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Non�linearity versus linearity in ridge approximation

K�I� Oskolkov

Abstract

The goal is to compare free �non�linear�� equispaced ridge and algebraic polynomial approx�
imations Rfr

N �f �� R
eq
N �f �� EN �f � of individual functions f�x� in the norm of L��IB��� IB� � the

unit disc jxj � � on the plane IR�� By de	nition

Rfr
N �f � 
� inf

R�Wfr
N

kf �Rk� Req
N �f � 
� min

R�Weq
N

kf � Rk� EN �f � 
� min
P�P�

N��
kf � Pk�

Here� W fr
N denotes the set of all N �term linear combinations of planar wave functions R�x� �PN

� Wj�x � �j� of arbitrary pro	les Wj�x�� x � IR� and directions f�jgN� � W
eq
N � the subset

of W fr
N corresponding to N equispaced directions� and P�

N�� 
� Span fxk�x
l
�gk�l�N � One has

Rfr
N �f � � Req

N �f � � EN �f ��
The central question is
 when Rfr

N �f � � o �Req
N �f �� � N � �� i� e� when non�linear approx�

imation Rfr is more ecient than linear Req� It is proved that this is the case for harmonic
functions
 �� � � �c� � � such that if �f�x� � �� jxj � �� f � L��IB��� then

Rfr
N �f � � c�

�
Req
N �f � exp��N �� �Req

N�����f �
�
�

On the other hand� Rfr
N �f � �

�
c
Req
N��f �� Thus� for f � fharm� R

fr
N �f � is �almost square times

better� than Req
N �f �� However� these ultra�convergence rates are achieved at the expense of

collapse of wave vectors�
On the contrary� non�linearity in Rfr does not bring any essential gain in approximation

orders� say� for all radial functions� If f�x� � f�jxj�� then E�N �f � � Req
N �f � �

q
�
�E�N �f� and

Rfr
N �f � � sup���

q
�

������ R
eq
�����N �f � �

These problems are elaborated via Fourier � Chebyshev analysis in IB� and arising duality be�
tween ridge approximation and optimization of quadrature formulas� in the sense of Kolmogorov
� Nikol�skii ���� on classes of trigonometric polynomials�

�



� Introduction

We consider here a special case of the general problem of ridge approximation� First of all� we restrict
ourselves to the case of �complex valued� functions of two real variables f�x� � f�x�� x��� supported

in the unit disc IB� �� fx � jxj ��
q
x�� � x�� � �g on the real Euclidean plane IR�� Further� we

assume that f�x� � L��IB��� and focus on the approximation problem exclusively in the norm of the
Hilbert space L��IB���

kf�x�� L��IB��k ��
�Z Z

IB�
jf�x�j� ��dx�

� �
�

�

where ��dx� �� dx�dx�
�

denotes the normalized Lebesgue measure on IB��
Let us introduce some other notations� x � y will denote the usual inner product of vectors

x�y � IR�� S� 	 the unit circle jxj � �� � � ���� �� hcos �� sin�i � � � 
�� ���  polar parametrization
of S�� Further� for N � �� �� � � �� we will apply the vector notations �� �� f�jgN� � IRN for N element

sets of directional angles� �j �� hcos �j� sin�ji� �� � ������ �� f�jgN� �
Let us consider the following sets W����� Weq

N � W fr
N of ridge functions  N 	terms linear combina	

tions of planar waves�

W���� ��

�
R�x� �

NX
�

Wj�x � �j�
�
� �� � IRN � W fr

N ��
�

���IRN
W�����

Weq
N ��

�
R�x� �

NX
�

Wj�x � �j� � �j �
�j

N
� j � �� � � � � N � �

�
�

In the above de�nitions� Wj�x�� x � IR� are single	variate functions �pro�les of waves�� Clearly� in

the de�nition ofW���� we can con�ne the components �j of �� to the interval 
�� ��� and consider only

non	degenerate ��� i� e� the case when �j are pairwise non	congruent mod��

Thus� W����� W fr
N � Weq

N consist of N 	term linear combinations of planar waves of arbitrary

pro�les� W���� corresponds to a �xed set of directional angles �� � IRN � W fr
N  the widest collection

of all functions of such type� Weq
N  the particular case of W ��

N with N equispaced wave vectors�

Our goal is to study� for a �xed function f�x� � L��IB��� the extremal problems R����� Rfr� Req

associated with the following quantities�

R
f� ��� �� inf
R�W����

kf �R� L��IB��k� �� � IRN � Rfr
N 
f � �� inf

R�Wfr
N

kf �R� L��IB��k�

Req
N 
f � �� min

R�Weq
N

kf �R� L��IB��k�

�



Obviously� Rfr
N 
f � � inf���IRN R
f� ��� � Req

N 
f ��
Of particular interest is to clarify structural �geometric� di�erential� etc�� conditions on the given

f�x� when freedom in selection of wave vectors f�jgN� in the problemRfr brings an essential advantage
in approximation rates over those associated with Req� Quantitatively� this advantage is expressed
by order relations Rfr

