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��� INTRODUCTION

The mathematical model that describes the process of an immiscible displacement of
oil by water in reservoir production or other two�phase �uid �ows in porous media leads
to a strongly coupled system of a degenerated nonlinear advection�di�usion equation
for saturation and an elliptic equation for pressure and velocity� The hyperbolic
nature� strong coupling� and nonlinearity of the system and the degeneracy of the
di�usion makes numerical simulation a challenging task� Many numerical methods
su�er from serious non�physical oscillations� excessive numerical dispersion� and�or
a combination of both �CJ��� Ewi�	
� Previously� Espedal� Ewing� and coworkers
developed a characteristic� operator�splitting technique in e�ectively solving two�phase
�uid �ow problems �DEES��� EE�
� In practice� a reservoir often consists of di�erent
subdomains with di�erent porosities and permeabilities� In the case of single�phase
�uid �ows the concentration and total �ux are continuous across the interfaces between
di�erent subdomains since the di�usion never vanishes� Our earlier work addressed
numerical simulation to linear transport equations arising in single�phase �ows with
interfaces ��
� However� in the case of two�phase �uid �ows the saturation equation
itself is nonlinear and di�erent subdomains have di�erent capillary pressure curves�
The continuity of capillary pressure across interfaces implies a jump discontinuity of
the water saturation at the same locations� The jump discontinuity of the saturation
at the interfaces might incur some oscillations around the interfaces� which can be
propagated into the domain and destroy the overall accuracy� Hence� great care has
to be taken in the development of an e�ective solution procedure for the simulation
of two�phase �uid �ows in porous media with interfaces�
This paper describes a characteristic�based� non�overlapping domain decomposition

algorithm for solving the saturation equation in two�phase �uid �ows with interfaces�
First� with the known saturation at the previous time step one obtains an approximate
Dirichlet boundary condition at the out�ow domain interface by integrating the
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saturation equation �ignoring the capillary pressure term� along characteristics� With
the approximate out�ow Dirichlet boundary condition at the domain interface and the
given boundary condition at the physical in�ow boundary one can close the system
on the current subdomain and applies the characteristic operator�splitting procedure
�DEES��� EE�
 to solve the full saturation equation �including the capillary pressure
e�ect�� Second� one uses the continuity of capillary pressure across the domain interface
to pass the value of saturation as an approximate in�ow Dirichlet boundary condition
to the next subdomain� one then applies the same characteristic operator�splitting
procedure to solve the saturation equation on the current subdomain� Third� according
to the overall loss or gain of mass one adjusts the approximate out�ow Dirichlet
boundary condition at the domain interface to iterate between di�erent subdomains
until the algorithm converges� Finally� a mixed method is adopted to solve the pressure
equation due to its accurate approximation to the velocity �eld and its local mass
conservation property�
The rest of the paper is organized as follows� In Sections � and � we formulate the

problem and discuss related solution techniques� In Section 	 we present a domain
decomposition algorithm for the two�phase �uid �ow problems with interfaces� In
Section � we present some numerical results to show the promise of the method�

��� PROBLEM FORMULATION

A suitable mathematical model for the total Darcy velocity u� the total pressure p� and
the water saturation S � ��� �
 in an incompressible displacement of oil by water in a
porous medium can be described by the following set of partial di�erential equations
�CJ��
�

r � u�x� t� � q��x� t�� �x� t� � �� ��� T 
�
u�x� t� � �K�x���o�S� � �w�S��rp�x� t�� �x� t� � �� ��� T 
�

u�x� t� � n�x� � q��x� t�� �x� t� � �� � ��� T 
�
���

and

��x�
�S

�t
�r � �f�S�u� �D�S� x�rS� � q��x� t�� �x� t� � �� ��� T 
�

�f�S�u� �D�S� x�rS� � n�x� � q��x� t�� �x� t� � ��� ��� T 
�
S�x� �� � S��x�� x � ��

���

where � is the physical domain� K�x� is the absolute permeability tensor of the
medium� �i� i � o�w� denotes the water and oil mobilities respectively� q��x� t� and
q��x� t� are source terms� q��x� t� and q��x� t� are the prescribed boundary conditions�
n�x� is the unit outward normal vector� � �� � is a scaling factor to the di�usion term�
pc is the capillary pressure� and f�S� and D�S� x� are the fractional �ow function and
di�usion term given by

f�S� �
�w�S�

�w�S� � �o�S�
�

D�S� x� � K�x�
�w�S��o�S�

�o�S� � �w�S�

dpc
dS

�
���
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Note that the two equations in ��� form a second�order elliptic equation for the
pressure p�x� t� and are coupled to the saturation equation ��� through the saturation
S in the coe�cients� On the other hand� saturation equation ��� is a nonlinear
advection�di�usion equation and is coupled to the pressure equation ��� through the
Darcy velocity u� Furthermore� in the mathematical model the di�usion term D�S� x�
vanishes at S � � and S � �� which is an idealized case since physically D�S� x�
vanishes for S � ��� Sir
 or S � �� � Sir� �
 with Sir being the irreducible saturation
value� The fractional �ow function f�S� de�ned in ��� is typically an S�shaped curve
of saturation S and degenerates at S � � �with the same understanding�� Because the
saturation pro�le is usually a decreasing function in space� as time evolves f�S� tends
to force a shock discontinuity to develop in S while the di�usion term D�S� x� tends
to prevent the shock from forming� The dynamic process could be fairly complicated
because the di�usion degenerates in front of the steep saturation front� It depends on
the interaction between the advection and di�usion terms� in particular� on the rates
at which D�S� x� and f�S� tend to zero as S tends to zero�
When the physical domain � is composed of di�erent media� the di�erent porosities

