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This is a survey of nonlinear approximation� especially that part of the sub�
ject which is important in numerical computation� Nonlinear approximation
means that the approximants do not come from linear spaces but rather from
nonlinear manifolds� The central question to be studied is what� if any� are
the advantages of nonlinear approximation over the simpler more established
linear methods� This question is answered by studying the rate of approxi�
mation which is the decrease in error versus the number of parameters in the
approximant� The number of parameters correlates well with computational
e�ort� It is shown that in many settings the rate of nonlinear approximation
can be characterized by certain smoothness conditions which are signi�cantly
weaker than required in the linear theory� Emphasis in the survey will be
placed on approximation by piecewise polynomials and wavelets as well as
their numerical implementation� Results on highly nonlinear methods such
as optimal basis selection and greedy algorithms �adaptive pursuit� are also
given� Applications to image processing� statistical estimation� regularity for
PDE�s� and adaptive algorithms are discussed�
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�� Nonlinear approximation� an overview

The fundamental problem of approximation theory is to resolve a possi�
bly complicated function� called the target function� by simpler� easier to
compute functions called the approximants Increasing the resolution of the
target function can generally only be achieved by increasing the complexity
of the approximants The understanding of this tradeo� between resolu�
tion and complexity is the main goal of constructive approximation Thus
the goals of approximation theory and numerical computation are identical
The di�ering point in the two subjects lies in the information assumed to
be known about the target function In approximation theory� one usually
assumes that the values of certain linear functionals applied to the target
function are known This information is then used to construct an approxi�
mant In numerical computation� information usually comes in a di�erent�
less explicit form For example� the target function may be the solution to
an integral equation or boundary value problem and the numerical analyst
needs to translate this into more direct information about the target func�
tion Nevertheless� the two subjects of approximation and computation are
inexerably intertwined and it is impossible to truly understand the possibili�
ties in numerical computation without a good understanding of the elements
of constructive approximation
It is noteworthy that the developments of approximation theory and nu�

merical computation followed roughly the same line The early methods uti�
lized approximation from �nite dimensional linear spaces In the beginning�
these were typically spaces of polynomials� both algebraic and trigonometric
The fundamental problems concerning order of approximation were solved
in this setting �primarly by the Russian school of Bernstein� Chebyshev�
and their mathematical descendents� Then� beginning with the late �����s
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came the development of piecewise polynomials and splines and their incor�
poration into numerical computation We have in mind the Finite Element
Methods �FEM� and their counter parts in other areas such as numerical
quadrature� and statistical estimation
It was noted shortly thereafter that there was some advantage to be gained

by not limiting the approximations to come from linear spaces and therein
emerged the beginnings of nonlinear approximation Most notable in this
regard was the pioneering work of Birman and Solomjak ����	� on adaptive
approximation In this theory� the approximants are not restricted to come
from spaces of piecewise polynomials with a �xed partition Rather� the
partition was allowed to depend on the target function However� the num�
ber of pieces in the approximant is controlled This matches well numerical
computation since it represents closely the cost of computation �number of
operations� In principle� the idea was simple We should use a �ner mesh
where the target function is not very smooth �singular� and a coarser mesh
where it is smooth The paramount question remained however as to just
how should we measure this smoothness in order to obtain de�nitive results
As is often the case� there came a scramble to understand the advantages

of this new form of computation �approximation� and indeed rather exotic
spaces of functions were created �Brudnyi ���	��� Bergh and Peetre ���	���
to de�ne these advantages But to most� the theory that emerged seemed
too much a tautology and the spaces were not easily understood in terms
of classical smoothness �derivatives and di�erences� But then came the
remarkable discovery of Petrushev ���

� �preceded by results of Brudnyi
���	�� and Oswald ���
��� that the e�ciency of nonlinear spline approxima�
tion could be characterized �at least in one variable� by classical smoothness
�Besov spaces� Thus the advantage of nonlinear approximation became
crystal clear �as we shall explain later in this article�
Another remarkable development came in the ��
��s with the develop�

ment of multilevel techniques Thus� there were the roughly parallel devel�
opments of multigrid theory for integral and di�erential equations� wavelet
analysis in the vein of harmonic analysis and approximation theory� and
quadrature mirror �lters in the context of image processing From the view�
point of approximation theory and harmonic analysis� the wavelet theory
was important on several counts It gave simple and elegant unconditional
bases �wavelet bases� for function spaces �Lebesgue� Hardy� Sobolev� Besov�
Triebel�Lizorkin� that simpli�ed some aspects of Littlewood�Paley theory
�see Meyer ������� It provided a very suitable vehicle for the analysis of the
core linear operators of Harmonic analysis and partial di�erential equations
�Calder�on Zygmund theory� Moreover� it allowed the solution of various
functional analytic and statistical extremal problems to be made directly
from wavelet coe�cients
Wavelet theory provides simple and powerful decompositions of the target
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function into a series of building blocks It is natural then to approximate
the target function by selecting terms of this series If we take partial sums
of this series we are approximating again from linear spaces It was easy to
establish that this form of linear approximation o�ered little if any advantage
over the already well established spline methods However� it is also possible
to let the selection of terms to be chosen from the wavelet series to depend
on the target function f and keep control only over the number of terms
to be used This is a form of nonlinear approximation which is called n�
term approximation This type of approximation was introduced by Schmidt
����	� The idea of n�term approximation was �rst utilized for multivariate
splines by Oskolkov ���	��
Most function norms can be described in terms of wavelet coe�cients

Using these descriptions not only simpli�es the characterization of functions
with a speci�ed approximation order but also makes transparent strategies
for achieving good or best n term approximations Indeed� it is enough to
retain the n terms in the wavelet expansion of the target function which are
largest relative to the norm in which error of approximation is to be mea�
sured Viewed in another way� it is enough to threshold the properly normal�
ized wavelet coe�cients This leads to approximation strategies based on
what is called wavelet shrinkage by Donoho and Johnstone ������ Wavelet
shrinkage is used by these two authors and others to solve several extremal
problems in statistical estimation such as the recovery of the target function
in the presence of noise
Because of the simplicity in describing n�term wavelet approximation� it

is natural to try to incorporate a good choice of basis into the approxima�
tion problem This leads to a double stage nonlinear approximation problem
where the target function is used to both chose a good �or best� basis from
a given library of bases and then secondly to chose the best n�term ap�
proximation relative to the good basis This is a form of highly nonlinear

approximation Other examples are greedy algorithms and adaptive pur�
suit for �nding an n�term approximation from a redundant set of functions
Our understanding of these highly nonlinear methods is quite fragmentary
Describing the functions which have a speci�ed rate of approximation with
respect to highly nonlinear methods remains a challenging problem
Our goal in this paper is to be tutorial rather than complete in our de�

scription of nonlinear approximation We spare the reader some of the �ner
aspects of the subject in search of clarity In this vein� we begin in x� by
considering approximation in a Hilbert space In this simple setting the
problems of linear and nonlinear approximation are easily settled and the
distinction between the two subjects is readily seen
In x�� we consider approximation of univariate functions by piecewise con�

stants This form of approximation is the prototype of both spline approxi�
mation and wavelets Understanding linear and nonlinear approximation by
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piecewise constants will make the transition to the fuller aspects of splines
�x�� and wavelets �x�� more digestable
In x	� we treat highly nonlinear methods Results in this subject are in

their infancy Nevertheless� the methods are already in serious numerical
use� especially in image processing
As noted earlier� the thread that runs through this paper is the following

question� what properties of a function determine its rate of approximation
by a given nonlinear method The �nal solution of this problem� when it
is known for a speci�c method of approximation� is most often in terms of
Besov spaces However� we try to postpone the full impact of Besov spaces
until the reader has hopefully developed signi�cant feeling for smoothness
conditions and their role in approximation Nevertheless� it is impossible
to truly understand this subject without �nally coming to grips with Besov
spaces Fortunately they are not too di�cult when viewed via moduli of
smoothness �x�� or wavelet coe�cients �x��
Nonlinear approximation is used signi�cantly in many applications Per�

haps the most success for this subject has been in image processing Non�
linear approximation explains the thresholding and quantization strategies
used in compression and noise removal It also explains how quantization
and thresholding may be altered to accomodate other measures of error It
is also of note that it explains precisely which images can be compressed
well by certain thresholding and quantization strategies We discuss some
applications of nonlinear methods to image processing in x��
Another important application of nonlinear approximation lies in the so�

lution of operator equations Most notable of course are the adaptive �nite
element methods for elliptic equations �see Babuska and Suri ������ �as well
as the emerging nonlinear wavelet methods in the same subject �see Dahmen
����	�� For hyperbolic problems� we have the analogous developments of
moving grid methods Applications of nonlinear approximation in PDE�s is
touched upon in x��
Finally� we close this introduction with a couple of helpful remarks about

notation Constants appearing in inequalities will be denoted by C and
may vary at each occurence� even in the same formula Sometimes we will
indicate the parameters on which the constant depends For example� C�p�
�resp C�p� ��� means the constant depends only on p �resp p and ��
However� usually the reader will have to consult the text to understand the
parameters on which C depends More ubiquitous is the notation

A � B �����

which means there are constants C�� C� � � such that C�A � B � C�A
Here A and B are two expressions depending on other variables �parame�
ters� We will always indicate in the text the parameters on which C� and
C� depend
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�� Approximation in a Hilbert space

The problems of approximation theory are simplest when they take place
in a Hilbert space H Yet� the results in this case are not only illuminating
but very useful in applications It is worthwhile� therefore� to begin with a
brief discussion of linear and nonlinear approximation in this setting
LetH be a separable Hilbert space with inner product h�� �i and norm k�kH

and let �k� k � �� �� � � �� be an orthonormal basis forH We shall consider two
types of approximation corresponding to the linear and nonlinear settings
For linear approximation� we use the linear space Hn �� spanf�k � � �

k � ng to approximate an element f � H We measure the approximation
error by

En�f�H �� inf
g�Hn

kf � gkH� �����

As a counterpart in nonlinear approximation� we have n�term approximation

which replaces Hn by the space �n consisting of all elements g � H which
can be expressed as

g �
X
k��

ck�k� �����

where � � IN is a set of indices with �� � n� Notice that in contrast to
Hn� the space �n is not linear A sum of two elements in �n will in general
need �n terms in its representation by the �k Analogous to En� we have
the error of n�term approximation

�n�f�H �� inf
g��n

kf � gkH� �����

We pose the following question� Given a real number � � �� for which
elements f � H do we have

En�f�H �Mn��� n � �� �� � � � � �����

for some constant M � � Let us denote this class of f by A���Hn�� and
de�ne jf jA���Hn�� as the in�mum of all M for which ����� holds A� is called
an approximation space� it gathers under one roof all f � H which have a
common approximation order We denote the corresponding class for �n by
A����n��
We shall see that it is easy to describe the above approximation classes in

terms of the coe�cients in the orthogonal expansion

f �
�X
k��

hf� �ki�k� �����

� We use IN to denote the set of natural numbers and �S to denote the cardinality of a
�nite set S�
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Let us use in this section the abbreviated notation

fk �� hf� �ki� k � �� �� � � � � �����

Consider �rst the case of linear approximation The best approximation
to f from Hn is given by the projection

Pnf ��
nX

k��

fk�k ���	�

onto Hn and the approximation error satis�es

En�f�
�
H �

�X
k�n��

jfkj�� ���
�

We can characterize A� in terms of the dyadic sums

Fm ��

�
� �mX
k��m����

jfkj�
�
A
���

� m � �� �� � � � � �����

Indeed� it is almost a triviality to see that f � A���Hn�� if and only if

Fm �M��m�� m � �� �� � � � � ������

and the smallest M for ������ is equivalent to jf jA���Hn�� To some� ������
may not seem so pleasing since it is so close to a tautology However� it usu�
ally serves to characterize the approximation spaces A���Hn�� in concrete
settings
It is more enlightening to consider a variant of A� Let A�

� ��Hn�� denote
the set of all f such that

jf jA�
� ��Hn�� ��

� �X
n��

�n�En�f�H��
�

n

����
������

is �nite From the monotonicity of Ek�f�H� it follows that

jf jA�
� ��Hn�� �

� �X
k��

��k�E�k�f�
�
H

����
� ������

The condition for membership in A�
� is slightly stronger than membership

in A� The latter requires that the sequence �n�En� is bounded while the
former requires that it is square summable with weight ��n
The space A�

� ��Hn�� is characterized by

�X
k��

k��jfk j� �M� ������

and the smallest M satisfying ������ is equivalent to jf jA�
� ��Hn�� We shall
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give the simple proof of this fact since the ideas in the proof are used often
First of all� note that ������ is equivalent to

�X
m��

��m�F �
m � �M ��� ������

with M of ������ and M � of ������ comparable Now� we have

��m�F �
m � ��m�E�m���f�

�
H�

which� when using ������� gives one of the implications of the asserted equiv�
alence On the other hand�

��m�E�m�f�
�
H � �

�m�
�X

k�m��

F �
k

and therefore
�X

m��

��m�E�m�f�
�
H �

�X
m��

��m�
�X

k�m��

F �
k � C

�X
k��

��k�F �
k

which gives the other implication of the asserted equivalence
Let us digest these results with the following example We take for H

the space L��IT � of ���periodic functions on the unit circle IT which has
the Fourier basis �p

��
eikx� k � ZZ  �Note here the indexing of the basis

functions on ZZ rather than IN� The space Hn �� spanfeikx � jkj � ng is
identical with the space Tn of trigonometric polynomials of degree � n The
coe�cients with respect to this basis are the Fourier coe�cients �f�k� and
therefore ������ says that A�

� ��Tn�� is characterized by the conditionX
k�ZZnf�g

jkj��j �f�k�j� �M� ������

If � is an integer� ������ describes the Sobolev space W��L��IT �� of all ���
periodic function with their ��th derivative in L��IT � and the sum in ������
is the square of the semi�norm jf jW�

�
�L��IT�� For � non�integer ������ is �by

de�nition� the fractional order Sobolev space W��L��IT �� One should note
that one�half of the characterization ������ of A�

� ��Tn�� gives the inequality� �X
n��

�n�En�f�H��
�

n

����
� Cjf jW��L��IT�� ������

which is slightly stronger than the inequality

En�f�H � Cn��jf jW��L��IT�� ����	�

which is more frequently found in the literature
Using ������� it is easy to prove that the space A���Tn�� is identical with
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the Lipschitz space Lip��� L��IT �� �We introduce and discuss amply the
Lipschitz spaces in x�� and x���
Let us return now to the case of a general Hilbert space H and nonlinear

approximation from �n We can characterize the space A����n�� by using
the rearrangement of the coe�cients fk  We denote by �k�f� the k�th largest
of the numbers jfkj We �rst want to observe that f � A����n�� if and only
if

�n�f� �Mn������ ����
�

and the in�mum of all M which satisfy ����
� is equivalent to jf jA����n��
Indeed� we have

�n�f�
�
H �

X
k�n

�k�f�
�� ������

Therefore� if f satis�es ����
�� then clearly

�n�f�H � CMn���

so that f � A����n�� and we have one of the implications in the asserted
characterization On the other hand� if f � A����n��� then

��n�f�
� � n��

�nX
m�n��

�m�f�
� � n���n�f��H � jf j�A����n��n

������

Since a similar inequality holds for ��n���f�� we have the other implication
of the asserted equivalence
It is also easy to characterize other approximation classes such as the

A�
� ���n�� which is the analogue ofA�

� ��Hn�� We shall formulate such results
in x�
Let us return to our example of trigonometric approximation Approxi�

mation by �n is n�term approximation by trigonometric sums It is easy
to see the distinction between linear and nonlinear approximation in this
case Linear approximation corresponds to a certain decay in the Fourier
coe�cients �f�k� as the frequency k increases whereas nonlinear approxima�
tion corresponds to a decay in the rearranged coe�cients Thus� nonlinear
approximation does not recognize the frequency location of the coe�cients
If we reassign the Fourier coe�cients of a function f � A� to new fre�
quency locations� the resulting function is still in A� Thus� in the nonlinear
case� there is no correspondence between rate of approximation to classical
smoothness as there was in the linear case It is okay to have large coef�
�cients at high frequency just as long as there are not too many of them
For example� the functions eikx are obviously in all of the spaces A� even
though their derivatives are large when k is large
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�� Approximation by piecewise constants

For our next taste of nonlinear approximation� we shall consider in this sec�
tion several types of approximation by piecewise constants corresponding to
linear and nonlinear approximation Our goal is to see in this very simple
setting the advantages of nonlinear methods We begin with a target func�
tion f de�ned on � �� ��� �� and approximate it in various ways by piecewise
constants with n pieces We shall be interested in the e�ciency of such ap�
proximation� ie how the error of approximation decreases as n tends to
in�nity We shall see that� in many cases� we can characterize the func�
tions f which have certain approximation orders �eg O�n���� � 	 � � ��
Such characterizations will illuminate the distinctions between linear and
nonlinear approximation

���� Linear approximation by piecewise constants

We begin by considering approximation by piecewise constants on parti�
tions of � which are �xed in advance This will be our reference point for
comparisons with nonlinear approximation that follow This form of linear
approximation is also important in numerical computation since it is the
simplest setting for FEM and other numerical methods based on approx�
imation by piecewise polynomials We shall see that there is a complete
understanding in this case of the properties of the target function needed to
guarantee certain approximation rates As we shall amplify on below� this
theory explains what we should be able to achieve with proper numerical
methods and also tells us what form good numerical estimates should take
Let N be a positive integer and let T �� f� �� t� 	 t� 	 � � � 	 tN �� �g

be an ordered set of points in � These points determine a partition � �
fIkgNk�� of � into N disjoint intervals Ik �� �tk��� tk�� � � k � n Let S��T �
denote the space of piecewise constant functions relative to this partition
The characteristic functions 


I
� I � �� are a basis for S��T �� each function

S � S��T � can be represented by
S �

X
I�	

cI
I � �����

Thus� S��T � is a linear space of dimension N 
For � 	 p � �� we introduce the error in approximating a function

f � Lp��� �� by the elements of S��T ��
s�f� T �p �� inf

S�S��T �
kf � SkLp
����� �����

We would like to understand what properties of f and T determine s�f� T �p
For the moment� we shall restrict our discussion to the case p � � which
corresponds to uniformly continuous functions f on ��� �� to be approximated
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in the uniform norm �L��norm� on ��� �� The quality of approximation that
T provides is related to the mesh length

�T �� max
��k�N

jtk�� � tk j� �����

We shall �rst give estimates for s�f� T �� and then later ask in what sense
these estimates are best possible We recall the de�nition of the Lipschitz
spaces Lip � For each � � � � � and M � �� we let LipM � denote the set
of all functions f on � such that

jf�x�� f�y�j �M jx� yj��
Then Lip � �� �M��LipM � The in�mum of all M for which f � LipM �
is by de�nition jf jLip � In particular� f � Lip � if and only if f is absolutely
continuous and f � � L�� moreover� jf jLip � � kf �kL� 
If the target function f � LipM�� then

s�f� T �� �M��T���
�� �����

Indeed� we de�ne the piecewise constant function S � S��T � by
S�x� �� f��I�� x � I� I � �n�

with �I the midpoint of I  Then� jx� �I j � �T��� x � I � and hence

kf � SkL�
���� �M��T���
� �����

which gives �����
We turn now to the question of whether the estimate ����� is the best we

can do We shall see that this is indeed the case in several senses First�
suppose that for a function f we know that

sT �f�� �M��T � �����

for every partition T  Then� we can prove that f is in Lip � and moreover
jf jLip � � M  Results of this type are called inverse theorems in approxi�
mation theory whereas results like ����� are called direct theorems
To prove the inverse theorem� we need to estimate the smoothness of f

from the approximation errors s�f� T �� In the case at hand� the proof
is very simple Let S�T be a best approximation to f from x��T � in the
L�����norm �A simple compactness argument show the existence of best
approximants� If x� y are two points from � which are in the same interval
I � ��T �� then from �����

jf�x�� f�y�j � jf�x�� ST �x�j� jf�y�� ST �y�j ��	�

� jST �x�� ST �y�j � �s�f� T �� � �M��T

because ST �x� � ST �y� �ST is constant on I� Since we can choose T so
that �T is arbitrarily close to jx� yj� we obtain

jf�x�� f�y�j � �sT �f�� � �M��T �� � �M jx� yj� ���
�
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which shows that f � Lip � and jf jLip � � �M 
Here is one further observation on the above analysis If f is a function

for which s�f� T �� � ���T � holds for all T � then the above argument gives
that f�x � h� � f�x� � o�h�� h 	 �� for each x � � Thus f is constant
�its derivative is � everywhere� This is called a saturation theorem in ap�
proximation theory Only trivial functions can be approximated with order
better than O��T �
The above discussion is not completely satisfactory for numerical analy�

sis In numerical algorithms� we usually have only a sequence of partitions
However� with some massaging� the above arguments can be applied in this
case as well Consider� for example� the case where

 n �� fk�n � � � k � ng �����

consists of n equally spaced points from � �with spacing ��n� Then� for
each � 	 � � �� a function f satis�es

sn�f�� �� s�f� n�� � O�n��� ������

if and only if f � Lip� �see DeVore and Lorentz ������� The saturation
result holds as well If sn�f�� � o�n��� then f is constant Of course the
direct estimates in this setting follow from ����� The inverse estimates are
a little more subtle and use the fact that the sets  n mix� that is� each
point x � ��� �� falls in the !middle" of many intervals from the partitions
associated to  n If we consider partitions that do not mix then� while
direct estimates are equally valid� the inverse estimates generally fail A
case in point are the dyadic partitions whose sets of breakpoints  �n are
nested A piecewise constant function from S�� �n� will be approximated
exactly by elements from S�� �m�� m 
 n� and yet these functions are not
even continuous
An analysis similar to that given above holds for approximation in the

Lp� for � � p 	 �� and even for � 	 p 	 � To explain these results� we
de�ne the space Lip��� Lp����� � 	 � � �� � 	 p � �� which is the set of
all functions f � Lp��� for which

kf��� h�� fkLp
����h� �Mh�� � 	 h 	 �� ������

Again� the smallest M 
 � for which ������ holds is jf jLip���Lp���
In analogy with ������ there are ST � x��T � such that

s�f� T �p � kf � ST kLp��� � Cpjf jLip���Lp������T ������

with the constant Cp depending at most on p Indeed� for p 
 �� we can
de�ne ST by

ST �x� �� aI�f�� x � I� I � ��T �� ������



Acta Numerica �	

with �
aI�f� ��

�

jI j
Z
I
f dx

the average of f over I  With this de�nition of ST one easily derives ������
�see x� of Chapter �� in DeVore and Lorentz ������� When � 	 p 	 �� we
replace aI�f� by the median of f on the interval I �see Brown and Lucier
�������
Inverse estimates follow the same lines as the case p �� discussed above

We limit further discussion to the case  n of equally spaced breakpoints
given by ����� Then� if f satis�es

sn�f�p �� s�f� n�p �Mn��� n � �� �� � � � � ������

holds for some � 	 � � �� M � � then f � Lip��� Lp���� and
jf jLip���Lp���� � CpM�

The saturation theorem is also valid� if sn�f�p � o�n���� n	�� then f is
constant
In summary� we know precisely when a function satis�es sn�f�p � O�n����

n � �� �� � � �� it should be in the space Lip��� Lp���� This provides a guide to
the construction and analysis of numerical methods based on approximation
by piecewise constants For example� suppose that we are using S�� n� to
generate a numerical approximation Anu to a function u which is known to
be in Lip��� Lp���� The values of u would not be known to us but would
be generated by our numerical method The estimates ����� or ������ tell us
what we could expect of the numerical method in the best of all worlds If
we are able to prove that our numerical method satis�es

ku�AnukLp��� � Cpjf jLip���Lp����n��� n � �� �� � � � � ������

we can rest assured that we have done the best possible �save for the numer�
ical constant Cp� If we cannot prove such an estimate then we should try
to understand why Moreover� ������ is the correct form of error estimates
based on approximation by piecewise constants on uniform partitions
There are numerous generalizations of the results given in this section

