using a time step of �t � �
	�

in solving the ELLAM

scheme and using an Euler quadrature with a micro�time step of �tf � �t

�

in tracking the
characteristics� The maximum Courant number reaches 
�� while the Courant number at
the center of the Gaussian Pulse is �� The ELLAM�Euler solution has a minimum value �
and a maximum value ������� whose surface and contour plots are given in Figures 
 �a�'�b��
As one can see from these plots and Table 
� a very accurate numerical solution is obtained
in about � and a half minutes� The ELLAM�RK solution is obtained by using a time step of
�t � �

��
in solving the ELLAM scheme and using a second�order Runge�Kutta quadrature

with a micro�time step of �tf � �t
	

in tracking the characteristics� In this case� the maximum
Courant number reaches 
�� while the Courant number at the center of the Gaussian Pulse is
about 
��� The ELLAM�RK solution has a minimum value � and a maximum value ���
���
whose plots are in Figures 
 �c�'�d�� The use of a more accurate second�order Runge�Kutta
tracking algorithm enables us to signi�cantly reduce the number of micro�time steps �from
�� in an Euler tracking to � in the Runge�Kutta tracking� in tracking characteristics and
so the CPU time per global time step �from 
� seconds in ELLAM�Euler to 
��� seconds in
ELLAM�RK�� Moreover� the number of global time steps is reduced from �� in the ELLAM�
Euler simulation to 
� in the ELLAM�RK simulation� Thus� the ELLAM�RK simulation
further reduces the overall CPU time to � minutes and �� seconds�

��



����� The BE�GAL and BE�QPG Simulation

Due to its unconditional stability and simplicity in implementations� the fully implicit back�
ward Euler temporal discretization still dominates most production codes in engineering
applications� Thus� we carry out extensive experiments to investigate the performance of
this discretization� With a time step of �t � �

���
� which gives a maximum Courant number

of ���� and a Courant number of 
 at the center of the Gaussian Pulse� the BE�GAL and
BE�QPG solutions have minimum values of � and ������� and maximum values of �����

and ������� respectively� Recall that the exact solution has a maximum value of ���
��� the
BE�GAL and BE�QPG solutions are excessively over�damped� Moreover� the BE�GAL and
BE�QPG schemes require more iterations in the PCGS solver than the ELLAM does� because
they yield strongly non�symmetric coe�cient matrices� The BE�GAL and BE�QPG solutions
with a much �ner time step of �t � �


��
are presented in Figures � �a�'�d�� The minimum

values are � for BE�GAL solution and ������� for BE�QPG solution� while the maximum
values are ����
� for BE�GAL solution and �����
 for BE�QPG solution� These solutions
are still very di�usive and are considerably deformed� especially for the BE�QPG solution�
The more severe deformation in the BE�QPG solution is due to the e�ect of grid orientation
incurred by the upwinding in the QPG method �refer to Ewing 
����� With the same time
step of �t � �


��
� we also reduce the spatial grid from �x � �y � �

�	
to �x � �y � �

��
to observe the improvement of the numerical solutions� The BE�QPG solution has a slight
improvement while the BE�GAL has essentially no improvement� However� the CPU time
has been signi�cantly increased� With a comparable overall CPU time we could use a much
�ner time step of �t � �

����
and still use the coarse spatial grid of �x � �y � �

�	
� In this

case the numerical solutions have more visible improvement� This shows that even with a
time step of �t � �


��
and a spatial grid of �x � �y � �

�	
� the temporal dominance still

dominates the numerical solutions in the backward temporal discretization� Note that for
�x � �y � �

�	
and �t � �


��
� the corresponding maximum Courant number and the Courant

number at the center of the Gaussian Pulse are ��� and ����� respectively�

To obtain BE�GAL and BE�QPG solutions with reasonable accuracy� we proceed further�
With a time step of �t � �

����
� we reduce the spatial grid from �x � �y � �

�	
to �x �

�y � �
��

� Again one sees slight improvement in the BE�QPG solution and no improvement
in the BE�GAL solution� but a signi�cant increase in the overall CPU time� Using less
overall CPU time� we could use the original coarse spatial grid of �x � �y � �

�	
but a �ner

time step of �t � �
	���

� Note that for �x � �y � �
�	

and �t � �
����

� the corresponding
maximum Courant number and the Courant number at the center of the Gaussian Pulse are
���� and ��
� respectively� This shows that the temporal error still dominates the BE�GAL
and BE�QPG solutions� Our last numerical experiments with the backward Euler temporal
discretization used a spatial grid of �x � �y � �

�	
and a time step of �t � �

����
� The

minimum values are � for BE�GAL solution and �����
� for BE�QPG solution� while the
maximum values are �����
 for BE�GAL solution and ������ for BE�QPG solution� Their
surface and contour plots are presented in Figures � �a�'�d�� Note that in this case the
maximum Courant number and the Courant number at the center of the Gaussian Pulse are
���� and ����� respectively� However� the BE�GAL solution is still not comparable with the
two ELLAM solutions� The BE�QPG solution is even much worse� In fact� Figure � �c�'�d�
show that the BE�QPG solution has severe deformation� However� the overall CPU time
is more than 

 hours for the BE�GAL solution and more than 
� hours for the BE�QPG

��



solution� This is in contrast to the � minutes and �� seconds for the ELLAM�Euler solution
and � minutes �� seconds for the ELLAM�RK solution�

Therefore� even though the backward Euler temporal discretization is unconditionally
stable and simple to implement� extremely small time steps have to be used in these schemes�
not for the purpose of stability� but for the purpose of comparative accuracy �refer to Ewing

����� Consequently� this signi�cantly reduces the e�ciency of the simulation�

����� The CN�GAL� CN�QPG� and CN�CPG Simulation

The CN�GAL and CN�QPG solutions are presented in Figures � �a�'�d� for a spatial grid
of �x � �y � �

�	
and a time step of �t � �

���
� The CN�GAL solution has minimum and

maximum values ���
�
� and ����

� Severe undershoot� deformation� and phase errors
are observed in the CN�GAL solution in Figures � �a�'�b�� The CN�QPG solution has a
minimum value ������� and a maximum value ��

��� respectively� Hence� the CN�QPG
solution has about ��( less undershoot than the CN�GAL solution� but it also has serious
damping� phase error� and deformation� The CN�CPG solution is not available �unbounded�
for the time step and spatial grid� Note that the maximum Courant number is ���� and
the Courant number is 
 at the center of the Gaussian Pulse in the current circumstances�
Also� note that the Crank�Nicholson temporal discretization yields more accurate numerical
solutions than the backward Euler temporal discretization� due to its higher�order temporal
accuracy� The overall CPU time in this case is about �� minutes for the CN�GAL solution
and about �� minutes for the CN�QPG solution� The BE�GAL and BE�QPG solutions do
not have undershoot� but the CN�GAL and CN�QPG solutions do exhibit serious problems in
this regard and indicate a considerable disadvantage for the Crank�Nicholson discretization�

We further reduce the time step to �t � �
	��

in the numerical simulation� In this case�
the CN�CPG solution is also available� We present the results in Table 
 and Figures 
�
�a�'�d� and 

 �a�'�b�� The maximum values are ������ for the CN�GAL solution� ��
�
� for
the CN�QPG solution� and ������ for the CN�CPG solution� while the minimum values are
����
�� for the CN�GAL solution� ������
 for the CN�QPG solution� and ������� for the
CN�CPG solution� As one can see� the numerical solutions have been improved considerably
and the undershoot in the solutions has been rapidly reduced� However� these solutions still
have deformation� especially in the case of the CN�QPG solution�

����� The SDM simulation

The surface and contour plots of SDM solutions are plotted in Figures 

 �c�'�d� and 
�
�a�'�d� for a time step of �t � �

���
and �x � �y � �

�	
� The undetermined parameter K in

����� equals to ���� ��
� and ����
� respectively� As K decreases from ��� to ��
 and then to
����
� the maximum and minimum values of the corresponding SDM solutions change from
������ and ����
�� to ������ and ������
� and then to �����
 and �����
�� Namely� the
SDM solutions have eliminated almost all the damping and undershoot and become more
accurate� The numerical solutions will no longer improve as one further reduces the value
of K� The SDM solutions have no phase error or deformation� but does require the most
CPU time per time step since it has double the number of unknowns as those for the other
methods� This in turn requires more iterations in solving the linear system� Furthermore�
on each �space�time� cell� the SDM has eight basis functions which are the tensor product of

��



three univariate functions� while all other methods have four basis functions on each �space�
cell which are the tensor product of two univariate functions�

In summary� one sees from Table 
 and Figures �'
� that the ELLAM scheme is the most
�CPU� cost e�ective per time step and is much more cost e�ective over all� since ELLAM
scheme outperforms the other methods tested with much fewer time steps�

We refer readers to the works of Ewing and Wang �
��
� 
���a� 
��
�� Wang �
�����
Wang and Ewing �
����� and Wang et al �
���a� for the asymptotic convergence rates of
the ELLAM schemes in space and time� where numerical experiments were performed and
theoretical convergence error estimates were derived for the asymptotic convergence rates
of the ELLAM schemes for �rst�order linear hyperbolic equations and advection�di�usion
equations in one space dimension� A theoretical error estimate for an ELLAM scheme for
a two�dimensional advection�di�usion equations with constant coe�cients was also outlined
in Wang �
�����

� Summary

In this paper we have developed an Eulerian�Lagrangian localized adjoint method for two�
dimensional linear advection�dispersion equations with general in�ow and out�ow boundary
conditions based on the approach presented in Wang �
����� The derived numerical scheme
conserves mass and treats any combinations of in�ow and out�ow Dirichlet� Neumann� and
Robin boundary conditions in a systematic manner�

Traditional forward�tracked characteristic methods or particle methods advance the grids
following the characteristics� which typically result in severely distorting the evolving grids
even though the initial grids were uniform� This greatly complicates the solution proce�
dures� Many characteristic methods including certain ELLAM schemes have been developed
using a backtracking algorithm to avoid these problems �Arbogast et al� 
���� Arbogast
and Wheeler 
���� Binning 
���� Binning and Celia 
��
� Celia et al� 
���� Dahle et

al� 
���� Douglas and Russell 
���� Espedal and Ewing 
���� Ewing 
���� Ewing and
Wang 
��
�
���a�
���b�
����
��
� Russell 
���� Wang et al� 
����� However� for multi�
dimensional problems� backtracked characteristic methods require signi�cant e�ort� due to
the need to de�ne the geometry at time tn�� which requires the tracking of points along
the boundary of the element and subsequent interpolation and mapping onto the �xed spa�
tial grid at the previous time level tn��� This approach is computationally very intensive�
especially when part or all of the element being mapped intersects a space�time boundary
�Binning and Celia 
��
� Celia 
�����

The ELLAM scheme in this paper uses a forward�tracking approach �Dahle et al� 
����
Healy and Russell 
���� Russell and Trujillo 
���� Wang 
���� to track quadrature points
at time tn�� in evaluating the storage terms and in�ow boundary terms on the right�hand
side of equations ������ ������ ���
�� and ������ Thus� this forward tracking scheme has no
e�ect on the underlying grid or the data structure of the discrete system� Furthermore� the
scheme uses a backtracking of characteristics to evaluate the x�dependent time step �t�I��x�
in the di�usion�dispersion term�

��



In this paper we have performed one� and two�dimensional numerical experiments to
observe the performance of the ELLAM scheme and to compare it with many intensely in�
vestigated and well received methods� such as the standard Galerkin �nite element method�
quadratic Petrov�Galerkin �nite element method� and cubic Petrov�Galerkin method� which
use either a backward Euler or a Crank�Nicholson temporal discretization� as well as the
streamline di�usion �nite element method� The numerical experiments show that the EL�
LAM scheme has generated very accurate numerical solutions �compared with the other
methods considered� even though a much larger time step is used in the ELLAM scheme�
Consequently� the ELLAM scheme has a signi�cantly enhanced e�ciency� In the context of
one�dimensional �rst�order linear hyperbolic equations� a more extensive comparison of the
ELLAM schemes with many other well�regarded methods� including the continuous and dis�
continuous Galerkin �nite element method �Falk and Richter 
���� Johnson 
���� Johnson
and Pitk�aranta 
��
� Richter 
����� the monotonic upstream�centered scheme for conserva�
tion laws �Colella 
���� van Leer 
���� and the essentially non�oscillatory scheme �Dawson

��
� Harten et al� 
���� Shu and Osher 
����� as well as the methods described in Section
�� can be found in the work of Wang et al� �Wang� Al�Lawatia� and Telyakovskiy��

Finally� we point out that the Eulerian methods are relatively easy to formulate and to
implement� in general� In contrast� due to the use of the Lagrangian coordinates� character�
istic methods �including the ELLAM scheme� typically require more implementational work�
especially for multi�dimensional problems�
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