and permeabilities result in di�erent capillary pressure curves on each subdomain
�Figure ���� Across an interface � the phase pressures are continuous and mass is
conserved� leading to the following interface conditions

pc�S�j�� � pc�S�j�� �
u � nj�� � u � nj�� �

�f�S�u� �D�S� x�rS� � nj�� � �f�S�u� �D�S� x�rS� � nj�� �
�	�

The continuity of capillary pressure pc across an interface � implies the discontinuity
of the saturation across the interface �Figure ���� One has to resolve the discontinuity
carefully so that no spurious e�ects will be propagated into the domain�

��� OPERATOR SPLITTING TECHNIQUES

Extensive research has been carried out for the numerical simulation of system �������
without interfaces� Various techniques have been developed to decouple and linearize
the system� including a fully coupled and fully implicit linearization strategy� an
IMPES �IMplicitly advances the Pressure and Explicitly updates the Saturation in
time� strategy� and a sequential time stepping strategy �Ewi�	
� Di�erent numerical
methods� including the standard Galerkin �nite element method� the cell�centered
�nite di�erence method� the �nite volume method� and the mixed �nite element
method� have been used to solve the pressure equation �CJ��� DEES��� DEW��� EE��
Ewi�	
� We used the mixed method to solve the pressure equation due to its accurate
approximation to the velocity �eld and its local mass conservation property� Because
the normal component of the velocity �eld is continuous� the discrete algebraic system
for the pressure equation is in fact the same as that with no interfaces� Hence� one can
solve the global system as usual� Alternatively� one can use a domain decomposition
procedure to solve the pressure equation on each subdomain iteratively� We refer the
interested readers to �BW��� SBG��
 and the references therein for details�
For simplicity of exposition we consider a one�dimensional analogue of equation ����

Notice that equation ��� is almost hyperbolic due to the small parameter � �� �� An
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e�ective solution procedure for solving the dominating advective part of equation ���

��x�
�S

�t
�

�

�x
�f�S�u� � � ���

is to discretize equation ��� along the characteristics� which allows large time steps
to be used in the numerical simulation� Because equation ��� may have more than
one solution due to the shape of the fractional �ow function f�S�� one cannot directly
apply the modi�ed method of characteristics �DR��
 to equation ���� We follow the
work of Espedal� Ewing� and coworkers �DEES��� EE�
 and split the fractional �ow
function f�S� into two parts by

f�S� � �f�S� � b�S�S� ���

with

�f�S� �

��
�

f�SBL�

SBL
S� if � � S � SBL�

f�S�� if SBL � S � ��
��

Here the Buckley�Leverett shock saturation SBL is de�ned by

f
�

�SBL� �
f�SBL�

SBL
� ���

Because �f �S�u gives the unique physical velocity for an established shock� we use
this operator splitting and rewrite equation ��� along the characteristics as

��x�
� �Sn��

��
� ��x�

� �Sn��

�t
� �f

�

� �Sn���u
� �Sn��

�x
� �� ���

and

��x�
�Sn��

��
�

�

�x

�
b� �Sn���Sn��u� �D� �Sn��� x�

�Sn��

�x

�
� q��x� t

n���� ����

From the de�nition of �f it follows that the characteristic direction is uniquely
determined by equation ��� since the shape of �f allows only a rarefaction wave and
a contact discontinuity for a non�increasing saturation pro�le� Thus� the hyperbolic
equation ��� is discretized by integrating backwards along the characteristics

x� � x� �f
�

�Sn���t� ����

where Sn� � S�x�� tn� and �t � tn�� � tn is the time step�
Note that the characteristics determined by equation ��� are all straight lines in the

�x� t� plane� If equation ��� is solved exactly� the only change in the solution along the
characteristics is due to di�usion �and possibly the source term which vanishes except
at wells�� Thus� we solve equation ���� by the modi�ed method of characteristics
�DEES��� DR��� EE�
Z

�

�
Sn�� � Sn�

�t
wd��

Z
�

�
�D�Sn�� x�

�Sn��

�x
� b�Sn��Sn��u

��w�x�
�x

d�

�

Z
�

q�wd�� �w�x� � H�
� ����

����
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Here a characteristic tracking is used for the advection term� and the quadratic Petrov�
Galerkin method is used for the di�usion term and the residual advection term where
the trial functions S are chosen to be hat functions and the test functions w�x� are
constructed by adding an quadratic perturbation to the hat functions �DEES��� EE�
�

��� A CHARACTERISTIC DOMAIN DECOMPOSITION
ALGORITHM FOR SYSTEM ������� WITH INTERFACES

We now describe a characteristic domain decomposition algorithm for solving the
system ������� with interfaces� We adopt a sequential solution strategy to decouple
and linearize the system �DEES��� DEW��
� For the domain decomposition techniques
for pressure equations with interfaces we refer the interested readers to �BW��� SBG��

for details� We present the algorithm for a one�dimensional problem on � � �a� b� with
one interface at a � d � b� Let N be a positive integer� �t � T	N � and tn � n�t�

Initialization

Substitute the initial condition S�x� �� for S in ��� and solve equations
��� at t� by the mixed method to obtain the Darcy velocity u��x�� where
un�x� � u�x� tn��

for n � �� �� � � � � N � � do

for l � �� �� � � � � lM � � do

L�� For l � �� in equation ��� approximate un���x� by un��� �x� � un�x� or
�un�x� � un���x�� For l � �� substitute Sn��l���kM

for S in ��� and solve

equations ��� at tn�� by the mixed method to obtain the Darcy velocity
un��l �

L�� For l � �� assign Sn����� �d�� � Sn�d��� where Sn��l�k �d�� �

lim
x�d�x�d

Sl�k�x� t
n��� and d� is de�ned in equation ���� with x being

replaced by d� For l � �� assign Sn��l�� �d�� � Sn��l���kM
�d���

L�� Use the interface condition pLc �S
n��
l�� �d��� � pRc �S

n��
l�� �d��� to evaluate

Sn��l�� �d��� where S
n��
l�k �d�� � lim

x�d�x�d
Sn��l�k �x��

for k � �� �� � � � � kM � � do

if error 
 tolerance then

K�� With the given in�ow boundary condition at x � a and Sn��l�k �d��
as the out�ow Dirichlet boundary condition at x � d� solve equation
���� on the subdomain �a� d� for Sn��l�k at time tn���

K�� With Sn��l�k �d�� as the in�ow Dirichlet boundary condition at x � d
and the given out�ow boundary condition at x � b� solve equation
���� on �d� b� for Sn��l�k at tn�� in parallel to the previous step�

K�� Calculate the mass error Mn��
l�k � �M �

R
�
�Sn��l�k � Sn�d�� where

�M is the mass injected at the in�ow boundary and through the
wells during the time period �tn� tn��
�
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K	� Update the Dirichlet boundary condition at the interface x � d by
Sn��l�k �d�� �� Sn��l�k �d�� � �Mn��

l�k � where � is a relaxation parameter�

K�� Use the interface condition pLc �S
n��
l�k �d��� � pRc �S

n��
l�k �d��� to

evaluate Sn��l�k �d���

else

k � kM and l � lM
endif

end

k � kM

end

l � lM

un�� �� un��lM
and Sn�� �� Sn��lM �kM

�
end

Note that the full equation ���� is almost symmetrized and almost well conditioned�
Namely� the condition number is of order O�D�t	��x���� Hence� a diagonal
preconditioner works well in practice� in contrast to elliptic equations where the
coe�cient matrix is ill conditioned and extensive research has been carried out to
develop an e�cient preconditioner�
We now outline generalizations of the above algorithm in several directions� First�

it is easy to see that the above algorithm applies to problems with several interfaces�
Second� we note that the procedure applies to multidimensional problems� as long as
the adjustment in Step K� is kept local in space to avoid introducing any spurious
nonzero saturation to the location where the saturation is zero� Third� Because the
coe�cient matrix for the pressure equation has a much bigger condition number than
that for the saturation equation� it is much more expensive to solve equations in ���
than to solve equation ��� at each time step� Physically the Darcy velocity is much
smoother and varies less rapidly than the saturation� Thus� we can use larger time
steps for pressure equations in ��� and smaller time steps for the saturation equation
��� �see �DEW��� Ewi�	
 for details��

��� Numerical Experiments

In this section we present a numerical example to show the promise of the algorithm�
More extensive results can be found in �Ers��
� In the example� the space domain
�a� b� � ��� �� with the interface located at d � ���� The time interval ��� T 
 � ��� ���	�
�
� � ����� �w�S� � S�� �o�S� � ��� S��� �x � �	���� �t � ������ K � �� on ��� ����
and � on ����� ��� The initial condition is an established shock given by

S��x� �

�
��

���

��	
x� if � � x � ��	�

�� if ��	 � x � ��
����

In the numerical experiments� lM � � and kM � 	� Namely� we extrapolated the
current velocity �eld un�� by its values at the previous time steps and did not iterate
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on equations in ���� With the extrapolated velocity �eld at the current time step� we
iterated four times on the saturation equation ��� at each time step� It was seen in
Figure ���� that the permeability has considerable e�ect on di�usion and capillary
pressure� For a �xed saturation the capillary pressure is higher in a lower permeable
zone than it is in a high permeable zone� We observe that the continuity of capillary
pressure in �	� enforces a jump up in the saturation pro�le across the interface� The
numerical results are free of oscillation or numerical dispersion� and agree with the
results in �CY��
�
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