First of all� piecewise constants can be replaces by piecewise polynomials
of degree r with r arbitrary but �xed �see x��� One can require that the
piecewise polynomials have smoothness Cr�� at the breakpoints with an
identical theory Also� uniform partitions can be replaced by quasi�uniform
partitions �n which means that the ratio between the lengths of arbitrarily
chosen intervals from �n have ratios bounded independently of the intervals
and of n Of course� inverse theorems still require some mixing condition

� We shall use the notation jEj to denote the Euclidean measure of a set E throughout
this paper�
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Moreover� all of these results hold in the multivariate case as is discussed in
x�� We can also do a more subtle analysis of approximation orders where
O�n��� is replaced by more general statement on the rate of decay of the
error This is important for a fuller understanding of approximation theory
and its relationship to function spaces We shall discuss these issues in x�
after the reader has more familiarity with more fundamental approximation
concepts

���� Nonlinear approximation by piecewise constants

In linear approximation by piecewise constants� the partitions are chosen in
advance and are independent of the target function f  The question arises
whether there is anything to be gained by allowing the partition to depend on
f  This brings us to try to understand approximation by piecewise constants
where the number of pieces is �xed but the actual partition can vary with
the target function This is the simplest case of what is called variable knot
spline approximation It is also one of the simplest and most instructive
examples of nonlinear approximation
If T is a �nite set of points � �� t� 	 t� 	 � � �	 tn �� � from �� we denote

by S��T � the functions S which are piecewise constant with breakpoints
from T  Let �n �� ��T�n��S��T �� where �T denotes the cardinality of T 
Each function in �n is piecewise constant with at most n pieces Note that
�n is not a linear space� for example� adding two functions in �n results
in a piecewise constant function but with as many as �n pieces Given
f � Lp���� � 	 p � �� we introduce

�n�f�p �� inf
S��n

kf � SkLp���� ������

which is the Lp�error of nonlinear piecewise constant approximation to f 
As noted earlier� we would like to understand what properties of f deter�

mine the rate of decrease of �n�f�p We shall begin our discussion with the
case p � � which corresponds to approximating the continuous function f
in the uniform norm We shall show the following result of Kahane ������
For a function f � C��� we have

�n�f�� � M
�n � n � �� �� � � � � ����	�

if and only if f is of bounded variation on � and jf jBV �� Var��f� is identical
with the smallest constant M for which ����	� holds
We sketch the proof of Kahane�s result since it is quite simple and in�

structive Suppose �rst that f � BV with M �� Var��f� Since f is� by
assumption continuous� we can �nd T �� f� �� t�� � � � � tn �� �g such that
Var
tk���tk�f �M�n� k � �� � � � � n If ak is the median value of f on �tk��� tk��
and Sn�x� �� ak� x � �tk��� tk�� k � �� � � � � n� then Sn � �n and satis�es

kf � SnkL���� �M��n ����
�
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which shows ����	�
Conversely� suppose that ����	� holds for some M � � Let Sn � �n

satisfy kf � SnkL���� � M��
�n with  � � If x� �� � 	 x� 	 � 	 xm �� �

is an arbitrary partion for � and �k is the number of values that Sn attains
on �xk��� xk�� then one easily sees that

jf�xk��f�xk���j � ��kkf�SnkL���� � ��k�M���
�n � k � �� �� � � � � m� ������

Since
Pm

k�� �k � m� n� we have

mX
k��

jf�xk�� f�xk���j �
mX
k��

��k�M���
�n � �M � ��� � m

n �� ������

Letting n	� and then 	 � we �nd

mX
k��

jf�xk�� f�xk���j �M ������

which shows that Var��f� �M 
There are elements of the above proof that are characteristic of nonlinear

approximation First of all the partition which provides ����	� depends on
f  Secondly� this partition is obtained by balancing the variation of f over
the intervals I in this partition In other types of nonlinear approxima�
tion� VarI�f� will be replaced by some other expression B�f� I� de�ned on
intervals I �or other sets in more general settings�
Let us pause now for a moment to compare Kahane�s result with what

we know about linear approximation by piecewise constants in the uniform
norm In both cases� we can characterize functions which can be approx�
imated with e�ciency O�n��� In the case of linear approximation from
S��Tn� �as described in the previous section�� this is the class of functions
Lip��� L����� or equivalently functions f for which f � � L���� On the
other hand� for nonlinear approximation� it is the class of functions BV It
is well�known that BV � Lip��� L����� with equivalent norms Thus in both
cases the function is required to have one order of smoothness but measured
in quite di�erent norms For linear approximation the smoothness is mea�
sured in L� which is the same norm as the approximation takes place For
nonlinear approximation the smoothness is measured in L� What is the
signi�cance of measuring smoothness in L�# The answer lies in the Sobolev
embedding theorem Among the spaces Lip��� Lp����� � 	 p � �� p � �
is the smallest value for which this space is embedded in L���� In other
words� the functions in Lip��� L����� barely get into L���� �the space in
which we measure error� and yet we can approximate them quite well
An example might be instructive Consider the function f�x� � x� with

� 	 � 	 � This function is in Lip��� L����� and in no higher order Lips�
chitz space It can be approximated by elements of S��Tn� with order exactly
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Fig� �� Best selection of breakpoints for f�x� � x��� when n � ��

O�n��� On the other hand� this function is clearly of bounded variation
�being monotone� and hence can be approximated by the elements of �n
to order O�n��� It is easy to see how to construct such an approximant
Consider the graph of f as depicted in Figure �
We divide the range of f �which is the inteval ��� ��� on the y�axis into

n equal pieces corresponding to the y values yk �� k�n� k � �� �� � � � � n
The preimage of these points are the xk �� �k�n����� k � �� �� � � � � n� and
these points form our set T of breakpoints for the best piecewise polynomial
approximant from �n
It will be useful to have a way of visualizing spaces of functions as they

occur in our discussion of approximation This will give us a simple way to
keep track of various results and also add to our understanding We shall
do this by using points in the upper right quadrant of the plane The x�axis
will correspond to the Lp spaces except that Lp is identi�ed with x � ��p
not with x � p The y axis will correspond to the order of smoothness
For example y � � will mean a space of smoothness order one �or one time
di�erentiable if you like� Thus ���p� �� corresponds to a space of smoothness
� measured in the Lp�norm For example� we could identify this point with
the space Lip��� Lp� although when we get to �ner aspects of approximation
theory we may want to vary this interpretation slightly
Figure � gives a summary of our knowledge so far The vertical line

segment �marked L� connecting ��� �� �L�� to ��� �� �Lip��� L��� corre�
spond to the spaces we engaged when we characterized approximation order
for linear approximation �approximation from S��Tn�� For example� ��� ��
�Lip��� L��� was the space of functions with approximation order O�n���
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Fig� �� Graphical depiction for linear and nonlinear approximation in C�

On the other hand� for nonlinear approximation from �n� we saw that the
point ��� �� �Lip��� L��� describes the space of functions which are approxi�
mated with order O�n��� We shall see later �x��� that the point ��� �� on
the line connecting ��� �� to ��� �� �marked NL� describes the space of func�
tions approximated with order O�n��� �a few new wrinkles come in here
which is why we are postponing a precise discussion�
More generally� approximation in Lp� � 	 p � �� is depicted in Figure

� The spaces corresponding to linear approximation lie on the vertical
line segment �marked L� connecting ���p� �� �Lp� to ���p� �� �Lip��� Lp�
Whereas� the line segment �marked NL� emanating from ���p� �� with slope
one will describe the nonlinear approximation spaces The points on this
line are of the form ����� �� with ��� � ����p Again� this line segment in
nonlinear approximation corresponds to the limiting spaces in the Sobolev
embedding theorem Spaces to the left of this line segment are embedded
into Lp� those to the right are not
There are various generalizations of nonlinear piecewise constant approx�

imation which we shall address in due time For univariate approximation�
we can replace piecewise constant functions by piecewise polynomials of �xed
degree r with n free knots with a similar theory �x��� However� multivari�
ate approximation by piecewise polynomials leads to new di�culties as we
shall see in x��
Approximation by piecewise constants �or more generally piecewise poly�

nomials� with free knots is used in numerical PDE�s It is particularly useful
when the solution is known to develop singularities An example would be a
nonlinear transport equations in which shocks appear �see x��� The signi��
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cance of the above results to the numerical analyst is that it clari�es what is
the optimal performance that can be obtained by such methods Once the
norm has been chosen in which the error is to be measured then we under�
stand the minimal smoothness which will allow a given approximation rate
We also understand what form error estimates should take For example�
consider numerically approximating a function u by a piecewise constant
function Anu which n free knots We have seen that� in the case of uniform
approximation� the correct form of the error estimate is

ku�AnukL���� � C
jujBV
n

������

This is in contrast to the case of �xed knots where jujBV is replaced by
ku�kL���� A similar situation exists when error is measured in other Lp�
norms as will be ampli�ed upon in x�
The above theory of nonlinear piecewise constant approximation also tells

us the correct form for local error estimators Approximating in L� we
should estimate local error by local variation Approximating in Lp� the
variation will be replaced by other set functions gotten from certain Besov
or Sobolev norms �see x���

���� Adaptive approximation by piecewise constants

One disadvantage of piecewise constant approximation with free knots is that
it is not always easy to �nd partitions which realize the optimal approxima�
tion order This is particularly true in the case of numerical approximation
when the target function is not known to us but is only approximated as
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we proceed numerically One way to ameliorate this situation is to gener�
ate partitions adaptively New breakpoints are added as new information is
gained about the target function We shall discuss this type of approxima�
tion in this section with the goal of understanding what is lost in terms of
accuracy of approximation when adaptive partitions are used in place of free
partitions Adaptive approximation is also important because it generalizes
readily to the multivariate case when intervals are replaced by cubes
The starting point for adaptive approximation is a function E�I� which is

de�ned for each interval I � � and estimates the approximation error on I 
Namely� let E�f� I�p be the local error in approximating f by constants in
the Lp�I��norm�

E�f� I�p �� inf
c�IR

kf � ckLp�I�� ������

Then� we assume that E satis�es
E�f� I�p � E�I� ������

In numerical settings� E�I� is an upper bound for E�f� I�p obtained from
the information at hand It is at this point that approximation theory and
numerical analysis sometimes part ways Approximation theory assumes
enough about the target function to have an e�ective error estimator E � a
property not always veri�able for numerical estimators
To retain the spirit of our previous sections� let us assume for our illustra�

tion that p � � so that we are approximating continuous functions in the
L���� norm In this case� a simple upper bound for E�f� I�� is provided
by

E�f� I�� � VarI�f� �
Z
I
jf ��x�j dx ������

which holds whenever these quantities are de�ned for the continuous func�
tion f �ie f should be in BV for the �rst estimate f � � L� for the second�
Thus� we could take for E any of the three quantities appering in ������ A
common feature of each of these error estimators is that

E�I�� � E�I�� � E�I� � I��� I� � I� � � ������

Adaptive algorithms create partitions of � consisting of dyadic intervals
We shall denote by D �� D��� the set of all dyadic intervals in �� for
speci�city we take these intervals to be closed on the left endpoint and open
on the right Each interval I � D has two children These are the intervals
J � D such that J � I and jJ j � jI j�� If J is a child of I then I is called
the parent of J  Intervals J � D such that J � I are descendants of I those
with I � J are ancestors of I 
A typical adaptive algorithm proceeds as follows We begin with our

target function f and an error estimator E and a target tolerance  which
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relates to the �nal approximation error we want to attain At each step
of the algorithm� we have a set G of good intervals �on which the local
error meets the tolerance� and a set of bad intervals B �on which we do not
meet the tolerance� Good intervals become members of our �nal partition
Bad intervals are further processed� they are halved and their children are
checked for being good or bad
Initially� we check E��� If E��� �  then we de�ne G � f�g� B �� f�g

and we terminate the algorithm On the other hand� if E��� � � we de�ne
G � f�g� B �� f�g and proceed with the following general step of the
algorithm�
General Step� Given any interval I in the current set B of bad intervals�

we process it as follows For each of the two children J of I � we check E�J�
If E�J� �  then J is added to the set of good intervals If E�J� � � then
J is added to the set of bad intervals Once a bad interval is processed it is
removed from B
The algorithm terminates when B � � and the �nal set of good intervals

is denoted by G� �� G��f� The intervals in G� form a partition of �� ie
they are pairwise disjoint and their union is all of � We de�ne

S� ��
X
I�G�

cI
I � ����	�

where cI is a constant which satis�es

kf � cIkL��I� � E�I� � � I � G��
Thus� S� is a piecewise constant function which approximates f to tolerance
�

kf � S�kL���� � � ����
�

The approximation e�ciency of the adaptive algorithm depends on the
number N��f� �� �G��f� of good intervals We are interested in estimating
N� so that we can compare adaptive e�ciency with free knot spline approx�
imation For this we recall the space L logL which consists of all integrable
functions for which

kfkL logL ��
Z
�
jf�x�j�� � log jf�x�j� dx

is �nite This space contains all spaces Lp� p � �� but is strictly contained
in L���� We have shown in DeVore ���
	� that any of the three estimators
of ������ satisfy

N��f� � C
kf �kL logL


� ������

We shall give the proof of ������ which is not di�cult It will allow us
to introduce some concepts that are useful in nonlinear approximation and
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numerical estimation such as the use of maximal functions The Hardy�
Littlewood maximal function Mf is de�ned for a function in L���� by

Mf�x� �� sup
I�x

�
jIj

Z
I
jf�y�j dy� ������

where the sup is taken over all intervals I � � which contain x Thus
Mf�x� is the smallest number that bounds all of the averages of jf j over
intervals which contain x The maximal function Mf is at the heart of
di�erentiability of functions �see Chapter � of Stein ���	��� We shall need
the fact �see pages ������� of Bennett and Sharpley ���

�� that

kfkL logL �
Z
�
Mf�y� dy� ������

We shall use Mf to count N� We assume that G� � f�g Suppose that
I � G� Then the parent J of I satis�es

 	 E�J� �
Z
J
jf ��y�j dy � jJ jMf ��x�� ������

for all x � J  In particular� we have

 � jJ j inf
x�I

Mf ��x� � jJ j
jI j
Z
I
Mf ��y� dy � �

Z
I
Mf ��y� dy� ������

Since the intervals in G� are disjoint� we have

N� � �
X
I�G�

Z
I
Mf ��y� dy � �

Z
�
Mf ��y� dy � Ckf �kL logL�

where the last inequality uses ������ This proves ������
In order to compare adaptive approximation with free knot splines� we

introduce the adaptive approximation error

an�f�� �� inff � N��f� � ng� ������

Thus� with the choice  �
Ckf �kL log L

n � and C the constant in ������� our
adaptive algorithm generates a partition G with at most n dyadic intervals
and from ����
�� we have

an�f�� � kf � S�kL���� � C
kf �kL logL

n
� ������

Let�s compare an�f�� with the error �n�f�� for free knot approximation
In free knot splines we obtained the approximation rate �n�f�� � O�n���
if and only if f � BV This condition is slightly weaker that requiring that
f � is in L���� �the derivative of f should be a Borel measure� On the other
hand� assuming that f satis�es the slightly stronger condition f � � L logL
we �nd an�f�� � C�n Thus� the cost in using adaptive algorithms is slight
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from the viewpoint of the smoothness condition required on f to produce
the order O�n���
It is much more di�cult to prove error estimates for numerically based

adaptive algorithms What is needed is a comparison �from above and be�
low� of the error estimator E�I� with the local approximation error E�f� I�p
or one of the good estimators like

R
I jf �j Nevertheless� the above results are

useful in that they give the form such error estimators E�I� should take and
also give the form the error analysis should take
There is a comparable theory for adaptive approximation in other Lp�

norms and even in several variables �Birman and Solomjak ����	��

���� n�term approximation� a �rst look

There is another view toward the results we have obtain thus far which is
important because it generalizes readily to a variety of settings In each of
the three types of approximation �linear� free knot� and adaptive�� we have
constructed an approximant of the form

S �
X
I��

cI
I � ������

where � is a set of intervals and the cI are constants Thus� a general
approximation problem which would encompass all three of the above is
to approximate using sums ������ where �� � n This is called n�term
approximation We formulate this problem more formally as follows
Let ��n be the set of all piecewise constant functions which can be written

as in ������ with �� � n Then� ��n is a nonlinear space As in our previous
considerations� we de�ne the Lp�approximation error

��n�f�p �� inf
S���n

kf � SkLp���� ����	�

Note that we do not require that the intervals of � form a disjoint partition�
we allow possible overlap in the intervals
It is easy to see that the approximation properties of n�term approxima�

tion is equivalent to that of free knot approximation Indeed� �n � ��n �
��n� n � �� �� � � �� and therefore

��n�f�p � ��n�f�p � �n�f�p� ����
�

Thus� for example� a function f satis�es ��n�f�p � O�n��� if and only if
��n�f�p � O�n���
The situation with adaptive algorithms is more interesting and enlight�

ening In analogy to the above� one de�nes �an as the set of functions S
which can be expressed as in ������ but now with � � D and de�nes �an
accordingly The analogue of ����
� would compare �an and am Of course�
�an � an� n � �� �� � � � But no comparison acn � �an� n � �� �� � � �� is valid
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for any �xed constant c 
 � The reason is that adaptive algorithms do
not create arbitrary functions in �an For example� the adaptive algorithm
cannot have a partition with just one small dyadic interval� it automatically
carries with it a certain entourage of intervals We can explain this in more
detail by using binary trees
Consider any of the adaptive algorithms of the previous section Given an

 � �� let B� be the collection of all I � D such that E�I� �  �the collection
of bad intervals� Then� whenever I � B� its parent is also Thus B� is a
binary tree with root � The set of dyadic intervals G� is precisely the set
of good intervals I �ie E�I� � � whose parent is bad The ine�ciency
of the adaptive algorithm occurs when B� contains a long chain of intervals
I� � I� � � � � � Im with Ik the parent of Ik�� with the property that the
other child of Ik is always good� k � �� � � � � m� � This occurs for example
when the target function f has a singularity at some point x� � Im but is
smooth otherwise The partition G� will contain one dyadic interval at each
level �the sibling Jk of Ik� Using free knot partitions� we would zoom in
faster on this singularity and thereby avoid this entourage of intervals Jk
There are ways of modifying the adaptive algorithm to make it com�

parable to approximation from �an which we now brie$y describe If we
are confronted with a long chain I� � I� � � � � � Im of bad cubes from
B�� the adaptive algorithm would place each of the sibling intervals Jk
of Ik � k � �� � � � � m� into the good partition We can decrease the num�
ber of intervals needed in the following way We �nd the largest subchain
I� � Ij� � Ij� � � � � � Ij� � Im for which E�Ij�� n Ij� 	 � j � �� � � � � �
Then� it is su�cient to use the intervals Iji � i � �� � � � � � in place of the
intervals Jk� k � �� � � � � m in the construction of an approximant from �an
�see DeVore and Popov ���
	� or Cohen� DeVore� Petrushev� and Xu ����	�
for a further elaboration on these ideas� 

���� Wavelets� a �rst look	 the Haar system

The two topics of approximating functions and representing them are closely
related For example� approximation by trigonometric sums is closely related
to the theory of Fourier series Is there an analogue in approximation by
piecewise constants# The answer is yes There are in fact several represen�
tations of a given function f using a basis of piecewise constant functions
The most important of these is the Haar basis which we shall now describe
Rather than simply introducing the Haar basis and giving its properties�

we prefer to present this topic from the viewpoint of multiresolution analysis
�MRA� since this is the launching point for the construction of wavelet bases
which we shall discuss in more detail in x	 Wavelets and multilevel methods
are coming into increasingly more favor in numerical analysis
Let us return to the linear spaces S�� n� of piecewise constant functions
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on the partition of � with spacing ��n We shall only need the case n � �k

and we denote this space by Sk �� S�� �k� The characteristic functions 
I �
I � Dk���� are a basis for Sk If we approximate well a smooth function f by
a piecewise constant function S �

P
I�Dk

cI
I from Sk� then the coe�cients
cI will not change much� cI will be close to cJ if I is close to J  We would
like to take advantage of this fact to �nd a more compact representation for
S That is� we should be able to �nd a more favorable basis for Sk for which
the coe�cients of S are either zero or small
The spaces Sk form a ladder� Sk � Sk��� k � �� �� � � � We let Wk ��

Sk�� � Sk be the orthogonal complement of Sk in Sk�� This means that
Wk consists precisely of the functions in w � Sk�� which are orthogonal to
Sk� Z

�
w�x�S�x� dx� �� for all S � Sk�

We then have

Sk�� � Sk �Wk � k � �� �� � � � � ������

Thus Wk represents the detail that must be added to Sk in order to obtain
Sk��
The spaces Wk have a very simple structure Consider for example W ��

W� Since S� � S� �W� and S� has dimension � and S� dimension �� the
space W� will be spanned by a single function from S� Orthogonality gives
us that this function is a nontrivial multiple of

H�x� �� 


������

� 


������

�

�
�� � � x 	 ���

��� ��� � x 	 ��
������

H is called the Haar function More generally� it is easy to see that Wk is
spanned by the following �normalized� shifted dilates of H �

Hj�k�x� �� �
k��H��kx� j�� j � �� � � � � �k � �� ������

The function Hj�k is a scaled version of H �tted to the interval ��k �j� j� ��
which has L�����norm one� kHj�kkL���� � �
From ������� we �nd

Sm � S� �W� � � � � �Wm��� ������

It follows that 

�
together with the functions Hj�k� j � �� � � � � �

k � �� k �
�� � � � � m� �� form an orthonormal basis for Sm which is� in many respects�
better than the old basis 


I
� I � Dm But before taking up that point� we

want to see that we can take m 	 � in ������ and thereby obtain a basis
for L����
It will be useful to have an alternate notation for the Haar functions Hj�k

Each j� k corresponds to the dyadic interval I �� ��k �j� j � �� We shall
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write

HI �� Hj�k � jI j����H��k � �j�� ������

From ������ we see that each S � Sm has the representation
S � hS� 


�
i


�
�

X
I����k�mDk

hS�HIiHI � ������

where

hf� gi ��
Z
�
f�x�g�x� dx ������

is the inner product in L����
Let Pm denote the orthogonal projector onto Sm Thus� Pmf is the best

L����� approximation to f from Sm It is the unique element in Sm such
that f � Pmf is orthogonal to Sm Using the orthonormal basis of �������
we see that

Pmf � hf� 
�i
� �
X

I����k�mDk

hf�HIiHI ������

Since dist�f�Sm�L���� 	 �� m 	 �� we can take the limit in ������ to
obtain

f � hf� 

�
i


�
�
X
I�D

hf�HIiHI ����	�

In otherwords� 

�
together with the functions HI � I � D� form an orthonor�

mal basis� called the Haar basis for L����
Some of the advantages of the Haar basis for Sm over the standard basis

�

I
� I � Dm� are obvious If we wish to increase our resolution of the

target function by approximating from Sm�� rather than Sm� we do not
need to recompute our approximant Rather we merely add a layer of the
decomposition ����	� to the approximant corresponding to the wavelet space
Wm�� Of course� the orthogonality of Wm to Sm means that this new
information is independent of our previous information about f  It is also
clear that the coe�cients of the basis function HI � I � Dm� tend to zero as
m	� Indeed� we have

kfk�L���� � jhf� 
Iij� �
X
I�D

jhf�HIij�� ����
�

Therefore� this series converges absolutely

��
� n�term approximation� second look

We shall next consider n term approximation using the Haar basis This is
a special case of n�term wavelet approximation considered in more detail in
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x	� Let �Hn denote the collection of all functions S of the form
S � c


�
�
X
I��

cIHI � ������

where � � D is a set of dyadic intervals with �� � n As before� we let

�Hn �f�p �� inf
S��Hn

kf � SkLp��� ������

be the error of n�term approximation
We shall consider �rst the case of approximation in L���� where the

matter is completely transparent In fact� in this case� in view of the norm
equivalence ����
�� we see that a best approximation from �Hn is given by

S � hf� 

�
i


�
�
X
I��

hf�HIiHI � ������

where � � D is a set corresponding to the n biggest Haar coe�cients Since
there may be coe�cients of equal absolute values� best approximation is not
necessarily unique
Using ������� it is easy to characterize the functions f which satisfy

�Hn �f�� �Mn�� ������

in terms of their Haar coe�cients Let �n �� �n�f� be the absolute of the
n�th largest Haar coe�cient We claim that for any � � �� a function f
satis�es ������ if and only if

�n�f� � M �

n�����
� ������

Moreover the smallest constant M in ������ is equivalent �independently of
f� to the smallest constant M � in ������ We give the simple proof of this
fact since it shows the power of having characterizations of function norms
�in this case of L����� in terms of coe�cients
In view of ������� we have

�Hn �f�
�
� �

X
m�n

�m�f�
� ������

Therefore� if f satis�es ������� then

n��n�f�
� �

�nX
m�n��

�m�f�
� � �Hn �f�

�
� �

M�

n��

which gives one of the implications �because �n�f� is a monotone decreasing
sequence� On the other hand� if ������ holds then

�Hn �f�
� � �M ���

�X
m�n��

m����� � C��M
���n���
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with C� a constant depending only on � This proves the other implication
It is interesting to note that the above characterization holds for any

� � �� it is not necessary to assume that � � � It is not aparent how
the characterization ������ relates directly to the smoothness of f  We shall
see later� when we develop n�term wavelet approximation in more detail�
that ������ is tantamount to requiring that f have � orders of smoothness
in L� � where � is de�ned by ��� � � � ��� We recall our convention for
interpreting smoothness spaces as points in the upper right quadrant of IR�

as described in x�� The point ����� �� lies on the line with slope one which
passes through ����� �� �L����� Thus� the characterization of n�term Haar
approximation �in L����� is the same as the previous characterizations of
free knot approximation
The study of n�term Haar approximation in L���� bene�tted greatly from

the characterization of L���� in terms of wavelet coe�cients The situation
for approximation in Lp���� � 	 p 	 �� can also be treated although the
computation of Lp��� norms is more subtle �see �	��	�� It turns out that a
norm close to the Lp norm is given by

kfkpBp
�� jhf� 


�
ijp �

X
I�D

khf�HIiHIkpLp���� ������

which is known as the Bp norm For approximation in the Bp norm� the
theory is almost identical to L���� Now� a best approximation from �Hn is
given by

S � hf� 

�
i


�
�
X
I��

hf�HIiHI � ������

where � � D is a set corresponding to the n biggest terms khf�HIiHIkLp���
This selection procedure� to build the set �� depends on p because

kHIkLp��� � jI j��p����

In other words� the coe�cients are scaled depending on their dyadic level
before we select the largest coe�cients
This same selection procedure works for approximation in Lp �DeVore�

Jawerth� Popov ������� however now the proof is more involved and will be
discussed in x	� when we treat the more general case of wavelets

���� Optimal basis selection� wavelet packets

We have shown in x� that� in the setting of a Hilbert space� it is a simple
matter to determine a best n term approximation to a target function f
using elements of an orthonormal basis A basis is good for f if the ab�
solute value of the coe�cients of f � when they are reordered according to
decreasing size� tend rapidly to zero We can increase our approximation
e�ciency by �nding such a good basis for f  Thus� we may want to include
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in our approximation process a search over a given collection �usually called
a library� of orthonormal bases in order to choose one which is good for
our target function f  This leads to another degree of nonlinearity in our
approximation process since now we have the choice of basis in addition to
the choice of best n terms with respect to that basis From a numerical per�
spective however� we must be careful that this process can be implemented
computationally In other words� we cannot allow too many bases in our
selection� our library of bases must be computationally implementable In
the case of piecewise constant approximation� such a library of bases was
given by Coifman and Wickerhauser ������ and is a special case of what are
known as wavelet packet libraries
We introduce some notation which will simplify our description of wavelet

packet libraries If g is a function from L��IR�� we let

gI�x� �� jI j����g��nx � k�� I � ��n�k� k� ��� ����	�

If g is supported on � � ��� ��� then gI will be supported on the dyadic
interval I  We also introduce the following scaling operators which appear
in the construction of multiresolution analysis for the Haar function For a
function g � L��IR�� we de�ne

A�g �� g���� � g�� � ����� A�g �� g����� g�� � ����� ����
�

If g is supported on �� the functions A�g� A�g are also supported on � and
have the same L� norm as g Also� the functions A�g and A�g are orthognalZ

�
A�gA�g � ��

Let �� �� 

�
and �� �� H be the characteristic and Haar functions They

satisfy

�� � A���� �� � A���� ������

In the course of our development of wavelet packets we will apply the oper�
ators A� and A� to generate additional functions It is most convenient to
index these functions on binary strings b Such a b is a string of ��s and ��s
For such a string b� let b� be the new string obtained from b by adding � to
the end of b and let b� be the corresponding string obtained by adding � to
the end of b Then� we inductively de�ne

�b� �� A��b� �b� �� A��b� ������

In particular� ������ gives that ��� �� A��� � 

�
and ��� �� A��� � H 

Note that there is redundancy in these de�nitions If two binary strings b
and b� represent the same integer in base �� then �b � �b� 
We associate to each binary string b of length k� the space

%b �� spanf��b�I � I � Dm�kg� ������
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Fig� 
� The binary tree for wavelet packets�

The functions ��b�I � are an orthonormal basis for %b While the two functions
�b and �b� may be identical for b � b�� the subspaces %b and %b� are not the
same because b and b� will have di�erent lengths If b� and b� are binary
strings obtained from b as described above� then

%b � %b� � %b� ������

and the two bases �given by ������� for %b� and %b� union to give an alternate
orthonormal basis for %b
The starting point of multiresolution analysis and our construction of the

Haar wavelet was the decomposition Sm � Sm�� � Wm�� given in ������
In our new notation� this decomposition is

%� � %�� � %��� ������

In multiresolution analysis� the process is continued by decomposing Sm�� �
Sm�� � Wm�� or what is the same thing %�� � %��� � %��� We take
Wm�� � %��� in our decomposition and continue Our new viewpoint is
that we can apply the recipe ����
� to further decompose %�� � Wm�� into
two orthogonal subspaces as described in ������ Continuing in this way�
we get other orthogonal decompositions of Sm and other orthonormal bases
which span this space
We can depict these orthogonal decompositions by a binary tree as given

in Figure � Each node of the tree can be indexed by a binary string b
The number of digits k in b corresponds to it depth in the tree Associated
to b are the function �b and the space %b which has an orthonormal basis
consisting of the functions ��b�I � I � Dm�k  If we move down and to the
left from b we add the su�x digit � to b� while if we move down one level
on the right branch we add the su�x digit � The tree stops when we reach
level m
The above construction generates many orthonormal bases of Sm Each

binary b corresponds to a dyadic interval Ib whose left end point is b and
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whose length is ��k where k is the number of digits in b �the level of b in
the tree� If we take a collection B of such b� such that the Ib� b � B are
a disjoint cover of �� then Sm � %� � Lb�B %b The union of all the bases
for these spaces form an orthonormal basis for Sm For example� in Figure
�� the solid nodes correspond to such a cover The same story applies to
any node b of the tree The portion of the tree starting at b has the same
structure as the entire tree and we obtain many bases for %b by using interval
decompositions of Ib as described above
Several of the bases for Sm are noteworthy By choosing just � in the

interval decomposition of �� we obtain just the space %� and its bases ����I �


I
� I � Dm The choice B � f�� � � ��g � f��� ���� � � �g corresponds to the

dyadic intervals ��m��� ��� ��m������� ��� � � �� ����� �� and gives the Haar
basis We can also take all the nodes at the lowest level �level m� of the
tree These nodes each correspond to spaces of dimension one The basis
obtained in this way is the Walsh basis from Fourier Analysis
It is important to note that we can e�ciently compute the coe�cients of

a function S � Sm with respect to all of the spaces %b by using ����
� For
example� let �b be the generator of %b with b at level k in the tree of Figure
� Then� %b � %b� � %b� where b� and b� are obtained from b by su�xing �
and � respectively to b If S � Sm and cb�I �� hS� ��b�Ii� I � Dm�k are the
coe�cients of S with respect to these functions� then� for I � Dm�k���

cb��I �
�p
�
�cb�I� � cb�I��� cb��I �

�p
�
�cb�I� � cb�I�� ������

where I� and I� are the left and right halves of I  Similarly� we can obtain
the coe�cients cb�I� � cb�I� from the coe�cients cb��I � cb��I  Thus� for example�
starting with the coe�cients for the basis at the top �or bottom� of the tree�
we can compute all other coe�cients with O�m�m� operations
For all numerical applications� the above construction is su�cient One

choosesm su�ciently large and considers all bases of Sm given as above For
theoretical reasons� however� one may want bases for L���� This can be
accomplished by letting m 	 � in the above depiction� thereby obtaining
an in�nite tree
A typical adaptive basis selection algorithm� for approximating the target

function f � chooses a coe�cient norm which measures the spread of coef�
�cients� and �nds a basis which minimizes this norm As we have seen in
x�� n�term approximation e�ciency using orthonormal bases is related to ��
norms of the coe�cients Thus� a typical algorithm would begin by �xing a
value of m su�ciently large for our desired numerical accuracy and �xing a
value of � � � and �nd a basis for the �� norm as we shall now describe
If f is our target function� we let S � Pmf be the orthogonal projection

of f onto Sm The coe�cients hf� ��b�Ii � hS� ��b�Ii can be computed e��
ciently as described above Let B be any subcollection of the functions ��b�I
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which are orthonormal and de�ne

N��B� �� N��f� B� ��
X
B

jhf� ��b�Iij� � ������

We want to �nd a basis B for %� which minimizes ������ To do this� we
begin at the bottom of the tree and work our way up the tree� exchanging
at each step a current basis for a new one if the new basis gives a smaller
N� 
For each node b at the bottom of the tree �ie at level m�� the space

%b has dimension one and has the basis f�bg A node� occuring at level
m � � corresponds to the space %b It has two bases from our collection
The �rst is f��b�IgI�D�

� the second is f�b� � �b�g with b� and b� the children
of b in our tree We compare these two bases and choose the one� which
will be denote by Bb� which minimizes N��B� We do this for every node
b at level m � � We then proceed up the tree If bases have been chosen
for every node at level k� and if b is a node at level k � �� we compare
N��f���b�I�I�Dk��

g� with N��Bb� � Bb�� with b� and b� the children of b
The basis which minimizes N� is denoted by Bb and is our best basis for
node b At the conclusion� we shall have the best basis B� for node �� ie�
the basis which gives the smallest value of N��B� among all wavelet packet
bases for Sm This algorithm requires O�m�m� computations

�� The elements of approximation theory

To move into the deeper aspects of nonlinear approximation� it will be nec�
essary to call on some of the main tools of approximation theory We have
seen in the study of piecewise constant approximation that a prototypical
theorem characterizes approximation e�ciency in terms of the smoothness of
the target function For other methods of nonlinear approximation� it is not
always easy to decide the appropriate measure of smoothness which char�
acterizes approximation e�ciency There are� however� certain aids which
make our search for this connection easier The most important of these is
the theory of interpolation of function spaces and the role of Jackson and
Bernstein inequalities This section will introduce the basics of interpolation
theory and relate it to the study of approximation rates and smoothness
In the process� we shall engage three types of spaces� approximation spaces�
interpolation spaces� and smoothness spaces These three topics are inti�
mately connected and it is these connections which give us insight on how
to solve our approximation problems

���� Approximation spaces

In our analysis of piecewise constant approximation� we have repeatedly
asked the question� which functions are approximated with the a given
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rate like O�n���# It is time to put questions like this into a more formal
framework We shall consider the following general setting in this section
There will be a normed space� denoted by X � and its norm� denoted by
k � kX � in which approximation takes place Our approximants will come
from spaces Xn � X � n � �� �� � � � In the case of linear approximation� n
will usually be the dimension of Xn In nonlinear approximation n relates
to the number of free parameters For example� n was the number of knots
�breakpoints� in piecewise constant approximation with free knots The Xn

can be quite general spaces� in particular� they do not have to be linear
But we shall make the following assumptions �some only for convenience��
�i� X� �� f�g� �ii� Xn � Xn��� �iii� aXn � Xn� a � IR� a � �� �iv�Xn �
Xn � Xcn for some integer constant c 
 �� �v� each f � X has a best
approximation from Xn� �vi� dist�f�Xn�X 	 �� n 	 �� for each f � X 
Assumptions �iii�� �iv�� and �vi� are the most essential The others can be
eliminated or modi�ed with a similar theory
For each n � �� �� � � �� we introduce the approximation error

En�f�X �� dist�f�Xn�X �� inf
g�Xn

kf � gkX � �����

It follows from �ii� and �vi� that En�f�X monotonically decreases to � as n
tends to �
We wish to gather under one roof all functions which have a common

approximation rate In analogy with the results of the previous section� we
introduce the space A� �� A��X� which consists of all function f � X for
which

En�f�X � O�n���� n	�� �����

Our goal� as always� is to characterize A� in terms of something we know�
such as a smoothness condition It turns out that we shall sometimes need
to consider �ner statements about the decrease of the error En�f�X  This
will take the form of slight variants to ����� which we now describe
Let IN denote the set of natural numbers For each � � � and � 	 q � ��

we de�ne the approximation space A�
q �� A�

q �X� �Xn�� as the set of all f � X
such that

jf jA�
q
��

��
�
	P�

n���n
�En�f�X �q

�
n


��q
� � 	 q � ��

supn�� n�En�f�X � q ���
�����

is �nite and further de�ne kfkA�
q
�� jf jA�

q
� kfkX  Thus� the case q �� is

the spaceA� described by ����� For q 	�� the requirement for membership
in A�

q gets stronger as q decreases�

A�
q � A�

p � � 	 q 	 p � ��

However� all of these spaces correspond to a decrease in error like O�n���
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Because of the monotonicity of the sequence �En�f�X�� we have the equiv�
alence

jf jA�
q
�
��
�
	P�

k����
k�E�k�f�X �

q

��q

� � 	 q � ��

supk�� �k�E�k�f�X � q ���
�����

It is usually more convenient to work with ����� rather than �����
The next sections will develop some general principles which can be used

to characterize the approximation spaces A�
q 

���� Interpolation spaces

Interpolation spaces arise in the study of the following problem of analysis
Given two spaces X and Y for which spaces Z is it true that each linear
operator T which maps X and Y boundedly into themselves automatically
maps Z boundedly into itself Such spaces Z are called interpolation spaces

for the pair X � Y and the problem is to construct �and more ambitiously�
to characterize the spaces Z The classical result in this direction is the
Riesz�Thorin theorem which says the the spaces Lp� � 	 p 	 �� are in�
terpolation spaces for the pair L��L� and the Calder�on�Mitjagin theorem
which characterizes all the interpolation spaces for this pair as the rearrange�
ment invariant function spaces �see Bennett and Sharpley ���

�� There are
two primary methods for constructing interpolation spaces Z� the complex
method as developed by Calder�on ������ and the real method of Lions and
Peetre �see Peetre ������� We shall only need the latter in what follows
Interpolation spaces arise in approximation theory in the following way

Consider our problem of characterizing the approximation spaces A��X� for
a given space X and approximating subspaces Xn If we obtain information
about A��X� for a given value of �� is it possible to parlay that information
into statements about other approximation spaces A	�X�� with � � �# The
answer is yes� we can interpolate this information Using these ideas� we can
in the �nal analysis usually characterize approximation spaces as interpo�
lation spaces between X and a suitably chosen second space Y  Thus� our
goal of characterizing approximation spaces gets reduced to that of charac�
terizing certain interpolation spaces Fortunately� much e�ort has been put
into the problem of characterizing interpolation spaces and characterizations
�usually as smoothness spaces� are known for most classical pairs of spaces
X � Y  Thus� our approximation problem gets solved
An example might motivate the reader In our study of approximation by

piecewise constants� we saw that Lip��� Lp���� characterizes the functions
which are approximated with orderO�n��� in Lp��� by linear approximation
from S�� n� Interpolation gives that the spaces Lip��� Lp���� characterize
the functions which are approximated with order O�n���� � 	 � 	 � A
similar situation exists in nonlinear approximation
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Our description of how to solve the approximation problem is a little unfair
to approximation theory It makes it sound like we reduce the approximation
problem to the interpolation problem and then call upon the interpolation
theory for the �nal resolution In actuality� one can go both ways� ie
one can also think of characterizing interpolation spaces by approximation
spaces Indeed� this is often how interpolation spaces are characterized
Thus� both theories shed considerable light on the other and this is the view
we shall adopt in what follows
As mentioned� we shall restrict our development to the real method of

interpolation using the Peetre K�functional which we now describe Let X �
Y be a pair of normed linear spaces We shall assume that Y is continuously
embedded in X �Y � X and k �kX � Ck �kY � �There are a few applications
in approximation theory where this is not the case and one can make simple
modi�cations in what follows to handle those cases as well� For any t � ��
we de�ne the K�functional

K�f� t� �� K�f� t�X� Y � �� inf
g�Y

kf � gkX � tjgjY � �����

where k � kX is the norm on X and j � jY is a semi�norm on Y  We shall
also meet cases where j � jY is only a quasi�semi�norm which means that
the triangle inequality is replaced by jg� � g�jY � C�jg�jY � jg�jY � with an
absolute constant C To save the reader� we shall ignore this distinction in
what follows
The function K�f� �� is de�ned on IR� and is monotone and concave �being

the pointwise in�mum of linear functions� Notice that for each t � ��
K�f� t� describes a type of approximation We approximate f by functions
g from Y with the penalty term tjgjY  The role of the penalty term is
paramount As we vary t � �� we gain additional information about f 
K�functionals have many uses As noted earlier� they were originally in�

troduced as a means of generating interpolation spaces To see that ap�
plication� let T be a linear operator which maps X and Y into themselves
with a norm not exceeding M in both cases Then� for any g � Y � we have
Tf � T �f � g� � Tg and therefore

K�Tf� t� � kT �f � g�kX � tjTgjY �M�kf � gkX � tjgjY �� �����

Taking an in�mum over all g we have

K�Tf� t� �MK�f� t�� t � �� ���	�

Suppose further that k�k is a function norm de�ned for real�valued functions
on IR�� We can apply this norm to ���	� and obtain

kK�Tf� ��k �MkK�f� ��k� ���
�

Each function norm k�k can be used in ���
� to de�ne a space of functions
�those functions for which the right side of ���
� is �nite� and this space
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will be an interpolation space We shall restrict our attention to the most
common of these which are the �� q norms They are analogous to the norms
we used in de�ning approximation spaces If � 	 � 	 � and � 	 q � � then
the interpolation space �X� Y �
�q is de�ned as the set of all functions f � X
such that

jf j�X�Y ���q ��
��
�
	R�

� �t
�
K�f� t��q dtt


��q
� � 	 q 	��

supt�� t
�
K�f� t�� q ���

�����

is �nite
The spaces �X� Y �
�q are interpolation spaces The usefulness of these

spaces depends on understanding their nature for a given pair �X� Y � This
is usually accomplished by characterizing the K�functional for the pair We
shall give several examples of this in x����
Here is a useful remark which we shall have need for later We can apply

the �� q method for generating interpolation spaces to any pair �X� Y � In
particular� we can apply the method to a pair of �� q spaces The question is
whether we get anything new and interesting The answer is no� we simply
get �� q spaces of the original pair �X� Y � This is called the reiteration the�
orem of interpolation Here is its precise formulation Let� X � �� �X� Y �
��q�
and Y � �� �X� Y �
��q�  Then� for all � 	 � 	 � and � 	 q � �� we have

�X �� Y ��
�q � �X� Y ���q� � �� ��� ���� � ���� ������

We make two observations which can simplify the norm in ����� First
using the fact that Y is continously embedded in X � we obtain an equivalent
norm by taking the integral in ����� over ��� �� Secondly� since K�f� �� is
monotone� the integral over ��� �� can be discretized This gives that the
norm of ����� is equivalent to �see Chapter � of DeVore and Lorentz ������
for details�

jf j�X�Y ���q �
��
�
	P�

k����
k
K�f� ��k��q


��q
� � 	 q 	��

supk�� �k
K�f� ��k�� q ���
������

In this form� the de�nitions of interpolation spaces and approximation
spaces are almost identical� we have replaced E�k by K�f� �

�k� It should
therefore come as no surprise that one space can often be characterized by
the other What is needed for this is a comparison between the error En�f�
and the K�functional K Of course� this can only be achieved if we make the
right choice of the space Y in the de�nition of K But how can we decide
what Y should be# This is the role of the Jackson and Bernstein inequalities
given in the next section
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���� Jackson and Bernstein inequalities

In this section� we shall make a considerable simpli�cation in the search for a
characterization of approximation spaces and bring out fully the connection
between approximation and interpolation spaces We assume that X is the
space in which approximation takes place and assume that we can �nd a
positive number r � � and a second space Y continously embedded in X for
which the following two inequalities hold�

Jackson inequality� En�f�X � Cn�r jf jY � f � Y � n � �� �� � � ��

Bernstein inequality� jSjY � CnrkSkX � S � Xn� n � �� �� � � �

Whenever these two inequalities hold� we can draw a comparison between
En�f�X and K�f� n�r� X� Y � For example� assume that the Jackson in�
equality is valid and let g � Y be such that

kf � gkX � n�r jgjY � K�f� n�r��

�in actuality we do not know the existence of such a g and so an  should
be added into this argument but to save the reader we shall not make such
precision in this survey� If S is a best approximation to g from Xn� then

En�f�X � kf � SkX � kf � gkX � kg � SkX
� kf � gkX � Cn�r jgjY � CK�f� n�r�� �����

where the last inequality makes use of the Jackson inequality
By using the Bernstein inequality� we can reverse ������ in a certain weak

sense �see Theorem �� of Chapter 	 in DeVore and Lorentz ������� From
this one derives the following relation between approximation spaces and
interpolation spaces

Theorem � If the Jackson and Bernstein inequalities are valid� then for
each � 	 � 	 r and � 	 q � � the following relation holds between
approximation spaces and interpolation spaces

A�
q �X� � �X� Y ���r�q ������

with equivalent norms

Thus� Theorem � will solve our problem of characterizing the approxi�
mation spaces if we know two ingredients� �i� an appropriate space Y for
which the Jackson and Bernstein inequalities hold� �ii� a characterization of
the interpolation spaces �X� Y �
�q The �rst step is the di�cult one from
the viewpoint of approximation �especially in the case of nonlinear approx�
imation� Fortunately� step �ii� is often provided by classical results in the
theory of interpolation We shall mention some of these in the next sec�
tions and also relate these to our examples of approximation by piecewise
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constants But for now we want to make a very general and useful remark
concerning the relation between approximation and interpolation spaces by
stating the following elementary result of DeVore and Popov���

�

Theorem � For any space X and spaces Xn� as well as for any r � � and
� � s � �� the spaces Xn� n � �� �� � � �� satisfy the Jackson and Bernstein
inequalities for Y � Ar

s�X� Therefore� for any � 	 � 	 r and � 	 q � ��
we have

A�
q �X� � �X�Ar

s�X����r�q ������

In other words� the approximation family A�
q �X� is an interpolation family

We also want to expand on our earlier remark that approximation can
often be used to characterize interpolation spaces We shall point out that in
certain cases� we can realize the K�functional by an approximation process
We continue with the above setting We say a sequence �Tn�� n � �� �� � � ��

of �possibly nonlinear� operators� with Tn mapping X into Xn� provides near
best approximation if there is an absolute constant C � � such that

kf � TnfkX � CEn�f�X � n � �� �� � � � �

We say this family is stable on Y if

jTnf jY � Cjf jY � n � �� �� � � � �

with an absolute constant C � �

Theorem � Let X � Y � �Xn� be as above and suppose that �Xn� satis�es
the Jackson and Bernstein inequalities Suppose further that the sequence of
operators �Tn�� provides near best approximation and is stable on Y  Then�
Tn realizes the K�functional� ie

kf � TnfkX � n�r jTnf jY � CK�f� n�r� X� Y �

with an absolute constant C

For a proof and further results of this type� we refer the reader to Cohen�
DeVore� and Hochmuth ����	�

���� Interpolation for L�� L�

The utility of the K�functional rests on our ability to characterize it and
thereby characterize the interpolation spaces �X� Y �
�q Much e�ort was
put forward in the ��	��s and 
��s to establish such characterizations for
classical pairs of spaces The results were quite remarkable in that the char�
acterizations that ensued were always in terms of classical entities that have
a long standing place in analysis We shall give several examples of this
In the present section� we limit ourselves to the interpolation of Lebesgue
spaces which are classical to the theory In later sections� we shall discuss
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interpolation of smoothness spaces which are more relevant to our approxi�
mation needs
Let us begin with the pair L��A� d��� L��A� d�� with �A� d�� a given

sigma �nite measure space Hardy and Littlewood recognized the impor�
tance of the decreasing rearrangement f� of a ��measurable function f  The
function f� is a nonnegative� nonincreasing function de�ned on IR� which
is equimeasurable with f �

��f� t� �� �fx � jf�x�j � tg � jfs � f��s� � tgj� t � �� ������

where we recall our notation for jEj to denote the Euclidean measure of a
set E The rearrangement f� can be de�ned directly via

f��t� �� inffy � ��f� t� � yg ������

Thus� f� is essentially the inverse function to ��f� t� We have the following
beautiful formula for the K�functional for this pair �see Chapter � of DeVore
and Lorentz ������ �

K�f� t� L�� L�� �
Z t

�
f��s� ds� ����	�

which holds whenever f � L� � L� From the fact thatZ
A
jf jp d� �

Z �

�
�f��s��p ds�

it is easy to deduce from ����	� the Riesz�Thorin theorem for this pair
With the K�functional in hand� we can easily describe the ��� q� interpo�

lation spaces in terms of Lorentz spaces For each � 	 p 	 �� � 	 q � ��
the Lorentz space Lp�q�A� d�� is de�ned as the set of all ��measurable f such
that

kfkLp�q ��
�
�
R�
� �t

��pf��t��q dtt �
��q� � 	 q 	��

sup t��pf��t�� q ���
����
�

is �nite Of course� the form of the integral in ����
� is quite familiar to us
If we replace f� by �

t

R t
� f

��s� ds � K�f� t��t and use the Hardy inequalities
�see Chapter � of DeVore and Lorentz ������ for details� we obtain that

�L��A� d��� L��A� d�������p�q � Lp�q�A� d��� � 	 p 	�� � 	 q � ��
������

Several remarks are in order The space Lp�� is better know as weak Lp
and can be equivalently de�ned as

�fx � jf�x�j � yg �Mpy�p� ������

The smallest M for which ������ is valid is equivalent to the norm in Lp��
The above results hold if d� is purely atomic This will be useful for us in

what follows in the following context Let IN be the set of natural numbers
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and let �p � �p�IN� be the collection of all sequences x � �x�n��n�IN for
which

kxk�p ��
�
�
P�

n�� jx�n�jp���p� � 	 p 	��
supn�IN jx�n�j� p ���

������

is �nite Then� �p�IN� � Lp�IN� d�� with � the counting measure Hence�
the above results apply The Lorentz spaces in this case are denoted by �p�q
The space �p�� �weak �p� consists of all sequences which satisfy

x��n� �Mn���p ������

with �x��n�� the decreasing rearrangement of �jx�n�j� This can equivalently
be stated as

�fn � jx�n�j � yg �Mpy�p� ������

The interpolation theory for Lp spaces applies to more than the pair
�L�� L�� We formulate this only for the spaces �p�q which we shall use
later For any � 	 p� 	 p� 	�� � 	 q�� q� � �� we have

��p��q� � �p��q��
�q � �p�q� ��p �� ��

p�
� 


p�
� � 	 q � �� ������

with equivalent norms For � � p�� p� � �� this follows from ������ by using
the reiteration theorem������ The general case needs slight modi�cation
�see Bergh and L&ofstrom ���	���
Interpolation for the pair �L�� L�� is rather unusual in that we have an

exact identity for the K�functional Usually we only get an equivalent char�
acterization of K One other case where an exact identity is known is inter�
polation between C and Lip� in which

K�f� t�C�Lip�� �
�

�
'��f� �t�� t � ��

where � is the modulus of continuity �to be de�ned in the next section� and
'� is its concave majorant �see Chapter � of DeVore and Lorentz �������

���� Smoothness spaces

We have introduced various smoothness spaces in the course of discussing
approximation by piecewise constants In this section� we want to be a
bit more systematic and describe the full range of smoothness spaces that
we shall need in this survey There are two important ways to describe
smoothness spaces One is through notions such as di�erentiability and
moduli of smoothness Most smoothness spaces were originally introduced
into analysis in this fashion A second way is to expand functions into a series
of building blocks �eg Fourier or wavelet� and describe smoothness as decay
conditions on the coe�cients in such expansions That these descriptions are
equivalent is at the heart of the subject We shall give both descriptions
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The �rst is given here in this section� the second in x	 when we discuss
wavelet decompositions
We begin with the most important and best known smoothness spaces�

the Sobolev spaces Suppose that � � p � � and r � � is an integer If
� � IRd is a domain �for us this will mean an open� connected set�� we
de�ne W r�Lp���� as the collection of all measurable functions f de�ned on
� which have all their distributional derivatives D�f � j�j � r in Lp��� Here
j�j �� j��j� � � �� j�dj when � � ���� � � � � �d� The semi�norm for W r�Lp���
is de�ned by

jf jW r�Lp���� ��
X
j�j�r

kD�fkLp���� ������

and their norm by kfkW r�Lp���� �� jf jW r�Lp���� � kfkLp��� Thus� Sobolev
spaces measure smoothness of order r in Lp when r is a positive integer and
� � p � � Their de�ciency is that they do not immediately apply when
r is nonintegral and when p 	 � We have seen several times already the
need for smoothness spaces for these extended parameters when engaging
nonlinear approximation
We have seen in the Lipschitz spaces that one way to describe smoothness

of fractional order is through di�erences We have previously used only
�rst di�erences� now we shall need di�erences of arbitrary order which we
presently de�ne For h � IRd� let Th denote the translation operator which
is de�ned for a function f by Thf �� f��� h� and let I denote the identity
operator Then� for any positive integer r�  r

h �� �Th � I�r is the r�th
dierence operator with step h Clearly  r

h �  h� 
r��
h � Also��

 r
h�f� x� ��

Pr
k������r�kr

kf�x� kh��

�
������

Here and later we use the convention that  r
h�f� x� is de�ned to be zero

when any of the points x� � � � � x� rh are not in �
We can use  r

h to measure smoothness If f � Lp���� � 	 p � ��
�r�f� t�p �� sup

jhj�t
k r

h�f� ��kLp��� ����	�

is the r�th order modulus of smoothness of f in Lp��� In the case p � �
L����� is replaced by C���� the space of uniformly continuous functions on
� We always have that �r�f� t�p 	 � monotonically as t 	 � The faster
this convergence to � the smoother is f 
We create smoothness spaces by bringing together all functions whose

modulus of smoothness has a common behavior We shall particularly need
this idea with the Besov spaces which are de�ned as follows There will
be three parameters in our description of Besov spaces The two primary
parameters are � which gives the order of smoothness �eg number of
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derivatives� and p which gives the Lp space in which smoothness is to be
measured A third parameter q which is secondary to the two primary
parameters will allow us to make subtle distinctions in smoothness spaces
with the same primary parameters

Let � � �� � 	 p � �� and � 	 q � � We take r �� ����� �the smallest
integer larger than �� We say f is in the Besov space B�

q �Lp���� if

jf jB�
q �Lp����

��

��
�
	R�

� �t
���r�f� t�p�q dtt


��q
� � 	 q 	��

supt�� t
���r�f� t�p� q ���

����
�

is �nite This expression de�nes the semi�norm on B�
q �Lp����� the Besov

norm is given by kfkB�
q �Lp���� �� jf jB�

q �Lp���� � kfkLp��� Here� we have
complete analogy with the de�nitions ����� and ����� of approximation and
interpolation spaces

The Besov spaces give a full range of smoothness in that � can be any
positive number� and p can range over ����� As noted earlier� q is a
secondary index which gives �ner gradations of smoothness with the same
primary indicies

We shall next make some further remarks which will help clarify Besov
spaces� especially their relationship to other smoothness spaces such as the
Sobolev and Lipschitz spaces We assume from here on out that the domain
� is a Lipschitz domain �see Adams ���	��� � slightly weaker conditions on
� su�ce for most of the following statements

We have taken r as the smallest integer larger than � Actually� any
choice of r � � will de�ne the same space with an equivalent norm �see
Chapter � of DeVore and Lorentz ������� If we take � 	 � and q ��� the
Besov space B���Lp���� is the same as Lip��� Lp���� with an identical semi�
norm and norm However� when � � �� we get a di�erent space because the
Besov space uses �� in its de�nition but Lip��� Lp���� uses �� In this case�

the Besov space is larger since ���f� t�p � �max���p������f� t�p Sometimes
B���C���� is called the Zygmund space
For the same reason that Lip � is not a Besov space� the Sobolev spaces

W r
p �Lp����� � � p � �� p � �� are not the same as the Besov space

Br��Lp���� The Besov space is slightly larger We could describe the
Sobolev space W r

p �Lp����� � 	 p � �� by replacing �r�� by �r in the
de�nition of Br��Lp���� Two special cases are noteworthy When p � ��
the Besov space Br

��L����� is the same as the Sobolev spaceW
r�L������ this

is an anomoly that only holds for p � � The Lipschitz space Lip��� L�����
is the same as BV when � is an interval in IR� In higher dimensions� we
use Lip��� L����� as the de�nition of BV���� it coincides with some but not
all of the many other de�nitions of BV
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(1/p,0) (Lp)
�

Sobolev embedding line

Fig� �� Graphical depiction of Sobolev embedding�

Increasing the secondary index q in Besov spaces gives a larger space� ie

B�
q��Lp���� � B�

q��Lp����� q� 	 q��

However� the distinctions in these spaces are small
The Sobolev embedding theorem gives much additional information about

the relationship between Besov spaces with di�erent values of the parame�
ters It is easiest to describe these results pictorially As earlier� we identify
a Besov space with primary indices p and � with the point ���p� �� in the
upper right quadrant of IR� The line with slope d passing through ���p� ��
is the demarkation line for embeddings of Besov spaces into Lp��� �see Fig�
ure �� Any Besov space with primary indices corresponding to a point
above that line is embedded into Lp��� �regardless of the secondary index
q� Besov spaces corresponding to points on the demarkation line may or
may not be embedded in Lp��� For example the Besov spaces B

�
� �L�����

with ��� � ��d � ��p correspond to points on the demarkation line and
they are embedded in Lp��� Points below the demarkation line are never
embedded in Lp���

��
� Interpolation of smoothness spaces

There is a relatively complete description of interpolation between Sobolev
or Besov spaces We shall point out the results most important for our later
use
Let us consider �rst interpolation between Lp��� and a Sobolev space

W r�Lp���� Interpolation for this pair appears often in linear approxima�
tion One way to describe the interpolation spaces for this pair is to know
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(1/p,0) (Lp(Ω))
�

(1/p,r) (Wr(Lp(Ω)))�

�α (1/p,α) (Bα(Bq (Lp(Ω)))

r

Fig� �� Graphical interpretation of interpolation between Lp��� and W r�Lp�����

its K�functional The remarkable fact �proved in the case of domains by
Johnen and Scherer ���	��� is that

K�f� tr� Lp����W
r�Lp���� � �r�f� t�p� t � � ������

This brings home the point we made earlier that K�functionals can usually be
described by some classical entity �in this case the modulus of smoothness�
From ������� it is a triviality to deduce that

�Lp����W
r�Lp�����
�q � B
r

q �Lp����� � 	 � 	 �� � 	 q � � ������

with equivalent norms From the reiteration theorem ������ for interpolation
we deduce that for �� 	 �� and any � 	 q�� q� � �� we have for any
� 	 � 	 �� � 	 q � ��
�B��

q� �Lp����� B
��
q� �Lp�����
�q � B�

q �Lp����� � �� ��� ���� � ���� ������

We can also replace B��
q� �Lp���� by Lp��� and obtain

�Lp���� B
�
r �Lp�����
�q � B
�

q �Lp����� � 	 � 	 �� � 	 q � �� ������

for any � 	 r � �
We can interpret these results pictorially as in Figure � The space Lp���

corresponds to the point ���p� �� and W r�Lp���� corresponds to the point
���p� r� Thus� ������ says that the interpolation spaces for this pair cor�
respond to the Besov spaces on the �vertical� line segment connecting the
points ���p� �� and ���p� r� A similar picture interprets ������ and ������
This pictorial interpretation is very instructive When we want to in�

terpolate between a pair of spaces �X� Y � We identify them with their





 Ronald A� DeVore

corresponding points in the upper quadrant of IR� The points on the line
segment connecting them are the interpolation spaces and in fact given the
parameter � the interpolation space corresponds to the point on this line
segment which divides the segment by the ratio � � � � � However� care
should be taken in this interpretation regarding the second parameter q since
it does not enter into the picturel In some cases� we can take any value
of q as is the case for the examples considered so far However� in some
cases that we shall see shortly� this interpretation only holds for certain q
appropriately chosen
Let us consider another example� which corresponds to interpolation in

a case where the line segment is horizontal DeVore and Scherer ���	��
have shown that if � � p� 	 p� � �� then the ��� p� interpolation be�
tween Sobolev spaces W r�Lp����� and W r�Lp����� gives Sobolev spaces

W r�Lp���� when
�
p �

��

p�
� 


p�
while changing �� p into the more general �� q

gives the modi�ed Sobolev spacesW r�Lp�q���� spaces which use the Lorentz
spaces Lp�q��� in their de�nition �which we do not give�
There are characterizations for the �� q interpolation spaces for many other

pairs of Besov spaces �see Bergh and L&ofstrom ���	�� or Cohen� DeVore�
Hochmuth ����	� for example� However� we shall restrict our further dis�
cussion to the following special case which occurs in nonlinear approxima�
tion We �x a value of p � ����� and consider the Besov spaces B�

� �L�����
where � and � are related by

�

�
�
�

d
�
�

p
� ������

These spaces all correspond to points on the line segment with slope d pass�
ing through ���p� �� �which corresponds to Lp���� We have the following
interpolation result for the pair �Lp���� B

�
� �L� �����

�Lp���� B
�
� �L�����
�q � B
�

q �Lq����� provided
�

q
�
��

d
�
�

p
� ������

In other words� interpolating between two Besov spaces corresponding to
points on this line� we get another Besov space corresponding to a point on
this line provided we choose the secondary indicies in a suitable way
We shall obtain more information about Besov spaces and their interpo�

lation properties in x	 when we discuss their characterization by wavelet
decompositions

�� Nonlinear approximation in a Hilbert space� a second

look

Let us return to the example of approximation in a Hilbert space which
began our discussion in x� We continue with the discussion and notation
of that section
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We have seen that for nonlinear �n�term� approximation in H we could
characterize Ar���Hn�� for any r � � by the condition

�n�f� �Mn�r���� �����

with �n�f� the rearranged coe�cients We now see that ����� is saying that
the sequence fk �� hf� �ki is in weak ���r� ����r����� with ��r� de�ned by

�
��r� � r �

�

�

and the smallest M for which ����� holds is equivalent to the weak �� norm
We can now characterize all of the approximation spaces A�

q �H� in terms
of the coe�cients fk Recall that Theorem � shows that for any r � �� the
nonlinear spaces �n�H�� satisfy Jackson and Bernstein inequalities for the
space Y �� Ar��H� and

A�
q �H� � �H�Ar

��H����r�q �����

The mapping f 	 �fk� is invertible and gives an isometry between H and
���IN� and also between Ar� and �����IN� We can interpolate and obtain
that this mapping is an isometry between A�

q �H� and ������q�IN� with �
de�ned by ��� � � � ��� Hence� we have the following complete charac�
terization of the approximation spaces for nonlinear n�term approximaiton

Theorem � For nonlinear n�term approximation in a Hilbert space H� a
function f is in A�

q �H�� if and only if its coe�cients are in ������q� ���� ��
��� ������� and jf jA�

q �H� � k�fk�k�� ����q

�� Piecewise polynomial approximation

Now that we have the tools of approximation �rmly in hand� we shall sur�
vey the main developments of nonlinear approximation� especially as they
apply to numerical computation We shall begin in this section with piece�
wise polynomial approximation The reader should keep in mind the case
of piecewise constant approximation that we used to motivate nonlinear
approximation


��� Local approximation by polynomials

As the name suggests� piecewise polynomial approximation pieces together
local polynomial approximants Therefore� we need to have a good under�
standing of local error estimates for polynomial approximation This is an
old and well�established chapter in approximation and numerical computa�
tion which we shall brie$y describe in this section
For each positive integer r� we let Pr denote the space of polynomials in

d variables of total degree 	 r �polynomials of order r� Let � 	 p � � and
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let I be a cube in IRd If f � Lp�I�� the local approximation error is de�ned
by

Er�f� I�p �� inf
P�Pr

kf � PkLp�I�� �����

The starting point for estimating the e�ciency of piecewise polynomial
approximation in Lp is to have good estimates for Er�f� I�p Perhaps the
simplest of these is the estimate

Er�f� I�p � CjI jr�djf jW r�Lp�I�� �����

which holds for � � p � � and j � jW r�Lp�I�� the Sobolev semi�norm of x��
and the constant C depending only on r This is sometimes known as the
Bramble�Hilbert Lemma in numerical analysis There are several proofs of
this result available in the literature �see eg Adams ���	���� usually by
constructing a bounded projector from Lp onto Pr It can also be proved
indirectly �see DeVore and Sharpley ���
���
The estimate ����� remains valid when I is replaced by a more general

domain Suppose for example that O is a domain which satis�es the uniform
cone condition �see Adams���	��� and is contained in a cube I with jI j��d �
Cdiam�O� If f � W r�Lp���� then it can be extended to a function on I
with comparable norm �Adams���	�� or DeVore and Sharpley ���
��� From
����� on I we deduce its validity on O with a constant C now depending
on r and O We shall use this in what follows for polyhedral domains The
constant C then depends on r and the smallest angle in O Similar remarks
apply to the other estimates for Er�f� I�p that follow
Using the ideas of interpolation introduced in x� �see �������� one easily

derives from ����� that

Er�f� I�p � Cr�r�f� jI j� I�p �����

with �r the r�th order modulus of smoothness of f introduced in x�� This
is called Whitney�s theorem in approximation and this estimate is equally
valid in the case p 	 � The advantage of ����� over ����� is that it applies
to any f � Lp�I� and it also implies ����� because of elementary properties
of �r 
Whitney�s estimate is not completely satisfactory when it is necessary to

add local estimates over varying cubes I  A more suitable form is gotten by
replacing �r�f� jI j� I�p by

wr�f� I�p ��

�
�

jI j
Z
jsj�jIj��d

Z
I
j r

s�f� x�jp dx ds
���p

� �����

Then� we have �see eg DeVore and Popov ���

��

Er�f� I�p � Crwr�f� I�p �����
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which holds for all r � �� �� � � � and all � 	 p � � �with the obvious change
in norms for p ���
It is also possible to bound Er�f� I�p in terms of smoothness measured

in spaces Lq� q � p Such estimates are essentially embedding theorems
and are important in nonlinear approximation For example� in anlogy with
������ we have for each � � q� p � � and r � d���q � ��p���

Er�f� I�p � CrjI jr�d���p���qjf jW r�Lq�I��� �����

We shall sketch a simple idea for proving such estimates which is at the
heart of proving embedding theorems It is enough to prove ����� in the case
I � ��� ��d since it follows for other cubes by a linear change of variables
For each dyadic cube J � I � let PJ be a polynomial in Pr which satis�es

kf � PJkLq�J� � Er�f� J�q

and de�ne Sk ��
P

J�Dk�I�
PJ
J where Dk�I� is the collection of all dyadic

subcubes of I of sidelength ��k Then� S� � PI and Sk 	 f in Lp�I�
Therefore�

Er�f� I�p � kf � PIkLp�I� �
�X
k��

kSk�� � SkkLp�I� ���	�

Now� for each polynomial P � Pr and each cube J � we have kPkLp�J� �
CjJ j��p���qkPkLq�J� with the constant depending only on r �see Lemma ��
of DeVore and Sharpley ���
�� for the simple proof� From this� it follows
that

kSk�� � SkkpLp�I� �
X

J�Dk���I�

kSk�� � SkkpLp�J�

� C��kd���p�q�
X

J�Dk���I�

kSk�� � SkkpLq�J��

Now on J � we have Sk�� � Sk � PJ � � PJ where J � is the parent of J  We
write PJ � � PJ � PJ � � f � f � PJ and use ����� �with p replaced by q� on
each di�erence to obtain

kSk�� � SkkpLp�I� � C��kd�rp�d���p�q�
X

J�Dk���I�

jf jpW r�Lq�J ���

� C��kd�rp�d���p�q�
�
� X
J�Dk���I�

jf jqW r�Lq�J ���

�
A
p�q

� C��kd�rp�d���p�q�jf jpW r�Lq�I��
�

Here we used that fact that an k �k�p � k�k�q if q � p and that a point x � I
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appears at most �d times in a cube J �� as J runs over the cubes in Dk�I�
If we use this estimate in ���	�� we arrive at �����
We can also allow q 	 � and nonintegral r in ����� if we use the Besov

spaces Namely� if r � � satis�es r 
 d���q � ��p��� then
Er�f� I�p � CrjI jr�d���p���qjf jBr

q��Lq�I��� ���
�

Notice that we can allow r�d� ��p� ��q � � in ���
� which corresponds to
the embedding of Br

q�Lq�I�� into Lp�I� The case r�d � ���q � ��p�� can
be proved as above using the set subadditivity of j � jqBr

q�Lq�J��
 For proofs of

these results for Besov spaces see DeVore and Popov ���

�
Finally� as we have remarked earlier� by using extensions� these results can

be established for more general domains such as domains with a uniform cone
condition In particular� for any polyhedron C� we have

Er�f� C�p � Crdiam�C�r�d���p���qjf jW r�Lq�C��� �����

with the constant depending only on r� d� the number of vertices of C�
and the smallest angle in C Similarly� we have the extension of ���
� to
polyhedra


��� Piecewise polynomial approximation� the linear case

For the purpose of orienting the results on nonlinear approximation which
follow� we shall consider in this section� approximation by piecewise poly�
nomials on �xed partitions These results will be the analogue of approx�
imation by piecewise constants on uniform partitions given in x�� For
convenience� we shall consider approximation on the unit cube � �� ��� ��d
The following results can be established for more general domains by using
extension theorems similar to what we have mentioned earlier in this section
By a partition of �� we mean a �nite collection  �� fCg of polyhedrons C

which are pairwise disjoint and union to � We let c be the largest number
such that each angle of C is 
 c for all C �   Given such a collection� we
de�ne the partition diameter

diam� � �� max
C
diam�C�� ������

We assume that the number of vertices of each cell C is bounded indepen�
dently of C �  
Let Sr� � denote the space of piecewise polynomials of order r relative

to   That is� a function S is in Sr� � if and only if it is a polynomial of
order r on each cell C �   For � 	 p � �� we let

s�f�p �� inf
S�Sr��

kf � SkLp���� ������

We shall �x � � p � � and estimate s�f�p A similar analysis holds for
p 	 � with Sobolev norms replaced by Besov norms



Acta Numerica 
�

Each cell C is contained in a cube J � I with jJ j��d � Cdiam�C� with
C depending only on c Hence� by extending f to this cube �if it is not
already de�ned there� we see that for each C �  � there is a polynomial
PC � Pr which satis�es ������

kf � PCkLp�C� � Cdiam� �rjf jW r�Lp�C��� ������

If we raise the estimates in ������ to the power p �in the case p 	 �� and
add them� we arrive at

s�f�p � Cdiam rjf jW r�Lp����� ������

Of course� ������ is well�known in both approximation and numerical cir�
cles It is the proper form for numerical estimates based on piecewise polyno�
mials of order r It is the Jackson inequality for this type of approximation
By interpolation �as described in x��� we obtain the following estimate

s�f�p � C�r�f� diam �p ������

where �r�f� (�p � �r�f� ����p is the r�th order modulus of smoothness of f
in Lp��� as introduced in x�� The advantage of ������ is that it does not
require that f is in W r�Lp���� and in fact applies to any f � Lp��� For
example� if f � Lip��� Lp����� then ������ implies

s�f�p � Cjf jLip���Lp����jdiam j�� ������

We would now like to understand to what extent estimates like ������ are
best possible It is not di�cult to prove that if f � Lp��� is a function for
which

s�f�p �M jdiam j�� ������

holds for every partition  then f � Lip��� Lp���� and the smallest M for

which ������ holds is equivalent to jf jLip���Lp���� Indeed� for each h � IRd

and each x � � such that the line segment �x� x � rh� � �� there is a
partition  with diam� � � jhj and dist�x� �C� 
 constjhj for every C �  
This allows an estimate for j r

h�f� x�j by using ideas similar to the inverse
estimates for piecewise constant approximation given in x��
We note that the direct and inverse theorems relating approximation order

to smoothness take the same form as those in x�� Using our interpreta�
tion of smoothness spaces given in Figure �� we see that the approximation
spaces for this form of linear approximation correspond to points on the ver�
tical line segment joining ���p� �� �Lp� to ���p� r� �Lip�r� Lp� Thus the only
distinction with the piecewise constant case considered in x�� is that we can
allow � to range over the larger interval ��� r� because we are using piece�
wise polynomials of order r Also note that to achieve approximation order
O�n��� we would need spaces Sr� n� which have linear space dimension
� nd� ie we have the curse of dimensionality
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More generally� if we only know ������ for a speci�c sequence of partitions
� n�� we can still prove that f � Lip��� Lp���� provided the partitions mix
su�ciently so that each x fall in the middle of su�ciently many C We
do not formulate this precisely but refer the reader to x� of Chapter �� of
DeVore and Lorentz ������ for a precise formulation in the univariate case
Mixing conditions are not valid in most numerical settings Indeed� the

typical numerical case is where approximation takes place from a sequence
Sr� n� where  n is a re�nement of  n�� This means that the spaces
are nested� Sr� n��� � Sr� n�� n � �� �� � � � In this case� one can prove
the inverse theorems only for a smaller range of � It is easy to see that
restrictions are needed on � For example� functions f in Sr� n� will be
approximated identically for m 
 n But functions in Sr� n� do not have
much smoothness because they are discontinuous across the faces of the
partition This can be remedied by considering approximation by elements
of Sr� n� which have additional smoothness across the faces of the partition
We do not formulate inverse theorems in this case but refer the reader to x�
of Chapter �� in DeVore and Lorentz ������ where similar univariate results
are proved
We should mention however that considering splines with smoothness

brings out new questions concerning direct estimates of approximation like
������ It is not easy to understand the dimension of spaces of smooth
piecewise polynomials let alone their approximation power �see Jia ���
���
As the reader can now see� there are still interesting open questions con�

cerning the approximation power of splines on general partitions which relate
the smoothness of the splines with the approximation power These are dif�
�cult problems and have to a large extent been abandoned with the advent
of box splines and later wavelets These two developments shifted the view�
point of spline approximation away from partitions and more toward the
spanning functions We shall get into this topic more in x	 when we discuss
wavelet approximation


��� Free knot piecewise polynomial approximation

To begin our development of nonlinear approximation by piecewise polyno�
mials we shall consider the case of approximating a univariate function f
de�ned on � � ��� �� by piecewise polynomials of �xed order r The theory
here is the analogue of piecewise constants discussed in x��
Let the natural number r be �xed and for each n � �� �� � � �� let �n �� �n�r

be the space of piecewise polynomials of order r with n pieces on � Thus�
for each element S � �n there is a partition � of � consisting of n disjoint
intervals I � � and polynomials PI � Pr such that

S �
X
I��

PI
I � ����	�
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Fig� � Graphical depiction for nonlinear approximation in Lp�

For each � 	 p � �� we de�ne the error of approximation
�n�f�p �� �n�r�f�p �� inf

S��n�r
kf � SkLp���� ����
�

The case p �� is su�ciently di�erent that we shall restrict our discussion
to the case p 	 � and refer the reader to DeVore and Lorentz ������ or
Petrushev and Popov ���
	� for the case p ��
We can characterize the functions f which can be approximated with

an order like O�n��� We recall the approximation spaces A�
q �Lp���� �

A�
q �Lp���� ��n�� According to the theory in x�� we can characterize these
approximation spaces if we establish Jackson and Bernstein inequalities for
this type of approximation We �x the space Lp��� in which approximation
is going to take place The space Y will be the Besov space Br

� �L� �����
��� � r���p which was de�ned in x�� To understand this space� we return
to our picture of smoothness spaces of Figure 	 The space Lp���� of course
corresponds to the point ���p� �� The space Br

� �L����� corresponds to the
point ����� r� which lies on the line with slope one which passes through
���p� �� As we have noted several times before� this line corresponds to the
limiting case of the Sobolev embedding theorem Thus� we are in complete
analogy with the case of piecewise constant approximation described in x��
The following inequalities were established by Petrushev ���

�

�n�f�p � Cn�r jf jBr
��L� ���� ������

jSjBr
��L� ����

� CnrkfkLp��� ������
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with the constants C depending only on r The �rst of these is the Jackson
inequality and the second the companion Bernstein inequality
Let us say a few words about how one proves these inequalities since the

techniques for doing so appear often in nonlinear approximation To prove
the Jackson inequality� for each f � B�

� �L������ we must �nd a favorable
partition of � into n disjoint intervals This is done by balancing )�I� ��
jf j�B�

� �L� �I��
 The key here is that with a proper renormalization of the Besov

norm� ) is set subadditive Thus� we can �nd intervals Ij � j � �� � � � � n� so
that )�Ij� � )����n This gives our desired partition We then use ���
�
to bound the local approximation error on each Ij � add these and arrive
at ������ �see Chapter �� of DeVore and Lorentz ������ for more details�
Therefore� as was the case in our introduction of nonlinear approximation by
piecewise constants� we �nd our optimal partitions by a balancing suitable
set function� in the present case )
The proof of the Bernstein inequality is also very instructive If S � �n�

then S �
P

I�� �I where � is a partition of � into n intervals and �I � PI
I
with PI � Pr For each such �I � it is not di�cult to calculate its Besov norm
and �nd

j�I jB�
� �L� ����

� Ck�IkLp�I� ������

with C an absolute constant Then using the subadditivity of j � j�B�
� �L� ����

we �nd that

jSj�B�
� �L� ����

�
X
I��

j�I j�B�
� �L� ����

�
X
I��

k�Ik�Lp���

� Cn����p
�X
I��

k�IkpLp���
���p

� Cn��kSk�Lp����

With the Jackson and Bernstein inequalities in hand� we can now refer
to our general theory in x� and obtain the following characterization of the
approximation spaces� for each � 	 � 	 r� � 	 q � �� � 	 p 	��

A�
q �Lp���� � �Lp���� B

r
��L��������r�q� ������

Therefore� we have a solution to our problem of characterizing the approxi�
mation spaces A�

q �Lp���� to the extent that we understand the interpolation
spaces appearing in ������ Fortunately� we know a lot about these interpo�
lation spaces For example� for each � 	 � 	 r� there is one value of q for
which this interpolation space is a Besov space Namely� if ��q � � � ��p�
then

A�
q �Lp���� � �Lp���� B

r
��L�������r�q � B�

q �Lq����� ������
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For other values of q these interpolation spaces can be described in vari�
ous ways We defer a discussion of this until we treat nonlinear wavelet
approximation where these interpolation spaces will reappear
Returning to our picture of smoothness spaces� we see that the approxima�

tion spaces A�
q �Lp���� correspond to the point ����� �� with ��� � ����p

Thus� these spaces lie on the line with slope one passing through ���p� �� In
otherwords� we have the same interpretation as in nonlinear approximation
by piecewise constants except that now � can range over the larger interval
��� r� corresponding to the order r of the piecewise polynomials
We have emphasized that the Besov spaces B�

� �L������ ��� � � � ��p�
which occur in characterizing free knot spline approximation� lie on the de�
markation line in the Sobolev embedding theorem This is an indication that
these spaces are quite large when compared to the Besov spaces B�

q �Lp����
which appear in characterizing linear approximation Some examples might
further drive this point home Any function f which is a piecewise polyno�
mial �with a �nite number of pieces� is in all of these spaces� ie we can take
� arbitrarily large Indeed� f can be approximated exactly once n and r are
large enough and hence this result follows from ������ A simple argument
shows that this remains true for any piecewise analytic function f  Hence�
any such function can be approximated to accuracy O�n��� for any � � �
with nonlinear piecewise polynomial approximation Another instructive
example is the function f�x� � x� � � � ���p �so that f � Lp���� This
function satis�es �see de Boor���	���

�n�r�f�p � O�n�r��

This can be proved by balancing the approximation errors


��� Free knots and free degree

There are many variants of piecewise polynomial approximation One of the
most important is to allow not only the partition to vary with f but also
the orders �degrees� of the polynomial pieces Approximation of this type
occurs in the h�p method in FEM which has been introduced and studied
by Babuska and his collaborators �see Babuska and Suri ������� While the
theory for this type of approximation is far from complete� it will be useful
to mention a few facts which separate it from the free knot case discussed
above
Let ��n denote the set of all piecewise polynomials

S �
X
I�

PI
I ������

where  is a partition and for each I �  there is a polynomial PI of order
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rI with
P

I� rI � n As usual� we let

��n�f�p �� inf
S���n

kf � SnkLp���� ������

Clearly� for each r � �� �� � � �� we have ��nr�f�p � �n�r�f�p because �n�r �
��nr To see that ��n can be considerably better than �n�r � we consider the
following example which was studied in DeVore and Scherer ���
�� Let
f�x� � x	 with � � � We have seen that �n�r�f�p � n�r  On the other
hand� it is shown in the above reference that

��n�f� � Ce�c
p
n� c ��

p
�� � ������

and that this estimate cannot be improved in the sense of a better exponen�
tial rate


��� Free partition splines� the multivariate case

Up to this point our discussion of nonlinear approximation has been almost
entirely limited to approximating univariate functions The question arises�
for example� whether the results of the previous section on free knot spline
approximation can be extended to the multivariate case
For the moment� we restrict our discussion to the bivariate case and ap�

proximation on � �� ��� ��� In this case� we consider the space ��n�r consist�
ing of all functions

S �
X
T�

PT
T ����	�

with  � fTg a partition of � consisting of n triangles and the PT polyno�
mials of total order r on T for each T �   Let

��n�r�f�p �� inf
S���n�r

kf � SkLp���� ����
�

Here � is used to make a distinction with the univariate case
There is no known characterization of A�

q �Lp���� ��
�
n�r�� for any values

of �� p� q This remains one of the most interesting and challenging prob�
lems in nonlinear approximation We shall mention some of the di�culties
encountered in trying to characterize these approximation classes since this
has in$uenced developments in multivariate nonlinear approximaiton

A �rst remark is that the space ��N does not satisfy property �iv� of x��
Namely for no constant c do we have ��n ��

�
n � ��cn For example� consider

a partition  � of � consisting of n vertical strips of equal size each divided
into � triangles and the corresponding partition  � made from horizontal
strips Let S� be a piecewise polynomial relative to  � and S� another
piecewise polynomial relative to  � Then the sum  � �  � will be a
piecewise polynomial which in general requires �n� triangles in its partition
Even more relevant to our problem is a result �communicated to us by
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Jonathan Goodman� that constructs functions f�x� and g�y� which indi�
vidually can be approximated with order O���n� by the elements of ��n
but whose sum can only be approximated to order O���

p
n� Thus� the

approximation spaces A�
q �Lp���� are not linear This precludes their char�

acterization by classical smoothness spaces which are always linear
Here is another relevant comment The starting point for proving direct

estimates for nonlinear piecewise polynomial approximation are good local
error estimates for polynomial approximation such as those given in x��
The apropriate local error estimators for polynomial approximation on gen�
eral triangles are not known They should take into consideration the shape
and orientation of the triangles For example less smoothness of the target
function should be required in directions where the triangle is thin� more in
directions where the triangle is fat While one may guess apropriate error
estimators� none have been utilized successfuly in nonlinear schemes
Given the situation described above concerning nonlinear piecewise poly�

nomial approximation� it comes as no surprise that other avenues were ex�
plored to handle nonlinearity in the multivariate case The most successful of
these has been n�term approximation which took the following viewpoint
In the univariate case the elements in the space �n can also be desribed
as a sum of n �or perhaps Cn� fundamental building blocks In the case
of piecewise constants these are simply the characteristic functions 


I
of

intervals I  In the general case of nonlinear piecewise polynomial approxi�
mation the building blocks are B�splines Therefore� one generalization of
�n to the multivariate case would take the form of n�term approximation
using multivariate building blocks The �rst examples were for box�splines
�DeVore� J and Popov ���
	�� but this was later abandoned for the more
computationaly favorable wavelets We shall discuss wavelets in x	


�
� Rational approximation

Another natural candidate for nonlinear approximation are rational func�
tions Let Rn�IR

d� denote the space of rational functions in d variables
Thus� and element R in Rn is the quotient� R � P�Q� of two polynomials
P �Q �in d variables� of total degree � n We de�ne the approximation error

rn�f�p �� inf
R�Rn

kf �RkLp���� ������

The status of rational approximation is more or less the same as for piece�
wise polynomials In one variable� we have

A�
q �Lp���� �Rn�� � A�

q �Lp���� ��n�r��� � 	 � 	 r� ������

Thus� on the one hand the approximation problem is solved but on the other
hand the news is somewhat depressing since there is nothing to gain or lose
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�in the context of the approximation classes� in chosing rational functions
over piecewise polynomials
The characterizations ������ were proved by Pekarski ���
�� and Petru�

shev ���
	� by comparing �n to rn A typical comprison is given by the
inequalities

rn�f�p � Cn��
nX

k��

k����k�r�f�p� n 
 r� ������

which holds for all � � p 	 �� � � � and approximation on an inter�
val Similar inequalities reverse the roles of �n�r�f�p and rn�f�p Thus the
approximation classes for univariate rational approximation coincide with
Besov spaces when ��q � � � ��p �see ������� In a strong sense� rational
approxiation can be viewed as piecing together local polynomial approxi�
mants similar to piecewise polynomials
We should also mention the work of Peller���
�� who characterized the

approximation classes for rational approximation in the BMO metric �which
can be considered as a slight variant of L�� In the process� Peller charac�
terized interpolation spaces between BMO and the Besov space B�

��L�� and
found the trace classes for Hankel operators thus unifying three important
areas of analysis
There are some direct estimates for multivariate rational approximation

�see for example DeVore and Yu ������� but they fall far short of being
optimal The characterization of approximation spaces for multivariate ra�
tionals has met the same resistence as piecewise polynomials for more or less
the same reasons
There have been several other important developments in rational approx�

imaton One of these was Newman�s theorem �see Newman ������� which

showed that the function f�x� � jxj satis�es rn�f�� � O�e�c
p
n� �a very

stunning result at the time� Subsequently� similar results were proved for

other special functions �such as e�jxj� � and even asymptotics for the error
rn�f� were found A mainstay technique in these developments was Pad�e
approximation This is to rational functions what Taylor expansions are to
polynomials A �rst reference for Pad�e approximation is the book of Baker
���	��

�� Wavelets

Wavelets were ripe for discovery in the ��
��s Multigrid methods in numer�
ical computation� box splines in approximation theory� and the Littlewood�
Paley theory in harmonic analysis� all pointed to multilevel decompositions
However� the great impetus came from two discoveries� the multiresolution
analysis of Mallat and Meyer �see Mallat ���
��� and most of all the discov�
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ery of Daubechies ���

� of compactly supported orthogonal wavelets with
arbitrary smoothness
Wavelets are tailor made for nonlinear approximation and certain nu�

merical applications Computation is fast and simple� and strategies for
generating good nonlinear approximations are transparent Since wavelets
provide unconditional bases for a myriad of functions spaces and smoothness
spaces� the characterization of approximation classes is greatly simpli�ed
Moreover� wavelets generalize readily to several dimensions
There are many excellent accounts of multiresolution and wavelet theory

We shall introduce only enough of the theory to set our notation and provide
us with the vehicle we need for our development of nonlinear approxima�
tion The Haar function is a wavelet �albeit a not very smooth one� and
����	� is typical of wavelet decompositions We shall begin our discussion
of multiresolution by considering approximation from shift invariant spaces
which provides the linear theory for wavelet approximation
In the development of wavelets and multiresolution analysis� one needs to

make modest assumptions so the theory develops smoothly We shall not
stress these assumptions� and in fact in many cases not even mention them�
in order to keep our exposition short and to the point The reader needs
to consult one of the following references to �nd precise formulations of the
results we state here� Daubechies ������� Meyer ������� DeVore and Lucier
������

���� Shift invariant spaces

In multiresolution analysis� there are two fundamental operations we per�
form on functions� shift and dilation If f is de�ned on IRd and j � ZZd�
then f�� � j� is the �integer� shift of f by j Meanwhile� if a � � is a real
number then f�a�� is the dilate of f by a In this section� we consider spaces
invariant under shifts We then dilate them to create new and �ner spaces
The main goal is to understand the approximation properties of these dilated
spaces
We shall not discuss shift invariant spaces in their full generality in order

to move more directly to multiresolution analysis The results stated below
have many extensions and generalizations �see de Boor� DeVore� and Ron
������ and the references therein�
Let � be a compactly supported function in L��IR

d� We de�ne *S���
as the set of all �nite linear combinations of the shifts of � The space
S �� S��� is de�ned to be the closure of *S��� in L��IRd� We say that S is
the principle shift invariant space �PSI� generated by �
For each k 
 �� the space Sk �� Sk��� is de�ned to be the dilate of S by

�k A function T is in Sk if and only if T ��� � S��k�� with S � S��� The
space Sk is invariant under the shifts j��k� j � ZZd We shall be interested
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in the approximation properties �in the L��IR
d��norm� of Sk as k 	� We

let

Ek�f� �� Ek�f�� �� inf
S�Sk

kf � SkL��IRd�� k � �� �� � � � � �	���

The approximation properties of Sk are related to polynomial reproduc�
tion in S It was Schoenberg ������ who �rst recognized that polynomial re�
production could be described by the Fourier transform �� of �� subsequently�
Strang and Fix ���	�� used Fourier transforms to describe approximation
properties We say � satis�es the Strang�Fix condition of order r � IN if

����� � �� and Dj ����k�� � �� k � ZZ n f�g� j � �� � � � � r� �� �	���

When � satis�es the Strang Fix condition of order r then S��� locally con�
tains all polynomials of order r �degree r � �� �Actually� this and results
stated below require a little more about � in terms of smoothness which we
choose not to formulate exactly� Moreover� it is easy to prove the Jackson
inequality� for all f in the Sobolev space W r�L��IR

d��� we have

Ek�f� � C��krjf jW r�L��IR
d��� k � �� �� � � � �	���

The companion Bernstein inequality to �	��� is

jSjW r�L��IR
d�� � C�krkSkL��IRd��� S � Sk� �	���

It is valid if � is in W r�L��IR
d�� Under these conditions on �� we can

use the general results of x�� to obtain the following characterization of
approximation spaces

A�
q �L��IR

d�� � B�
q �L��IR

d��� � 	 � 	 r� � 	 q � �� �	���

Notice that this is exactly the same characterization as for the other types
of linear approximation we have discussed earlier There is a similar theory
for approximation in Lp�IR

d�� � � p � �� and even � 	 p 	 �

���� Multiresolution and wavelet decompositions

Multiresolution adds one essential new ingredient to the setting of the previ�
ous section We require that the spaces Sk are nested� ie Sk � Sk��� which
is of course equivalent to S� � S� This in turn equivalent to requiring that
� is in S�
We shall limit our discussion to the multiresolution analysis that leads to

birothogonal wavelets of Cohen� Daubechies� and Feauveau ������ These
are the wavelets used most often in applications Accordingly� we start with
the univariate case and assume that � is a function for which the spaces
Sk � Sk��� of the previous section provide approximation�

dist�f�Sk�L��IR� 	 �� �	���
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We know that this will hold for example if � satis�es the Strang�Fix con�
dition for some order r � � We assume further that the shifts ��� � j��
j � ZZ� are a Riesz basis for S and that the dual basis is given by the shifts
of a compactly supported function *� whose dilated spaces Sk� *�� also form
a multiresolution analysis Duality means thatZ

IR
��x� j� *��x� k� � ��j� k�� �	�	�

with � the Kronecher delta
The fact that � � S� implies that � is re�neable�

��x� �
X
k�ZZ

ck���x� k�� �	�
�

The compactness of � implies that there are only a �nite number of nonzero
coe�cents ck in �	�
� They are called the re�nement mask for � �in image
processing they are called the �low pass� �lter coe�cients� The dual func�
tion *� satis�es a corresponding re�nement equation with mask coe�cients
*ck
Let h�� �i denote the inner product in L��IR� and let P be the projector

Pf ��
X
j�ZZ

hf� *��� � j�i��� � j� �	���

which maps L��IR� onto S By dilation� we obtain the corresponding pro�
jectors Pk which map L��IR� onto Sk� k � ZZ  We are particularly interested
in the projector Q �� P� � P� which maps L��IR� onto a subspace W of S�
The space W is called a wavelet space� it represents the detail which when
added to S� gives S� via the formula S � PS � QS� S � S� One of the
main results of wavelet+multresolution theory is that W is a PSI generated
by the function

��x� �
X
k�ZZ

dk *���x� k�� dk �� ����k*c��k� �	����

Also� the shifts ��� � j�� j � ZZ � form a Riesz basis for W whose dual
functionals are represented by *��� � j� where *� is obtained from � in the
same way � was obtained from *� In other words�

Qf �
X
j�ZZ

��khf� *��� � j�i���� j� �	����

Of course� by dilation� we obtain the spaces Wk � the projectors Qk and the
representation

Qkf �
X
j�ZZ

�khf� *���k � �j�i���k � �j�� �	����

From �	���� we know that Pkf 	 f � k 	 � It can also be shown that
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Pkf 	 �� k 	 �� and therefore we have

f �
�X

k���
�Pk��f � Pkf� �

X
k�ZZ

X
j�ZZ

�khf� *���k � �j�i���k � �j�� �	����

The factor �k multiplying the inner product arises from scalling This is the
biorthogonal wavelet decomposition of an arbitrary f � L��IR�
We would like to simplify the wavelet notation and bring out better the

nature of the representation �	���� For this we shall use the following
convention To j � ZZd� k � ZZ� we identify the dyadic cube I � ��k�j���
with � �� ��� ��d� the unit cube in IRd To each function � de�ned on IRd�
we let

�I�x� �� jI j�������k � �j� �	����

The cube I roughly represents the support of �I � in the case that � � 

�
or

� � H with the H the Haar function� then I is precisely the support of �I 
Let D be the set of all dyadic intervals in IR and Dk those dyadic intervals

of length ��k  We can now rewrite �	���� as

f �
X
I�D

cI�f��I � cI�f� �� hf� �Ii� �	����

The Riesz basis property of the �eI gives that

kfkL��IR� �
�X
I�D

jcI�f�j�
����

� �	����

The special case of orthogonal wavelets is noteworthy In this case� one
begins with a scaling function � whose shifts are an orthonormal system
for S��� Thus *� � � and the space W is orthogonal to S�� each function
S � W satis�es Z

IR
SS� dx � �� S� � S� �	��	�

The decomposition S� � S��W is orthogonal and the functions �I � I � D
are an orthonormal basis for L��IR�
We turn now to the construction of wavelet basis in several dimensions

There are several possibilities The most often used construction is the
following Let � be a univariate scaling function and � its corresponding
wavelet We de�ne �� �� �� �� �� � Let E� denote the collection of
vertices of the unit cube ��� ��d and E the nonzero vertices For each vertex
e � �e�� � � � � ed� � E�� we de�ne the multivariate functions

�e�x�� � � � � xd� �� �e��x�� � � ��ed�xd� �	��
�

and de�ne , �� f�e � e � Eg If D � D�IRd� is the set of dyadic cubes in
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IRd� then the collection of functions

�eI � I � D� e � E �	����

are a Riesz basis for L��IR
d�� an orthonormal basis if � is an orthogonal

wavelet The dual basis functions *�eI have an identical construction starting

with *� and *� Thus� each f � L��IR
d�� has the wavelet expansion

f �
X
I�D

X
e�E

ceI�f��
e
I � ceI�f� �� hf� *�eIi �	����

Another construction of multivariate wavelet bases is to simply take the
tensor products of the univariate basis �I  This gives the basis

�R�x�� � � � � xd� �� �I��x�� � � ��Id�xd�� R �� I� � � � �Id �	����

where the R are multidimensional parallelpipeds Notice that the support of
the function �R corresponds to R and is nonisotropic It can be long in one
direction short in another This is in contrast to the previous bases whose
supports are isotropic We shall be almost exclusively interested in the �rst
basis

���� Characterization of function spaces by wavelet ceo�cients

Wavelet coe�cients provide simple characterizations of most function spaces
The norm in the function space is equivalent to a sequence norm applied to
the wavelet coe�cients We shall need such characterizations for the case of
Lp spaces and Besov spaces
It is convenient in the characterizations that follow to sometimes chose

di�erent normalizations for the wavelet and coe�cients appearing in the
decomposition �	���� In �	���� we have normalized the wavelet and dual
functions in the L��IR

d� We can also normalize the wavelet in Lp�IR
d��

� 	 p � �� by taking
�eI�p �� jI j���p�����eI � I � D� e � E �	����

with a similar de�nition for the dual functions Then� we can rewrite �	����
as

f �
X
I�D

X
e�E

ceI�p�f��
e
I�p� ceI�p�f� �� hf� *�eI�p�i �	����

with ��p� ��p� � � We also de�ne

cI�p�f� �� �
X
e�E

jceI�p�f�jp���p� �	����

One should note that it is easy to go from one normalization to another
For example� for any �� p� q � �� we have

�I�p � jI j��q���p�I�q� cI�p�f� � jI j��p���qcI�q�f�� �	����
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The characterization of Lp spaces by wavelet coe�cients comes from the
Littlewood�Paley of harmonic analysis One cannot simply characterize the
Lp spaces as �p norms of the wavelet coe�cients Rather� one must go
through the square function

S�f� x� ��

�X
I�D

cI���f�
�jI j��


I
�x�

����
�

�X
I�D

cI�p�f�
�jI j���p


I
�x�

����
�	����

which incorporates the interaction between dyadic levels Here� 

I
is the

characteristic function of the interval I  For � 	 p 	�� one has
kfkLp�IRd� � kS�f� ��kLp�IR� �	��	�

with the constants of equivalency depending only on p Notice that in the
case p � �� �	��	� reduces to �	���� One can �nd proofs of �	��	� �which
use techniques of harmonic analysis such as maximal functions� in Meyer
������ or DeVore� Konjagin� and Temlyakov ����	�
The equivalence �	��	� can be extended to the range p � � if the space Lp

is replaced by the Hardy space Hp and more assumptions are made of the
wavelet � In this sense� most of the theory of approximation given below
can be extended to this range of p
We have introduced the Besov spaces B�

q �Lp�IR
d�� for � 	 q� p � ��

� � �� in x� The following is the wavelet characterization of these spaces

jf jB�
q �Lp�IR

d� �

����
���
P�

k��� �k�q
	P

I�Dk
cI�p�f�p


q�p���q
� � 	 q 	��

supk�ZZ �k�
	P

I�Dk
cI�p�f�p


��p
� q ���

�	��
�
Several remarks are in order to explain �	��
�
Remark �i�� Other normalizations for the coe�cients cI�f� are frequently
used The form of �	��
� then changes by the introduction of a factor jI j	
into each term� with � a �xed constant
Remark �ii�� We can de�ne spaces of functions for all � � � by using the
right side of �	��
� However� these spaces will coincide with Besov spaces
only for a certain range of � and p that depend on the wavelet � In the
case � � p � �� we need that �a� � � B	

q �Lp�IR
d��� for some � � �� �b�

� has r vanishing moments with r � � When p 	 �� we also need that
r � d�p� d �see the following remark�
Remark �iii� When p 	 �� �	��
� characterizes the space B�

q �Hp�IR
d��

�with the correct range of parameters� where this latter Besov space can be
de�ned by replacing the Lp modulus of smoothness by the Hp modulus of
smoothness �see Kyriazis ������� However� if � � d�p� d� this space is the
same as B�

q �Lp�IR
d��
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Remark �iv� For a �xed value of � � p 	 �� the spaces B�
� �L��IR

d���
��� � ��d���p� occur� as we know� in nonlinear approximation If we chose
the wavelets normalized in Lp� then the characterization �	��
� becomes
simply

jf jB�
� �L� �IR

d�� �
�X
I�D

cI�p�f�
�

����
� �	����

���� Nonlinear wavelet approximation

In this and the next sections� we shall consider n term approximation by
wavelet sums The results we present hold equally well in the univariate and
the multivariate case However� the notation is somewhat simpler in the
univariate case Therefore� to spare the reader� we shall� in the beginning�
treat only this case At the end of the section we shall formulate the results
for multivariate functions
The idea of how to utilize wavelets in nonlinear approximation is quite

intuitive If the target function is smooth on a region we can use a coarse
resolution �approximation� on that region This amounts to putting terms in
the approximation corresponding to low frequency � terms from dyadic level
k with k small On regions where the target function is not smooth we use
higher resolution This is accomplished by taking more wavelet functions in
the approximation� that is terms from higher dyadic levels The questions
that arise from these intuitive observations are� �i� exactly how should we
measure smoothness to make such demarkations between smooth and non�
smooth� �ii� how do we allocate terms in a nonlinear strategy� �iii� are there
precise characterizations of the functions which can be approximated with
a given approximation order by nonlinear wavelet approximation Fortu�
nately� all of these questions have a simple and de�nitive solution which we
shall presently describe
We shall limit ourselves to the case of biorthogonal wavelets and approxi�

mation in Lp� � 	 p 	� Again� one can work in much more generality As
will be clear from our exposition� what is essential is only the equivalence
of function norms with norms on the sequence of wavelet coe�cients Thus�
the results we present hold equally well for approximation in the Hardy
space Hp �see Cohen� DeVore and Hochmuth ����	�� and for more general
wavelets
It will also be convenient to consider approximation on all of IRd �initially

on IR� In the following section� we shall discuss brie$y how results extend
to other domains
Let �� *� be two re�neable functions which are in duality as described in

x	� and let � and *� be their corresponding wavelets Then� each function
f � Lp�IR� has the wavelet decomposition �	���� We let �

w
n denote the set
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of all functions

S �
X
I��

aI�I � �	����

where � � D is a set of dyadic intervals of cardinality �� � n Thus �wn is
the set of all functions which are a linear combination of n wavelets functions
�I  In analogy with our previous studies� we de�ne

�wn �f�p �� inf
S��wn

kf � SkLp�IR�� �	����

We can characterize the approximation classes for n�term wavelet approx�
imation by proving Jackson and Bernstein inequalities and then envoking
the general theory of x�� The original proofs of these inequalities was given
in DeVore� Jawerth� and Popov ������ but we shall follow Cohen� DeVore�
and Hochmuth ����	� which introduced some simpler techniques
Given a �nite set of intervals �� for each x � IR� we let I�x� be the

smallest interval in � which contains x If there is no such interval� then we
de�ne I�x� �� IR and expressions like jI�x�j�� are interpreted as zero The
following lemma of Temlyakov ����	� is a powerful tool in estimating norms
of wavelet sums

Lemma � Let � 	 p 	 � and � be a �nite set If f � Lp�IR� has the
wavelet decomposition

f �
X
I��

cI�p�f��I�p �	����

with jcI�p�f�j �M � for all I � �� then
kfkLp�IR� � C�M��

��p �	����

with C� an absolute constant Similarly� if jcI�p�f�j 
M � for all I � �� then
kfkLp�IR� 
 C�M��

��p �	����

with C� � � an absolute constant

We shall sketch the proof of �	���� �which is valid for � 	 p 	 �� since
it gives us a chance to show the role of I�x� and the square function The
proof of �	���� is similar We have

kfkLp�IR� � kS�f�kLp�IR� � Ck
�X
I��

c�I�pjI j���p
I
����

kLp�IR�

� CMk
�X
I��

jI j���p
I
����

kLp�IR� � CMkjI�x�j���pkLp�IR��
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If J � �� then the set *J �� fx � I�x� � Jg is a subset of J  It follows that

kfkpLp�IR� � CMp
Z
IRd
jI�x�j�� dx � CMp

X
J��

Z
�J
jJ j�� � CMp���

which proves �	����
We shall now formulate the Jackson inequality for n term wavelet ap�

proximation Let r be the number of vanishing moments of � Recall that r
also represents the order of polynomials that are locally reproduced in S���
Recall also that for � 	 � 	 �� a sequence �an� of real numbers is in the
Lorentz space w�� �� ���� if

�fn � janj � g �M � �� �	����

for all  � � The norm k�an�kw�� is the smallest value ofM such that �	����
holds Also�

k�an�kw�� � k�an�k�� �
Theorem � Let � 	 p 	 �� and s � �� and let f � Lp�IR

d� and cI ��
cI�p�f�� I � D� be such that �cI�I�D is in w�� � ��� � s � ��p Then�

�n�f�p � Cn�sk�cI�kw�� � n � �� �� � � � � �	����

with the constant C depending only on p and s

We sketch the proof We have

�fI � jcI j � g �M � ��

for all  � � with M �� k�cI�kw��  Let �j �� fI � ��j 	 jcI j � ��j��g
Then� for each k � �� �� � � �� we have

kX
j���

��j � CM ��k� �	��	�

with C depending only on � 
Let Sj ��

P
I��j cI�I and Tk ��

Pk
j��� Sj  Then Tk � �N with N �

CM ��k�  We have

kf � TkkLp�IR� �
�X

j�k��

kSjkLp�IR� �	��
�

We �x j � k and estimate kSjkLp�IR� Since jcI j � ��j�� for all I � �j�
we have from Lemma � and �	��	��

kSjkLp�IR� � C��j����pj � CM ��p�j���p����
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We therefore conclude from �	��
� that

kf � TkkLp�IR� � CM ��p
�X

j�k��

�j���p��� � CM�M�k���p��

because ��p� � 	 � In otherwords� for N �M ��k� � we have

�N �f�p � CMN��p���� � CMN�s�

From the monotonicity of �n it follows that the last inequality holds for all
N 
 �
Let us note a couple of things about the theorem First of all there is no

restriction on s However� the functions which satisfy �cI�p�f�� � w�� is not
a classical smoothness space We can use the theorem to obtain Jackson
inequalities in terms of Besov spaces by using the characterization of Besov
spaces by wavelet coe�cients Recall that this characterization applies to
Bs
� �L��IR�� provided the following two properties holde� �i� � has r vanishing
moments with r � s� �ii� � is in B

q �L�� for some q and some � � s That is
� must have su�cient vanishing moments and su�cient smoothness Under
these assumptions� we have

Corollary � Let � 	 p 	 �� let s � � and let f � Bs
� �L��IR��� ��� �

s� ��p If � satis�es the above two conditions �i� and �ii�� then

�n�f�p � Cjf jBs
� �L� �IR��

n�s� n � �� �� � � � � �	����

with C depending only on p and s

We have cI���f� � cI�p�f�jI j������p � cI�p�f�jI js�d Thus� from �	���� we
�nd

jf jBs
� �L� �IR��

� k�aI�k�� 
 k�aI�kw�� �
Hence �	���� follows from Theorem �

���� The Bernstein inequality for n�term wavelet approximation

The following theorem gives the Bernstein inequality which is the companion
to �	����

Theorem � Let � 	 p 	 �� and let the assumptions of Theorem � be
valid If f �

P
I�� cI�p�f��I�p with �� � n� we have

kfkBs
� �L� �IR�� � CnskfkLp�IR�� �	����

We sketch the simple proof of this inequality
We �rst note that for each I � �� we have

cI jI j���p
I � S�f��
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because the left side is one of the terms appearing in the square function
S�f� Hence� with I�x� de�ned as the smallest interval in � that contains
x� we have from �	�����

jf j�Bs
��L� �IR��

�

Z
IR

X
I��

jcI j� jI j��
I �
Z
IR

X
I��

c�I jI j���p
I jI j�����p
I

� C

Z
IR
S�f��

X
I��

jI j�����p � C

Z
IR
S�f� x�� jI�x�j�����pdx

� C

Z
IR
S�f� x�p

���pZ
IR
jI�x�j��

�����p
dx

� Cn����pkS�f�k�Lp�IR� � Cn����pkfk�Lp�IR��

��
� Approximation spaces for n�term wavelet approximation

The Jackson and Bernstein inequalities of the previous sections are equally
valid in IRd The only distinctiion is that n	s should be replaced by n	s�d
The proofs are identical with the univariate case except for the more elab�
orate notation needed in the multivariate formulation
With the Jackson and Bernstein inequalities in hand� we can apply the

general machinery of x�� to obtain the following characterization of the
approximation spaces for n�term wavelet approximation We formulate the
results for the multivariate case
Let � 	 p 	 � and s � � and let ��� �� s�d � ��p If � satis�es the

vanishing moments and smoothness assumptions needed for the Jackson and
Bernstein inequalities� then for any � 	 � 	 s and any � 	 q � ��

A��d
q �Lp�IR

d�� � �Lp�IR
d�� Bs

��L��IR
d�����s�q� �	����

Several remarks are in order about �	����
Remark �i�� We have seen the interpolation spaces on the right side of
�	���� before for free knot spline approximation and d � �
Remark�ii� For each � there is one value of q where the right side is a
Besov space Namely when ��q � ��d� ��p the right side of �	���� is the
Besov space B�

q �Lq�IR
d�� with equivalent norms

Remark�iii�� There is a description of the interpolation spaces on the right
of �	���� in terms of wavelet coe�cients Namely� a function is in the space
�Lp�IR

d�� Bs
��L��IR

d�����s�q if and only if �cI�p�f��I�D is in the Lorentz space
���q where ��� �� ��d� ��p and in fact� we have

jf jA	�d
q �Lp�

� k�cI�p�f��k�
�q

This veri�es Remark �ii� that in the case that q � �� then A��d
� �Lp�IR

d�� �

B�
��IR

d�� with equivalent norms These results can be proved by a slightly
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�ner analysis of n�term wavelet approximation �see Cohen� DeVore� and
Hochmuth ����	� and Temlyakov ����	a��
There is a further connection between n term approximation and inter�

polation that we wish to bring out Let p� s� and � have the same meaning
as above For each n� let fn denote the best n�term approximation to f
in Lp�IR

d� �which can be shown to exist Temlaykov����	�� It follows from
what we have proved and Theorem � of x�� that for n � �� �� � � �� we have
K�f� n�s� Lp�IRd�� Bs

��L��IR
d��� � kf � fnkLp�IRd� � n�sjfnjBs

� �L� �IR
d���

In other words fn realizes this K�functional at t � n�s
In summary� n�term wavelet approximation o�ers an attractive alternative

to free knot spline approximation on several counts In one space dimension
�the only case where free knot spline approximation is completely under�
stood�� it provides the same approximation e�ciency and yet is more easily
numerically implementable �as will be discussed subsequently�

���� Wavelet decompositions and n�term approximation on domains in IRd

In numerical considerations� we usually deal with functions de�ned on a ��
nite domain � � IRd The above results can be generalized to that setting
in the following way We assume that the boundary �� of of � is Lipschitz
�it is possible to work under slightly weaker assumptions Under this as�
sumption� it follows that any function f in the Besov space B�

q ��� can be

extended to all of IRd in such a way that the extended function Ef satis�es

jf jB�
q �Lp�IR

d�� � Cjf jB�
q �Lp����

�	����

We refer the reader to DeVore and Sharpley ���
��� ������ for a discussion
of such extensions The extended function Ef has a wavelet decomposition
�	���� and the results of the previous section can be applied The n�term
approximation to Ef will provide the same order of approximation to f on
� and one can delete in the approximant all terms corresponding to wavelets
that are not active on � �ie all wavelets whose support does not intersect
��
While the above remarks concerning extensions are completely satisfac�

tory for theoretical considerations� they are not always easily implementable
in numerical settings Another approach which is applicable in certain set�
tings is the construction of a wavelet basis for the domain � This is partic�
ularly suitable in the case of an interval � � IR Biorthogonal wavelet bases
can be constructed for an interval �see Cohen� Daubechies� Vial ������� and
can easily be extended to parallelpipeds in IRd and even polyhedral domains
�see Dahmen ����	� and the references therein�
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���� Thresholding and other numerical considerations

We have thus far concerned ourselves mainly with the theoretical aspects
of n�term wavelet approximation We shall now discuss how this form of
approximation is implemented in practice We assume that approximation
takes place on a domain � � IRd which admits a biorthogonal bases as
discussed in the previous section For simplicity of notation� we assume
that d � �
In the case of approximation in L����� the best n�term approximation

to a target function f is obtained by choosing the n terms in the wavelet
series �	���� of f for which the coe�cients are largest A similar strategy
applies in the case of Lp�IR� approximation Now� we write f in in its
wavelet expansion with respect to Lp normalized wavelets �see �	����� and
choose the n�terms for which jcI�p�f�j is largest The results of x	� show
that this approximant will provide the Jackson estimates for n�term wavelet
approximation It is remarkable that this simple strategy also gives a near
best approximant fn to f  Temlyakov ����	� has shown that

kf � fnkLp��� � C�n�f�p� n � �� �� � � � � �	����

with a constant independent of f and n
In numerical implementation� one would like to avoid the time expensive

sorting inherent in the above description of n�term approximation This can
be done by employing the following strategy known as thresholding We �x
the Lp��� space in which approximation error is to be measured Given
a tolerance  � �� we let ���f� denote the set of all intervals I for which
jcI�p�f�j �  and de�ne the hard�thresholding operator

T��f� ��
X

I����f�
cI�f��I �

X
jcI�f�j��

cI�f��I � �	����

If the target function f is in weak �� � with ��� � s � ��p� then it follows
from the de�nition of this space that

����� �M ��� �	����

with M the weak �� norm of the coe�cients Moreover� arguing as in the
proof of Theorem �� we obtain

kf � T��f�kLp��� � CM ��p����p� �	����

For example� if  � MN���� � then �����f�� � N and kf � T��f�kLp��� �
CMN�s In other words� thresholding provides the Jackson estimate In
this sense� thresholding provides the same approximation e�ciency as n�
term approximation
The following table records the relationship between thresholding and n�
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Table � Thresholding values
Coe�cient Size Number of Coe�cients Error
� M � ��� M ��p�����p

M����ps�����s�� M��s����s �

MN���� N MN�s

term approximation Here� M � jf j���� �  is a thresholding tolerance� � is a
prescribed error� and N is a prescribed number of coe�cients�
For example� the second row of this table gives bounds on the thresh�

olding parameter and the number of coe�cients needed to achieve an error
tolerance � � �
Hard thresholding has a certain instability in that coe�cients just below

the thresholding tolerance are set to zero and those just above are kept
intact This instability can be remedied by soft thresholding Given  � ��
we de�ne

s��x� ��

��
�
�� jxj � �
��jxj � �signx�  � jxj � ��
x� jxj � ��

�	��	�

Then� the solft thresholding operator

T ���f� ��
X
I�D

s��cI�p�f���I�p �	��
�

has the same approximation properties as T�

	� Highly nonlinear approximation

Nonlinear wavelet approximation in the form of n�term approximation or
thresholding is simple and e�ective However� two natural questions arise
How does the e�ectiveness of this form of approximation depend on the
wavelet basis# Secondly� is there any advantage to be gained by adaptively
chosing a basis which depends on the target function f# To be reasonable�
we would have to limit our search of wavelet basis to a numerically imple�
mentable class An example of such a class is the collection of wavelet packet
bases de�ned in x�	 We call such a class L of bases a library We shall
limit our discussion to approximation in a Hilbert space H and libraries of
orthonormal bases for H So our problem of nonlinear approximation would
be given a target function f � H� to chose both a basis B � L and an n
term approximation to f from this basis We call such an approximation
problem highly nonlinear since it involves another layer of nonlinearity in
the basis selection
A closely related form of approximation is n�term approximation from a

dictionary ID � H of functions For us� a dictionary will be an arbitrary
subset of H However� dictionaries have to be limited to be computationaly
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feasible Perhaps the �rst example of this type of approximation was consid�
ered by E Schmidt ����	�� who considered the approximation of functions
f�x� y� of two variables by bilinear forms

Pm
i�� ui�x�vi�y� in L����� ��

�� This
problem is closely connected with properties of the integral operator with
kernel f�x� y�
We mention some other important examples of dictionaries In neural

networks� one approximates functions of d�variables by linear combinations
of functions from the set

f��a � x� b� � a � IRd� b � IRg�
where � is a �xed univariate function The functions ��a � x� b� are planar
waves� also called ridge functions Usually� � is required to have additional
properties For example� the sigmoidal functions� which are used in neural
networks� are monotone non�decreasing� tend to � as x	 ��� and tend to
� as x	�
Another example� from signal processing� uses the Gabor functions

ga�b�x� �� eiaxe�bx
�

and approximates a univariate function by linear combinations of the ele�
ments from

ID �� fga�b�x� c� � a� b� c � IRg�
Gabor functions are one example of a dictionary of space�time��frequency
atoms The parameter a serves to position the function ga�b in frequency
and c does the same in space The shape parameter b localizes ga�b
The common feature of these examples is that the family of functions used

in the approximation process is redundant There are many more functions
in the dictionary than needed to approximate any target function f  The
hope is that the redundancy will increase the e�ciency of approximation
On the other hand� redundancy may slow down the search for good approx�
imations
Results on highly nonlinear approximation are quite fragmentary and a

cohesive theory still needs to be developed We shall present some of what is
known about this theory both for its usefulness and in the hopes of bringing
attention to this interesting area

���� Adaptive basis selection

It will be useful to begin by recalling the results of x� and x� on n�term
approximation using the elements of an orthonormal basis Let B �� f�kg
be an orthonormal basis forH and let �n�B� denote the functions inH which
can be written as a linear combination of n of the functions �k� k � �� �� � � �
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and further let

�n�f� B� �� �n�f� B�H �� inf
S��n�B�

kf � SkH �
���

be the corresponding approximation error
We have seen that the decrease of the approximation errors �n�f� B� is

completely determined by the rearranged coe�cients hf� �ki As before� we
let �k�f� B� be the k�th largest of the absolute values of these coe�cients
For example� we have seen that for any � � �� a function f from H is in
A�� �ie �n�f� B� � O�n���� n 	 ��� if and only if ��n�f� B�� is in weak
�� �ie in ����� with � �� ��� ������ Moreover�

k��n�f� B��k���� � jf jA�
�

�
���

with constants of equivalency independent of B
Suppose now that L � fBg is a library of such orthonormal bases B We

de�ne the approximation error

�Ln �f�H �� inf
B�L

�n�f� B�H� �
���

The approximation classes A�
q �H�L� are de�ned in the usual way �see x���

It is of great interest to characterize the approximation classes in concrete
settings since this would give us a clear indication of the advantages of
adaptive basis selection A few results are known in discrete settings �see
eg Kashin and Temlyakov ����	�� We shall limit ourselves to the following
rather trivial observations
In view of �
���� we have the upper estimate

�Ln �f�H � Cn�� inf
B
k��n�f� B��k���� �
���

with C an absolute constant Moreover� for any � � �� we have

�B A�
��H� B� � A�

��H�L�� �
���

We can interpret these results in the following way For each basis B� the
condition ��n�f�� � ����� � �� �� � ������ can be viewed as a smoothness
condition on f relative to the basis B Thus the in�mum on the right side
of �
��� can be thought of as the in�mum of smoothness conditions relative
to the di�erent bases B Similarly� we can view the classes A���H� B� as
smoothnesss classes with respect to the basis B The right side of �
���
is an intersection of smoothness classes Thus� an advantage of optimal
basis selection is that we are allowed to take the basis B � L in which f is
smoothest
In general �
��� and �
��� are not reversible One can easily construct

two basis B�� B�� and a target function f so that as n varies� we alternate
between the choices B� and B� as the best basis selection for varying n It
is less clear whether this remains the case when the library is chosen to have
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some structure as in the case of wavelet packets Thus the jury is still out as
to whether �
��� and �
��� can sometimes be reversed in concrete situations
and thereby obtain a characterization of A���H�L�
The above discussion for q �� generalizes to any � 	 q � �

���� Two examples of wavelet libraries

We would be remiss in not mentioning at least a couple of simple examples
of libraries of bases that are useful in applications The understanding of
the approximation properties in such examples would go a long way toward
understanding highly nonlinear approximation
Our �rst example is to generalize the wavelet packets of x�	 Since the

situation is completely analogous to that section� we shall be brief In place
of 


�
and the Haar function H � we can take any orthogonal scaling function

� and its orthogonal wavelet � We take for H the space L��IR� The func�
tion � satis�es the re�nement equation �	�
� with re�nement coe�cients ck�
k � ZZ and likewise the wavelet � satis�es �	���� Therefore� the operators
of ����
� are replaced by

A�g ��
X
k

ckg�� � �k�� A�g ��
X
k

dkg�� � �k�� �
���

Then� A���� � �� and A���� � �
Starting with �� �� �� we generate the functions �b and the spaces %b

exactly as in x�	 The interpretation using the binary tree of Figure �
applies and gives the same interpretation of orthonormal bases for Sm���
These bases form the library of wavelet packet bases For further discussion
of wavelet packet libraries and their implementation� we refer the reader to
Wickerhauser ������
For our second example� we take H � L��IR

�� and again consider a
compactly supported� re�neable function � � L��IR� with orthonormal
shifts and its corresponding orthogonal wavelet � We de�ne �� �� ��
�� �� � To each vertex e of the unit square ��� ���� each j � �j�� j�� � ZZ��
k � �k�� k�� � ZZ�� we associate the function

�ej�k�x�� x�� �� �
�k��k�����e���k�x� � j���

e���k�x� � j��� �
�	�

Each of these functions has L��IR
�� norm one We let L denote the library of

all complete orthonormal systems which can be made up from the functions
in �
�	� In particular L will include the usual wavelet bases given in �	����
and the hyperbolic basis �	���� which is the tensor product of the univariate
wavelet basis
Consider� as a special case of the above library� where � � 



����
and

� � H with H the Haar function We approximate functions de�ned on
the unit square � �� ��� ��� The library L includes bases of the following
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type We can take an arbitrary partition P of � into dyadic rectangles R
On each R we can take a standard or hyperbolic wavelet Haar bases This
library of bases is also closely related to the CART algorithm studied by
Donoho ����	�

���� Approximation using n�terms from a dictionary

Suppose that ID is a dictionary of functions from H It will be convenient
to assume �without loss of generality in n�term approximation� that each
g � ID has norm one �kgkH � �� and that �g � ID whenever g � ID One
particular example of a dictionary is to start with an orthonormal basis B for
H and to take ID �� f�b � b � Hg We shall say that this is the dictionary
generated by B For each n � IN � we let �n �� �n�ID� denote the collection
of all functions in H which can be expressed as a linear combination of at
most n elements of ID Thus each function S � �n can be written in the
form

S �
X
g��

cgg� � � ID� �� � n �
�
�

with the cg � IR It may be possible to write an element from �n�ID� in the
form �
�
� in more than one way
For a function f � H � we de�ne its approximation error

�n�f� �� �n�f� ID�H �� inf
S��n

kf � SkH� �
���

We shall be interested in estimates for �n �from above and below� For
this purpose� we introduce the following way of measuring smoothness with
respect to the dictionary ID
For a general dictionary ID� and for any � � �� we de�ne the class of

functions

Ko
� �ID�M� �� ff �

X
g��

cgg � � � ID� �� 	� and
X
g��

jcgj� �M �g�

and we de�ne K��ID�M� as the closure �in H� of Ko
��ID�M� Furthermore�

we de�ne K��ID� as the union of the classes K��ID�M� over all M � � For
K � K� �ID�� we de�ne the semi� norm

jf jK��ID� �
����

as the in�mum of all M such that f � K��ID�M� Notice that when � � ��
K� is the class of functions which are a convex combination of the functions
in ID
The case when ID is generated by a basis B is instructive for the results

that follow In this case� n�term approximation from ID is the same as n�
term approximation from B which we have analyzed in x� and x� We have



Acta Numerica �

shown that if ��� � �� ���� then f is in the approximation class A�
� �ID� if

and only if X
k

jhf� hkij�

is �nite and this last expression is equivalent to jf j�A� �B� In particular� this
shows that

�n�f� ID�H � Cn��jf jK� �ID� �
����

in the special case that ID is given by an orthonormal basis B
We are now interested in understanding whether �
���� holds for more

general dictionaries ID The results in the following section will show that
�
���� is valid for a general dictionary provided � 
 ��� The �rst result
of this type was due to Maurey �see Pisier ���
��� who showed that in the
case � � ���� �
���� is valid for any dictionary  An iterative algorithm to
generate approximants from �n�ID� which achieve this estimate �for � �
���� was given by Jones ������ For � � ���� �
���� is proved in DeVore
and Temlyakov ������ For � 	 ��� �� � � � �� there seems to be no
obvious analogue of �
���� for general dictionaries

���� Greedy algorithms

The estimate �
���� can be proved for a general dictionary by using greedy
algorithms �also known as adaptive pursuit� These algorithms are often
used computationaly as well We shall mention three examples of greedy
algorithms and analyze their approximation properties In what follows k �k
is the norm in H and h�� �i is the inner product in H
The �rst algorithm� known as the pure greedy algorithm can be applied

for any dictionary ID Its advantage is its simplicity It begins with a
target function f and successively generates approximants Gm�f� � �m�ID��
m � �� �� � � � In the case that ID is generated by an orthonormal basis B�
Gm�f� is a best m�term approximation to f 
If f � H � we let g � g�f� � ID denote an element from ID which maximizes

hf� gi�
hf� g�f�i� sup

g�D
hf� gi� �
����

We shall assume for simplicity that such a maximizer exists� if not suitable
modi�cations are necessary in the algorithms that follow We de�ne

G�f� �� G�f� ID� �� hf� g�f�ig�f�
and

R�f� �� R�f�D� �� f � G�f��
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Then� G�f� is a best one term approximation to f from ID and R�f� is the
residual of this approximation
Pure Greedy Algorithm� Initially� we set R��f� �� R��f�D� �� f and

G��f� �� � Then� for each m 
 �� we inductively de�ne
Gm�f� � � Gm�f� ID� �� Gm���f� � G�Rm���f��
Rm�f� � � Rm�f� ID� �� f � Gm�f� � R�Rm���f���

The Pure Greedy Algortihm converges to f for each f � H �see Davis�
Mallat and Avellaneda ����	�� This algorithm is greedy in the sense that
at each iteration it approximates the residual Rm�f� as best possible by a
single function from ID In the case ID is generated by an orthonormal basis�
then it is easy to see that Gm�f� is a best m�term approximation to f from
ID and

�m�f�B�H � kf �Gm�f�kH � kRm�f�kH�
However� for general dictionaries� this is not the case� and in fact the ap�
proximation properties of this algorithm are somewhat in doubt� as we shall
now describe
For a general dictionary ID� the best estimate �proved in DeVore and

Temlyakov ������� known for the pure greedy algorithm is that for each
f � K��ID� we have

kf �Gm�f�kH � jf jK��ID�m
����� �
����

Moreover� the same authors have given an example of a dictionary ID and
a function f which is a linear combination of two elements of ID such that

kf � Gm�f�kH 
 Cm����� �
����

with C an absolute constant In other words� for the simplest of functions
f �which are in all of the smoothness classes K� �ID��� the pure greedy al�
gorithm provides approximation of at most order O�m����� Thus� this
algorithm cannot provide estimates like �
���� for � � ���
There are modi�cations of the pure greedy algorithm with more favorable

approximation properties We mention two of these� the Greedy Algorithm
with Relaxation� and the Orthogonal Greedy Algorithm
Relaxed Greedy Algorithm� We de�ne Rr

��f� �� Rr
��f� ID� �� f and

Gr
��f� �� Gr

��f�D� �� � For m � �� we de�ne G
r
��f� �� Gr

��f� ID� �� G��f�
and Rr

��f� �� Rr
��f� ID� �� R��f�� Let� as before� for a function h � H �

g � g�h� denote a function from ID which maximizes hh� gi Then� for each
m 
 �� we inductively de�ne

Gr
m�f� �� Gr

m�f� ID� �� ���
�

m
�Gr

m���f� �
�

m
g�Rr

m���f���

Rr
m�f� �� Rr

m�f� ID� �� f � Gr
m�f��



Acta Numerica 

Thus� the relaxed greedy algorithm is less greedy than the pure greedy algo�
rithm It makes only modest use of the greedy approximation to the residual
at each step The number ��m appearing at each step is the relaxation pa�
rameter
Algorithms of this type appear in Jones ������� who showed that the

Relaxed Greedy Algorithm provides the approximation order

kf �Gr
m�f�k � Cm����� m � �� �� � � � � �
����

for any f � K��ID� Unfortunately� this estimate requires the knowledge
that f � K��ID� In the event that this information is not available � as
would be the case in most numerical considerations � the choice of relaxation
parameter ��m is not appropriate
The Relaxed Greedy Algorithm gives a constructive proof that �
����

holds for a general dictionary ID in the case � � ��� We shall discuss
how to prove �
���� in the next section But �rst we want to put out on
the table another variant of the greedy algorithm� called the orthogonal
greedy algorithm which removes some of the objections to the choice of the
relaxation parameter in the relaxed greedy algorithm
To motivate the orthogonal greedy algorithm� let us return for a mo�

ment to the pure greedy algorithm This algorithm chooses functions gj ��
G�Rj�f��� j � �� � � � � m to use in approximating f  One of the de�ciencies
of the algorithm is that it does not provide the best approximation from the
span of g�� � � � � gm We can remove this de�ciency as follows
If H� is a �nite dimensional subspace of H � we let PH�

be the orthogonal
projector from H onto H� That is PH�

�f� is the best approximation to f
from H�
Orthogonal Greedy Algorithm� We de�ne Ro

��f� �� Ro
��f�D� �� f

and Go
��f� �� Go

��f�D� �� � Then for each m 
 �� we inductively de�ne
Hm �� Hm�f� �� spanfg�Ro

��f��� � � � � g�R
o
m���f��g�

Go
m�f� �� Go

m�f�D� �� PHm�f��

Ro
m�f� �� Ro

m�f�D� �� f � Go
m�f��

Thus� the distinction between the orthogonal greedy algorithm and the
pure greedy algorithm is that the former takes the best approximation by
linear combinations of the functions G�R��f��� � � � � G�Rm���f�� available at
each iteration The �rst step of the orthogonal greedy algorithm is the same
as the pure greedy algorithm However they will generally be di�erent at
later steps
DeVore and Temlyakov ������ have shown �as will be discussed in more

detail in the next section� that the orthogonal greedy algorithm satis�es the
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estimate

kf � Go
m�f�D�kH � jf jK��ID�m

����� �
����

Thus� the orthogonal greedy algorithm gives another constructive proof
that �
���� holds for a general dictionary ID However� one should note that
the orthogonal greedy algorithm is computationally more expensive in the
computation of the best approximation from Hm
From �
����� it is easy to prove the following theorem from DeVore and

Temlyakov ������

Theorem 	 Let ID be any dictionary� let � 
 ��� and ��� � �� ��� If
f � K� �ID�� then

�m�f� ID�H � Cjf jK� �D�m
��� m � �� �� � � � � �
��	�

where C depends on � if � is small

We sketch the simple proof It is enough to prove �
��	� for functions f
which are a �nite sum f �

P
j cjgj � gj � D� with

P
j jcj j� � M �  Without

loss of generality we can assume that the cj are positive and nonincreasing
We let s� ��

Pn
j�� cjgj and R� �� f � s� �

P
j�n cjgj  Now�

c�n �
�

n

nX
j��

jcj j� � M �

n
� n � �� �� � � � �

Hence� cj �Mn���� � j � n and it follows thatX
j�n

cj �
X
j�n

c���j c�j �M���n�����
X
j�n

c�j �Mn����� �

This gives that R� is in K��ID�Mn������ Using� �
����� there is a function
s� which is a linear combination of at most n of the g � ID such that

kf � �s� � s��k � kR� � s�k � �Mn�����n���� � �Mn���

and �
��	� follows

���� Further analysis of greedy algorithms

To determine the performance of a greedy algorithm� we try to estimate the
decrease in error provided by one step of the Pure Greedy Algorithm Let
ID be an arbitrary dictionary If f � H and

��f� �� hf� g�f�i�kfkH� �
��
�

where as before g�f� � ID satis�es

hf� g�f�i� sup
g�D

hf� gi�



Acta Numerica �

Then�

R�f�� � kf �G�f�k�H � kfk�H��� ��f���� �
����

The larger ��f� is� the better the decrease of the error in the Pure Greedy
Algorithm
The following theorem from DeVore and Temlyakov ������ estimates the

error in approximation by the Orthogonal Greedy Algorithm

Theorem 
 Let ID be an arbitrary dictionary in H Then for each f �
K��ID�M� we have

kf � Go
m�f� ID�kH �Mm����� �
����

Proof� We can assume that M � � and that f is in Ko
��ID� �� We let

fom �� Ro
m�f� be the residual at stepm of the Orthogonal Greedy Algorithm

Then� from the de�nition of this algorithm� we have

kfom��kH � kfom � G�fom� ID�kH
Using �
����� we obtain

kfom��k�H � kfomk�H��� ��fom�
��� �
����

Since f � Ko
��ID� ��� we can write f �

PN
k�� ckgk with ck � �� k � �� � � � � N �

and
PN

k�� ck � � By the de�nition of the Orthogonal Greedy Algorithm�
Go
m�f� � PHmf and hence f

o
m � f � Go

m�f� is orthogonal to G
o
m�f� Using

this � we obtain

kfomk�H � hfom� fi �
NX
k��

ckhfom� gki � ��fom�kfomkH �

Hence�

��fom� 
 kfomkH�
Using this inequality in �
����� we �nd

kfom��k�H � kfomk�H��� kfomk�H��
It is now easy to derive from this that kfomkH � ��m �


� Lower estimates for approximation� n�widths

In this section� we shall try to understand better the limitations of linear and
nonlinear approximation Our analysis thus far has relied on the concept
of approximation spaces For example� we started with a sequence of linear
or nonlinear spaces Xn and de�ned the approximation classes A

�� which
consists of all functions f which can be approximated with accuracy O�n���
by the elements of Xn We have stressed the importance of characterizing
these approximation spaces in terms of something more classical such as
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smoothness spaces and in fact we have accomplished this in many settings
In this way� we have seen among other things that the classical nonlinear
methods of approximation �like free knot splines or n�term approximation�
outperform their counterparts in linear approximation
To make these points more clearly� let us recall perhaps the simplest

setting for the results we have presented Namely� we consider L�����
approximation� � �� ��� ��� using the Haar wavelet H  Every function in
L���� has a decomposition

f � a


����

�
X

I�D�
�����
cI�f�HI � cI�f� �� hf�HIi �����

with the HI normalized in L���� and a the average of f over �
In linear approximation� we take as our approximation to f the partial sum

of the series ����� consisting of the �rst n�terms with respect to the natural
order of dyadic intervals �this is the ordering which gives priority �rst to
size and then to orientation from left to right� For this approximation�
we have seen that f is approximated in the norm of L���� with accuracy
O�n���� � 	 � 	 ���� if and only if f � Lip��� L����� The upper limit of
��� for the characterization comes about because the Haar wavelet H is in
Lip����� L����� but in no higher order Lipschitz space
In nonlinear approximation� we approximated f by taking the partial sum

of ����� which consists of the n terms with largest coe�cients It is clear that
this form of approximation is at least as e�cient as the linear approximation
We have seen that we can characterize the functions which are approximated
with order O�n��� with conditions on the wavelet coe�cients of f that
roughly correspond to f having smoothness of order � in L� with ��� �
� � ��� �see Remark �iii� of x	�� In fact� it is easy to see that each
function in Lip��� L���� with � � � is approximated with this order by the
nonlinear method
Is this really convincing proof that nonlinear methods outperform linear

methods# Certainly it shows that this nonlinear wavelet method outper�
forms the linear wavelet method However� what can prevent some other
linear method �not the wavelet method just described� from also containing
the Lip��� L�� classes in its A��# There is a way of deciding whether this is
possible by using the concept of n�widths which we now describe
There are many de�nitions of n�widths For our purpose of measuring

the performance of linear methods� the following de�nition of Kolmogorov
is most appropriate If X is a Banach space and K is a compact subset of
X � we de�ne

dn�K� �� inf
dim�Xn��n

sup
f�K

E�f�Xn�X � �����

where the in�mum is taken over all n dimensional linear spaces and of course
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Fig� �� Shaded region gives ���q� �� such that U�
r �Lq���� ��� has n width of order

O�n��� in Lp� � � p � ��

E�f�Xn�X is the error in approximating f by the elements ofXn in the norm
of X  So dn measures the performance of the best n�dimensional space on
the class K
To answer our question posed above� we would like to know the n�width of

the unit ball U�
� of Lip��� L����� in L���� �this unit ball is a compact subset

of L���� provided � � � � ���������� The Kolmogorov n�widths of Besov
and Lipschitz balls are known and can be found for example in Chapter
�� of Lorentz� von Golitschek� and Makovoz ������ We shall limit our
discussion to the results relevant to our comparison of linear and nonlinear
approximation
We �x the space Lp���� � � ��� ��� where approximation is to take place

While we shall discuss only univariate approximation in this section� all
results on n-width hold equally well in the multivariate case In Figure 
�
we use our usual interpretation of smoothness spaces as points in the upper
right quadrant to give information about the n�widths of the Besov spaces
B�
r �Lq� The shaded region of that �gure corresponds to those Besov spaces
whose unit ball has n�width O�n���
Several remarks will complete our understanding of Figure 
 and what it

tells us regarding linear and nonlinear methods
Remark �i�� The n�width of U�

r �Lq���� is never better then O�n��� In
other words� once we know the smoothness index � of the space this provides
a limit as to how e�ective linear methods can be
Remark �ii�� The sets U�

r �Lp���� which correspond to the Besov spaces
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on the linear line �L� always have Kolmogorov n�width � n�� Thus� for
these spaces the classical methods of approximation such as polynomials or
�xed knot splines provide the best order of approximation for these classes

Remark �iii�� For approximation in Lp���� with � 	 p � �� and for
� � �

p there is always a certain range of q �depicted in Figure 
 by the

shaded region� where the Kolmogorov n�width of U�
r �Lq��� is still � n��

This is a rather surprising result of Kashin ���		� We know that classical
methods cannot provide this order of approximation because we have char�
acterized their approximation classes A�� and these classes do not contain
general functions from U�

r �Lq���� once q 	 p So there are linear spaces with
super approximation properties �which to a limited extent mimic the advan�
tages of nonlinear approximation� What are these spaces# Unfortunately
these spaces are not known constructively They are usually described by
probabilistic methods So while their existence is known �via a probability
argument� we cant put our hands on them and de�nitely cannot use them
numerically

Remark �iv�� The range of q where the super linear spaces come into play
always falls well short of the nonlinear line Thus nonlinear methods always
perform better than linear methods in the sense that their approximation
classes are strictly larger

Remark �v�� We have not depicted the case p � � since in this case there
are no Besov balls U�

r �Lq� which have the order O�n
��� save for the case

q 
 p which we already know from the classical linear theory

Remark �vi�� Now here is an important point that is sometimes misun�
derstood It is not always safe to say that for a speci�c target function
nonlinear methods will perform better than linear methods Let us forget
for a moment the super linear theory since it is not relevant in numerical
situations any way Given f there will be a maximal value of � lets call it �L
for which f is in B���Lp� Then� we know that approximation from classi�
cal n�dimensional linear spaces will achieve an approximation rate O�n��L�
but they can do no better Let us similarly de�ne �N as the largest value
of � for which f is in the space B�N� �L�� for some � � �� � ��p��� then
nonlinear methods such as n term wavelet approximation will provide an ap�
proximation error O�n��N � If �N � �L then certainly nonlinear methods
outperform linear methods �at least asymptotically as n	�� However� if
�L � �N then there is no gain in using nonlinear methods to approximate
the target function f 

The questions we have posed for linear approximation can likewise be
posed for nonlinear methods For example� consider univariate approxi�
mation in Lp���� � � ��� �� We know that classical nonlinear methods
approximate functions in B���L��� � � �����p��� with accuracy n�� But
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can it be that other nonlinear methods do better# Questions of this type
can be answered by introducing nonlinear n�widths
There are several de�nitions of nonlinear widths � the most prominent of

these is the Alexandrov width However� we shall only be concerned with the
manifold n�width which was introduced by DeVore� Howard� and Micchelli
���
�� since it �ts best with numerical methods Let X be the space in
which we shall measure error �we shall assume that X is equipped with a
norm k � kX� By a �nonlinear� manifoldMn of dimension n� we shall mean
the image of a continuous mapping M � IRn 	 X  We shall approximate
using the elements of Mn For each compact set K � X � we de�ne the
manifold width

�n�K�X� �� inf
M�a
sup
f�K

kf �M�a�f��kX� �����

where the in�mum is taken over all manifolds mappings M of dimension n
and all parameter mappings a � K 	 IRn which are continuous
We make a couple of remarks which may help explain the nature of the

width �n
Remark �a�� For any compact set� we can select a countable number of
points which are dense in K and construct a one dimensional manifold �a
continuous piecewise linear function of t � IR� passing through each of these
points Thus� without the restriction that the approximation arises through
a continuous parameter selection a we would always have �n�K� � �
Remark �b�� The function a also guarantees stability of the approximation
process If we perturb f slightly the continuity of a guarantees that the
parameters a�f� only change slightly
The nonlinear widths of each of the Besov balls U�

r �L�� in the space
Lp���is known If this ball is a compact subset of Lp���� then the nonlinear
n�width is

�n�U
�
r �L����� � n��� n	�� �����

This shows therefore that we cannot obtain a better approximation order for
these balls then what we obtain via n�term wavelet approximation How�
ever� n�term approximation� as it now stands� is not described as one of
the procedures appearing in ����� However� this requires only a little mas�
saging Using certain results from topology� DeVore� Kyriazis� Leviatan�
Tichomirov ������ have shown nonlinear approximation in terms of soft�
thresholding of the coe�cients can be used to describe an approximation
process which provides the upper estimate in ����� We shall not go into the
details of this construction
On the bases of the evidence we have thus far provided about linear and

nonlinear methods� is it safe to conclude that the nonlinear methods such as
n�term wavelet approximation are superior to other nonlinear methods# The
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answer is de�nitely not We only know that if we classify functions according
to their Besov smoothness� then for this classi�cation no other nonlinear
methods can do better On the other hand� each nonlinear method will
have its approximation classes and these need not be Besov spaces A case
in point where we have seen this is in the case of approximation in a Hilbert
space by n terms of an orthonormal basis In this setting� we have seen
that the approximation classes depend on the basis and that smoothness of
a function for this type of approximation should be viewed as decay of the
coe�cients with respect to the basis This will generally not be a Besov
space In other words� there are other ways to measure smoothness in which
wavelet performance will not be optimal
Our discussion thus far has not included lower estimates for optimal basis

selection or n�term approximation from a dictionary We do not know of a
concept of widths which properly measures the performance of these highly
nonlinear methods of approximation This is an important open problem
in nonlinear approximation because it would shed light on the role of such
methods in applications such as image compression �see the section below�
Finally� we want to mention the VC dimension of Vapnik�Chervonenkis

�see the book of Vapnik ���
��� The VC dimension measures the size
of nonlinear sets of functions by looking at the maximum number of sign
alternations of its elements It has an important role in statistical estimation
but has not been fully considered in approximation settings The paper of
Maiorov and Ratasby ����	� uses VC�dimension to de�ne a new n�width
and analyzes the widths of Besov balls Their results are similar to those
above for nonlinear widths

��� Applications of nonlinear approximation

Nonlinear methods have found many applications both numerical and an�
alytical The most prominent of these have been to image processing� sta�
tistical estimation� and the numerical and analytic treatment of di�erential
equations There are several excellent accounts of these matters �see Mallat
����	� for image processing� Donoho and Johnstone ������� Donoho� John�
stone� Kerkyacharian� and Picard ������ for statistical estimation� Dahmen
����	� and Dahlke� Dahmen� and DeVore ����	� for applications to PDE�s�
We shall limit ourselves to a broad outline of the use of nonlinear approxi�
mation in image processing and PDE�s

����� Image processing

We shall discuss the processing of digitized grey scale images Signals� color
images� and other variants can be treated similarly but have their own pe�
culiarities A digitized grey scale image I is an array of numbers �called
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pixel values� which represent the grey scale We assume 
 bit grey scale im�
ages which means the pixel values range from ��black� to ��� �white� We
shall also assume �only for the sake of speci�city� that the array consists of
����� ���� pixel values Given such images� the generic problems of image
processing are� compression� noise reduction� feature extraction� and object
recognition
To utilize techniques from mathematical analysis in image processing� it is

useful to have a model for images as functions One such model is to assume
that the pixel values are obtained from an underlying intensity function f
by averaging over dyadic squares In our case� the dyadic squares are those
in Dm �� Dm���� � �� ��� ��

�� with m � ��� thus resulting in ���� squares
and the same number of pixel values We denote the pixel values by

pI �
�
jIj

Z
I
f�x� dx� I � Dm� ������

Of course� there is more than one function f with these pixel values Since
the pixel values are integers� another possibility would be to view them as
integer quantizations of the averages of f  In other words� other natural
models may be proposed But the main point is to visualize the image as
obtained from an intensity function f 
Compression A grey scale image I of the type discribed is represented
by its pixel array� I � �pI�I�Dm � which is a �le of size � megabyte For
the purposes of transmission� storage� or other processing� we would like
to represent this image with fewer bits This can be accomplished in two
ways Lossless encoding of the image uses techniques from information the�
ory to encode the image in fewer bits The encoded image is identical to
the original� in other words the process of encoding is reversible Lossy

compression replaces the original image by an approximation This allows
for more compression but with the potential loss of �delity Lossless en�
coders will typically result in compression factors of �� � which means the
original �le is reduced by �� percent Much higher compression factors can
be obtained in lossy compression with no degradation of the original image
�images compressed by factors of ��� � are typically indistinguishable from
the original�
We can use the techniques of approximation theory and functional analysis

for lossy compression We view the intensity function as our target function
and consider methods for approximating it from the pixel values Wavelet
based methods proceed as follows
We choose a multivariate scaling function � and represent the image by

the series

I �
X
I�Dm

pI�I � ������

Here pI � I � Dm� are some apropriate extension of the pixel values �When



�� Ronald A� DeVore

Original
Image

Wavelet
Transform

Approximate
Wavelet

Transform

Compressed
Data

Compressed
Data

Approximate
Wavelet

Transform

Approximate
Image

DWT - DiscreteDWT - Discrete
Wavelet TranformWavelet Tranform

Nonlinear Approx.Nonlinear Approx.
Quantization, Quantization, 
Thresholding...Thresholding...

EncodingEncoding

DecodingDecodingIDWTIDWT

TransmissionTransmission

Fig� �� Schematic of a typical wavelet based compression algorithm�

using wavelets other than Haar� one has to do some massaging near the
boundary which we shall not discuss� We use the Fast Wavelet Trans�
form to convert pixel values to wavelet coe�cients This gives the wavelet
representation of I�

I � P� �
m��X
k��

X
I�Dk

X
e�E

aeI�
e
I � ������

where P� consists of all the scaling function terms from level �� and the other
notation conforms to our multivariate wavelet notation of x	 �see �	�����
The problem of image compression is then viewed as nonlinear wavelet

approximation and the results of x	 can be employed Figure � gives a
schematic of the typical compression algorithms We use thresholding to
obtain a compressed �le �*aeI�� of wavelet coe�cients which correspond to a

compressed image *I The compressed coe�cient �le is further compressed
using a lossless encoder The encoded compressed �le is our compressed
representation of the original image We can reverse the process From
the encoded compressed �le of wavelet coe�cients� we apply a decoder and
then the Inverse Fast Wavelet Transform to obtain the pixel values of the
compressed image *I The following remarks will help clarify the role of
nonlinear approximation in this process
Remark �i�� We apply nonlinear wavelet approximation in the form of
thresholding �x	
� We choose a value of p �corresponding to the Lp space
in which we are to measure error� and retain all coe�cients which satisfy
kaeI�eIkLp �  We replace by zero all coe�cient for whcih kaeI�eIkLp � 
Soft thresholding can also be used in place of hard thresholding This gives
compressed wavelet coe�cients 'aeI  The larger we choose  the more coe��
cients *aeI that will be zero In most application� p is chosen to be � Larger
values of p will emphasize edges� smaller values emphasize smoothness
Remark �ii�� Further compression� in terms of number of bits� can be
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attained by quantizing the compressed wavelet coe�cients This means
that 'aeI is replaced by a number *a

e
I which requires fewer bits in its binary

representation Quantization can be combined with thresholding by �nding
*aeI with the fewest bits which satis�es k�aeI � *aeI��eIkLp � 
Remark �iii�� The wavelet coe�cient �le consisting of the *aeI is further
compressed by using a lossless encoder such as run length encoding or arith�
metic encoding The position of the coe�cients must be encoded as well as
their value This can be done by keeping the entire array of coe�cients in
natural order �which will necessarilly have many zero entries� or separately
encoding positions
Remark �iv�� The most e�cient wavelet based compression algorithms�
such as the zero tree encoders �see Shapiro ������ or Xiong� Ramchandran
and Orchard ����	��� or bitstream encoder �see Gao and Sharpley ����	���
take advantage of the spatial correlation of the wavelet coe�cients For
example� if we represent the coe�cients by means of quadtree with each
node of the tree corresponding to one of the dyadic square I appearing in
������� then there will be many subtrees consisting only of zero entries and
one tries to encode these e�ciently
Remark �v�� We can measure the e�ciency of compression by the error

�n �� kI � *IkLp ������

where n is the number of nonzero coe�cients in the compressed wavelet �le
for *I Nonlinear approximation theory gives a direct relation between the
rate of decrease of �n and the smoothness of the intensity function f  For
example� consider approximation in L� If f is in the Besov class B�

� �L���
��� � ��� � ���� then �n � Cn���� Indeed� assuming this smoothness
for f � one can show that the function in ������ inherits this smoothness
�see Chambolle� DeVore� Lee� and Lucier ����	�� and therefore the claim
follows from the results of x	��	 Inverse theorem provide converse state�
ments which deduce smoothness of the intensity function from the rate of
compression However� for these converse results one must think of varying
m� ie �ner and �ner pixel representations The point is that one can as�
sociate to each image a smoothness index � which measures its smoothness
in the above scale of Besov spaces and relate this directly with e�ciency of
wavelet compression �DeVore� Jawerth� and Lucier �������
Remark �vi�� In image compression� we are not interested in the number of
nonzero coe�cients of the compressed image per se� but rather the number
of bits in the encoded coe�cient �le This leads one to consider the error

�n �� kI � *IkLp � ������

where n is the number of bits in the encoded �le of wavelet coe�cients
for *I  It has recently been shown by Cohen� Daubechies� Guleryuz� and
Orchard ����	� that a similar analysis to what we have developed for non�
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linear wavelet approximation exists for the error �n For example� they show
that if a univariate intensity function f is in the Besov space B���Lq�� with
q � �� ���� then with a proper choice of encoder one has �N � N�� This
matches the error rate �n in terms of the number of coe�cients Related
results hold in a stochastic setting �see Mallat and Falzon ����	� and Cohen�
Daubechies� Guleryuz� and Orchard ����	��
Remark �vii�� Adaptive basis selection for the wavelet packet library has
been used succesfully in compression Most applications have been to signal
processing �in particular speech signals� There is however the interesting
application of compressing the FBI �ngerprint �les Rather than use a
di�erent basis for each �le� the current algorithms choose one basis of the
wavelet packet library chosen by its performance on a sample collection of
�ngerprint �les
Noise Reduction� Noise reduction is quite similar to compression If

an image is corrupted by noise then the noisy pixel values will be converted
to noisy wavelet coe�cients Large wavelet coe�cients are thought to carry
mostly signal and should be retained� small coe�cients are thought to be
mostly noise and should be thresholded to zero Donoho and Johnstone
have put forward algorithms for noise reduction �called wavelet shrinkage�
which has elements similar to the above theory of compression We give a
brief description of certain aspects of this theory as it relates to nonlinear
approximation We refer the reader to Donoho� Johnstone� Kerkyacharian�
and Picard ������ and the papers referenced therein for a more complete
description of the properties of wavelet shrinkage
Wavelet based noise reduction algorithms are applied even when the noise

characteristics are unknown However� the theory has its most complete
description in the case that the pixel values are corrupted by Gaussian noise
This means we are given a noisy image *I � I �N with noisy pixel values

*pI � pI � �I � ������

where the pI are the original �noise free� pixel values and the �I are inde�
pendent� identically� distributed Gaussians with mean � and variance ���
If we choose an orthonormal wavelet basis for L����� � � ��� ��

�� then the
wavelet coe�cients computed from the *pI will take the form

*ceI � ceI � eI ����	�

with ceI are the original wavelet coe�cients of I and eI are independent�
identically distributed Gaussians with variance ����

��m Wavelet shrinkage
with parameter � � � replaces *ceI by the shrunk coe�cients s��c

e
I� where

s��t� ��

�
�jtj � ��sign t� � 	 t�
� jtj � ��

����
�

Thus� large coe�cients �ie those larger than � in absolute value� are shrunk
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by an amount � and small coe�cients are shrunk to zero We denote the
function with these wavelet coe�cients by

f� �� P� �
m��X
j��

X
I�Dj

X
e�E

s��*c
e
I��I�e ������

with the term P� incorporating the scaling functions from the coarsest level
We seek a value of � which minimizes the expected error

E�kf � f�k�L������ �������

Donoho and Johnstone propose the parameter choice �� �
p
� ln �m�m��

and show its near optimality in several statisftical senses One of the ex�
tremal problems studied by them� as well as DeVore and Lucier ������� is
the following We assume that the original image intensity function f comes
from the the Besov space B�

� �L������ with � � ���������
�� We know that

these spaces characterize the approximation space A�
� �L����� for bivariate

nonlinear wavelet approximation It can be shown that the above choice of
� gives the noise reduction

E�kf � f�k�� � C���kfk�B�
� �L� ����

����
�m���� � �������

The choice of � � �� gives an absolute constant c���� A �ner analysis
of this error was given by Chambolle� DeVore� Lee� and Lucier ����	� and
shows that choosing the shrinkage parameter to depend on � will results in
an improved error estimate
Signi�cant improvements in noise reduction �at least in the visual quality

of the images� can be obtained by using the technique of cycle spinning as
proposed by Coifman and Donoho ������ The idea behind their method can
be described by the following analysis of discontinuities of a univariate func�
tion g The performance of wavelet�based compression and noise reduction
algorithms depends on the position of the discontninuities If a discontinu�
ity of g occurs at a course dyadic rational� say ���� it will e�ect only a few
wavelet coe�cients These coe�cients will be the ones which are changed
by shrinking On the other hand� if the discontinuity occurs at a �ne level
rational binary� say ��m� then all coe�cients will feel this discontinuity and
can potentially be e�ected by shrinkage This less favorable situation can be
circumvented by translating the image� so that the discontinuity appears at
a coarse binary rational� and then applying wavelet shrinkage to the trans�
lated image The image is shifted back to the original position to obtain the
noise reduced image Since� it is not possible to anticipate the position of
the discontinuities� Coifman and Donoho propose averaging over all possible
shifts The result is an algorithms which involves O�m��m� computations
Feature Extaction and Object Recognition The time�frequency lo�

calization of wavelets allow for the extraction of features such as edges and
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texture These can then be utilized for object recognition by matching
the extraction to a corresponding template for the object to be extracted 
Edges and other discontinuities are identi�able by the large wavelet coe��
cients These occur at every dyadic level Retention of high frequency �ie
the highest level� coe�cients is like an artists sketch of an image
Feature extraction has been a prominent application of adaptive basis

selection and approximation from a dictionary A dictionary of waveforms
is utilized which is robust enough to allow the feature to be approximated
with a few terms Examples are the Gabor functions mentioned in x
 In
some cases� an understanding of the physics of wavepropogation can allow
the designing of dictionaries appropriate for the features to be extracted A
good example of this approach in the context of Synthetic Aperture Radar
is given by McClure and Carin����	� The use of adaptive basis selection for
feature extraction is well represented in the book of Wickerhauser ������
The application of greedy algorithms and approximation from dictionaries
is discussed in detail in the book of Mallat ����	� Other techniques based
on wavelet decompositions can be found in DeVore� Lucier� and Yang ������
�in digital mammography�� and DeVore et al ����	� �in image registration�

����� Analytical and numerical methods for PDE�s

To a certain extent� one can view the problem of numerically recovering a
solution u to a PDE �or a system of PDE�s� as a problem of approximating
the target function u However� there is a large distinction in the infor�
mation available about u in numerical computation versus approximation
theory In approximation theory one views information such as point val�
ues of a function or wavelet coe�cients as known and constructs methods
of approximation using this information However� in numerical methods
for PDE�s� the target function is unknown except through the PDE Thus�
the information the approximation theorist wants and loves so much is not
available except through numerical computation In spite of this divergence
of viewpoints� approximation theory can be very useful in numerical com�
putation in possibly suggesting numerical algorithms but more importantly
clarifying what can be expected in performance from linear and nonlinear
numerical methods
Adaptive methods are commonly used for numerically resolving PDE�s

These methods can be viewed as a form of nonlinear approximation with
the target function the unknown solution u to the PDE Most adaptive
numerical methods have not even been shown to converge and certainly
have not been theoretically proven to have numerical e�ciency over linear
methods Nevertheless� they have been very successful in practice and their
e��ciency has been expierementally established
Nonlinear approximation can be very useful in understanding when and
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how adaptive numerical methods should be used For example� from the
analysis put forward in this paper� we know that adaptive piecewise polyno�
mial methods� as well as the n�term wavelet approximation methods� have
increased e�ciency over linear methods when the target function u has cer�
tain types of singularities Namely singularities of the type that would
destroy the smoothness of u in the Sobolev scale but would not impair its
smoothness in the Besov scale for nonlinear approximation
To be more precise� suppose that u is to be approximated in the Lp���

norm with � a domain in IRd Let �L be the largest value of � such that
u is in the Besov space B���Lp���� We know that u can be approximated
by linear methods such as piecewise polynomial or linear wavelet approxi�
mation with accuracy O�n��L�d�� with n the dimension of the linear space
However� we do not know �unless we prove it� whether our particular nu�
merical method has this e�ciency If we wish to establish the e�ciency of
our particular linear numerical method� we should seek an estimate of the
form

ku� unkLp��� � CjujB�L
� �Lp����

n��L�d� �������

where un is the approximate solution provided by our numerical method In
many papers� W�L�Lp���� is used in place of B�L� �Lp��� The form of such
estimates is familiar to the numerical analyst in Finite Element Methods
where such estimates are known in various settings �especially in the case
p � � since this can be related to the energy norm�
Note that n is related to the numerical e�ort needed to compute the

approximant However� the number of computations needed to compute an
approximant with this accuracy may exceed Cn This may be the case for
example in solving elliptic equations with �nite element methods since the
coe�cients of the unknown solution must be computed as a solution to a
matrix equation of size n� n
We can do a similar analysis for nonlinear methods According to the

results reviewed in this article� the appropriate scale of Besov spaces to
gauge the performance of nonlinear algorithms are the B�

q �Lq���� where
��q � ��d � ��p �see Figure � in the case d � �� Let �N be the largest
value of � such that u is in the Besov space B�

q �Lq����� ��q � ��d �
��p If �N � �L� then nonlinear approximation will be more e�cient than
linear approximation in approximating u and therefore the use of nonlinear
methods is completely justi�ed However� there still remains the quesiton
of how to construct a nonlinear algorithm which approximates u with the
e�ciency O�n��N�d� If we have a particular nonlinear numerical method
in hand and wish to analyze its e�ciency� then the correct form of an error
estimate for such a nonlinear algorithm would be

ku� unkLp��� � CjujB�N
q �Lq����

n��N�d� ��q � �N�d� ��p� �������
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How could we decide before hand whether nonlinear methods o�er a bene�
�t over lienar methods This is the role of regularity theorems for PDE�s A
typical regularity theorem infers the smoothness of the solution u to a PDE
from information in the PDE such as the coe�cients� inhomogeneous term�
initial conditions� or boundary conditions We shall discuss this in a little
more detail in a moment but for now we want to make the point of what
form these regularity theorems should take The most common regularity
theorems are in the form of Sobolev regularity and are compatible with the
linear theory of numerical methods Much less emphasis has been placed on
the regularity in the nonlinear scale of Besov spaces but this is exactly what
we need for an analysis of adaptive� or other nonlinear� algorithms
To go a little further in our discussion� we shall consider two model prob�

lems� one hyperbolic and the other elliptic� to bring further home the points
discussed above
Conservation laws� Consider the scalar univariate conservation law�

ut � f�u�x � � x � IR� t � ��
u�x� �� � u��x� x � IR�

�������

where f is a given $ux� u� a given initial condition� and u is the sought
after solution This is a well�studied nonlinear transport equation with
transport velocity a�u� � f ��u� �see eg the book of Godlewski and Raviart
������� We shall assume that the $ux is strictly convex which means the
transport velocity is strictly increasing The important fact for us is that�
even when the initial condition u� is smooth� the solution u��� t� will develop
spontaneous shock discontinuities at later times t
The proper setting for the analysis of conservation laws is in L� and

in particular the error of numerical methods should be measured in this
space Thus� concerning the performance of linear numerical methods� the
question arises as to the possible values of the smoothness parameter �L of
u��� t� as measured in L� It is known that if the initial condition u� is in
BV � Lip��� L��� then the solution u remains in this space for all later time
t � � However� since this solution develops discontinuities� no matter how
smooth the initial condition is� the Sobolev embedding theorem precludes
u being in any Besov space B���L��� for any � � � This means that the
largest value we can expect for �L is �L � � Thus� the optimal performance�
we can expect from linear methods of approximation is O�n��� with n the
dimension of the linear spaces used in the approximation Typical numerical
methods utilize spaces of piecewise polynomials on a uniform mesh with
mesh length h and the above remarks mean that the maximum e�ciency
we can expect for numerical methods is O�h�� h 	 � In reality� the best
proven estimates are O�

p
h� under the assumption that u� � Lip��� L��

This discrepancy between the possible performance of numerical algorithms
and the actual performance is not unusual The solution is known to have
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su�cient regularity to be approximated� for example� by piecewise constants
with uniform mesh h to accuracy O�h� but algorithms which capture this
accuracy are unkown

To understand the possible performance of nonlinear methods such as
moving grid methods� we should estimate the smoothness of the solution in
the nonlinear Besov scale B�

� �L���� ��� � � � �� corresponding to approx�
imation in the L��norm A rather surprising result of DeVore and Lucier
������ shows that starting with a smooth initial condition u�� the solution
u will be in each of these Besov spaces for all � � � In other words� de�
pending on the smoothness of u�� �N can be arbitrarily large This means
that nonlinear methods such as moving grid methods could provide arbitrar�
ily high e�ciency In fact� such algorithms� based on piecewise polynomial
approximation� can be constructed using the method of characteristics �see
Lucier ���
�� for the case of piecewise linear approximation�

Unfortunately� the situation concerning numerical methods for multivari�
ate conservation laws is not as clear While the linear theory goes through
almost verbatim� the nonlinear theory is left wanting The proper form of
nonlinear approximation in the multivariate case would most likely be by
piecewise polynomials on free trianglulations As we have noted earlier� it is
an unsolved problem in nonlinear approximation to describe the smoothness
conditions which govern the e�ciency of this type of approximation For a
further discussion of the multivariate case see DeVore and Lucier ������

Because of their unique ability to detect singularities in a function� wavelet
methods seem a natural candidate for numerical resolution of solutions to
conservation laws However� it is not yet completely clear how wavelets
should be used in numerical solvers Attempts to use wavelets directly in a
time stepping solver have not been completely e�ective Ami Harten ������
and his collaborators have suggested the use of wavelets to compress the
computations in numerical algorithms For example� he proposes the use of
a standard time stepping solver� such as Godunov� based on cell averages for
computing the solution at times step tn�� from the numerically computed
solution at time step tn but to utillize wavelet compression to reduce the
number of $ux computations in the solution step

Elliptic Equations An extensive accounting of the role of linear and
nonlinear approximation in the solution of elliptic problems is given in Dah�
men ������ and Dahlke� Dahmen� and DeVore ����	� We shall therefore
limit ourselves to reiterating a couple of important points about the role of
regularity theorems and the form of nonlinear estimates We consider the
model problem

�u � f on � � IRd� ������

u � � on ���
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of Poisson�s equation on a domain � � IRd with zero boundary conditions
We are interested in numerical methods for recovering the solution to �������
and in particular in the question of whether nonlinear methods such as
adaptive solvers are of any bene�t We shall also limit our discussion to es�
timating error in the L��norm although various results are known for general
p

Consider �rst the case where f � L���� and � has a smooth boundary
Then� the solution u to ������� has smoothness W ��L����� In our previous
notation� this means that �L � � In general� the solution will not have
higher smoothness in the nonlinear Besov scale B�

q �Lq����� ��q � ��d�����
for L� approximation Therefore �N � � and there is no aparent advantage
to nonlinear methods The solution can be approximated by linear spaces of
piecewise polynomials of dimension n to accuracy O�n���d� This accuracy
can actually be achieved by �nite element methods using uniformly re�ned
partitions There is no evidence to suggest any better performance using
adaptive methods

If the boundary �� of � is not smooth then the solutions ������� have sin�
gularities due to corners or other discontinuities of �� �see eg Kondrat�ev
and Oleinik ���
��� Regularity theory in the case of a nonsmooth bound�
ary is a prominent area of PDE�s For some of the deepest and most recent
results see Jerison and Kenig ������ For example� on a general Lipschitz
domain� we can only expect that the solution u to ������� is in the Sobolev
space W ����L����� Thus in the notation given earlier in this sections� we
will only have �L � ���

Because of the appearance of singularities due to the boundary� adaptive
numerical techniques are suggested for numerically recovering the solution u
We understand that to justify the use of such methods� we should determine
the regularity of the solution in the scale of Besov spaces B�

q �Lq����� ��q �
��d� ��� Such regularity has been studied by Dahlke and DeVore ����	�
They prove� for example� that for d � �� �� �� we have u � B�

q �Lq�� ��q �
��d����� for each � 	 � In other words� �N � �L and the use of adaptive
methods is completely justi�ed There are also more general results which
apply for any d � � and show that we always have �N � �L

We reiterate that the above results on regularity of elliptic equations only
indicate the possibility of constructing nonlinear methods with higher e��
ciency It remains a di�cult problem to construct adaptive methods and
prove that they exhibit the increased accuracy indicated by the approxima�
tion theory The aim is to construct numerical methods which provide the
error estimate ������� We refer the reader to Dahmen ����	� for a com�
prehensive discussion of what is known about adaptive methods for elliptic
equations
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