N 
f � � o �Req
N 
f �� � N ��� A partial answer is given below in theorem � �see

also corollary �� regarding two important types of functions� radials and harmonics�
A very essential di�erence between the problems Rfr and Req cosists in non�linearity of Rfr� The

latter is associated with a complete freedom in the choice of wave vectors f�jgN� � that are allowed
to be selected optimally for a given function f�x�� On the contrary� for each �xed �� � IRN the

problem R
f� ��� is linear and the solution is provided by the orthogonal projection in L��IB�� onto

the corresponding subspace L��IB��
��� cf� also theorem � below�

Further� non�existence and non�uniqueness of the element of best ridge approximation are quite
typical for the problem Rfr

N � if N � �� This can be seen from the following�

�� If j � �� W �x�� jxj � �  a smooth single variate function and f�x� �� ��
�
�
��

�j��
W �x � ��� then

for each �xed � one has Rfr
j 
f � � �� This follows from consideration of the angular derivative as limit

of divided di�erences�
This simple observation directs to a natural completion of W���� and W fr

N by the following sets
of collapsed ridge functions�

WN ���� ��

��	
�
R�x� �

X
j

�
� NjX
���


�

��

����
Wj���x � ��

�
A
������
���j

�
X
j

Nj � N

���
�� � �� � f�jg

�obviously� the class WN���� is non	trivial only if dim �� � N�� Respectively� the extremal problem
Rfr can be �sliced� as follows�

RN 
f� ��� �� inf
R�WN ����

kf�x��R�x�k� RM�N 
f � �� inf
���IRM

RN 
f� ���� Rfr
N 
f � � min

��M�N
RM�N 
f ��

A particular case is approximation by completely collapsed ridge functions�

Rfr
N 
f � � Rcol

N 
f� �� �� inf
fWj�x�gNj��

������f�x��
NX
j��


�

��

�j��
Wj�x � ��� L��IB��

������ � ���

which is in a sense the direct counterpart of equispaced ridge approximation�
�� Denote� respectively� P�

N �� Span fxkgk�N and P�
N �� Span fxk�xl�gk�l�N the subspaces of al	

gebraic polynomials of degree N in one and two real variables� If the components �j of �� � IRN

�



are pairwise non	congruent mod�� then �cf� e� g� 
�� and theorem � below� every polynomial
P �x� � P�

N�� can be represented as a linear combination of planar wave polynomials of degree N ��

P �x� �
NX
j��

Pj�x � �j�� Pj�x� � P�
N��� or P�

N�� �W����� R
P� ��� � �� ���

Thus� the element of best ridge approximation is not unique for all algebraic polynomials� Further�
the classical quantities  best algebraic polynomial approximations

EN 
f � �� min
P�P�

N��
kf � P�L��IB��k

majorize ridge approximations for every non�degenerate �� � IRN

R
f� ��� � EN 
f �� ���

The solution of the problem of ridge approximation of the given function f�x� depends upon the
Chebyshev orthogonal momenta an�f� �� generated by Fourier analysis in IB

��

an�f� �� ��
Z
IB�

f�x�un�x � ����dx�� un�x� ��
sin �n � �� arccos xp

�� x�
� n � �� �� � � � � ���

By means of the latter� the problem RN �f� is split into an in�nite series of Kolmogorov  Nikol�skii
type problems� cf� 
��� concerning optimal quadrature formulas for recovery of linear functionals

Fn�f�
T � ��
Z ��

�
an�f� ��T �����d��� n � �� �� � � � �

In the case of a general function f�x� � L��IB��� momenta an�f� �� are trigonometric polynomials
of n	th order� satisfying an�f� � � �� � ����nan�f� ��� Let us denote T �

n the whole subspace of
trigonometric polynomials possessing this property� i� e� T �

n �� Span feim�gjmj�n���� here and below
we use the notation jmj � n��� for the set of integers m with jmj � n and m � n �mod ��� Further�

denote ��d�� �� d�
�� the normalized Lebesgue measure on S�� kT�L�

��k ��
�R ��

� jT ���j���d��
� �

� � and
let

IB�T �
n � ��

n
T � T �

n � kT�L�
��k � �

o
� IB�P�

n� �� fP �z� � P�
n � kP �ei��� L�

��k � �g�
A quadrature formula ����� �w�
T � with the nodes �� �� f�jgN� � IRN and weights �w �� fwjgN� � CN

is a point	values functional

����� �w�
T � ��
NX
j��

wjT ��j��

�



and the following quantities are typical for Kolmogorov  Nikol�skii setting� cf� 
�� of the problem on
optimization of quadrature formulas for recovery of linear functionals�

Qn
a� ��� �� inf
�w�CN

sup
T�IB�T �n �

����
Z ��

�
a�f� ��T �����d��� ����� �w�
T �

���� � �� � IRN �

Qeq
n�N 
a� �� Qn
a� ���� �j �

�j

N
� Qopt

n�N 
a� �� inf
���IRN

Qn
a� ���� ���

In the above� a � a��� is a �xed trigonometric polynomial� a � T �
n �

Theorem � Let f�x� � L��IB��� �� � IRN where the coordinates �j are pairwise non�congruent
mod�� Then

R
f� ��� �
vuut �X

n�N

�n� ��
�
Qn
an�f�� ���

��
� Rfr

N 
f � � inf
���IRN

vuut �X
n�N

�n� ��
�
Qn
an�f�� ���

��
� ���

In particular�

Rfr
N 
f � �

vuut �X
n�N

�n� ��
�
Qopt
n�N 
an�f��

��
���

and
P�
N�� � W ��

N � R
f� ��� � EN 
f �� ���

Like in free ridge approximation� in Kolmogorov  Nikol�skii problem we should admit collapsed
quadrature formulas� involving linear combinations of point values of linear di�erential operators of
total degree � N � �� A particular case is represented by completely collapsed quadrature formulas
�col�P� ��
T � �� P

�
d
d�

�
T ���� P � P�

N��� A proper version of the quantities Qn
a� ��� answering this
case is

Qcol
n�N 
a� �� �� inf

P�P�
N��

sup
T�IB�T �n �

����
Z ��

�
a�f� ��T �����d��� �col�P� ��
T �

���� �
and according to ��� free ridge approximations can be estimated from above as follows�

Rfr
N 
f � � Rcol

N 
f � � inf
�

vuut �X
n�N

�n� ��
�
Qcol
n�N 
an�f�� ��

��
���

Momenta an�f� ��� cf� ���� are especially simple for radial or harmonic functions in IB
�� i� e�

when f�x� � f�jxj� or� respectively� �f�x� � �� jxj 	 � �in the sequel� we will apply the self

�



explanatory notations f � frad� f � fharm in these cases�� For f � frad the n	th momentum is
a constant� an�f� �� � 
n �and all while for f � fharm it is a monomial of the highest frequency�
an�f� �� � �ne

in� � �ne
�in� �cf� lemma � below�

It is clear from theorem � what special cases of Kolmogorov  Nikol�skii problems should be
solved� In the case of f � frad� we need to solve the problem concerning Qopt

n�N 
��  optimal recovery

of the averages
R ��
� T �����d�� of T � T �

n �the problem is non	trivial only for even n� n � N�� For

f � fharm� we need the recovery of
R ��
� T ���

�
�ein� � �e�in�

�
��d��� i� e� linear combinations of the

senior Fourier coe�cients �T �	n� �� R ��
� T ���e�in� ��d���

Seemingly� the problems concerning Qopt
n�N 
�� and Qopt

n�N 
e
�in�� are of a quite analogous nature

simply because all coe�cients of polynomials in IB�T �
n � possess �equal rights�� Moreover� the problem

concerning recovery of �T �	n� can be also reformulated� cf� ���� below� as that of complex polynomials
P �z� � IB�P�

n� in the center z � � of the disc jzj � � via their values P �zj� on the circumference
S� � fz � jzj � �g�

Qopt
n�N 
e

�in�� � Qopt
n�N 
�� IB�P�

n�� �� inf
fzjgN� �S�� fwjgN�

sup
P�IB�P�

n�

������P ����
NX
j��

wjP �zj�

������ � ����

Thus� the following conjectures are plausible�
�� optimal nodal points �� � f�jgN� should be �uniformly distributed��
�� if the nodal de�ciency is essential� i� e� the ratio N

n
is small� then it is impossible to re	

cover Fourier coe�cients of all polynomials in IB�T �
n � with a small error� neither of the quantities

Qopt
n�N 
��� Qopt

n�N 
e
�in�� can be small�

However� these conjectures fail to be true in the part concerning Qopt
n�N 
e

�in�� �see Theorem �
below�� Recovery of the senior Fourier coe�cient �or the value P ��� of algebraic polynomials P �z� �
IB�P�

n�� cf� ����� with a small global error on the class IB�T �
n � is possible even if the sampling number

N is much smaller than n� and it is rather the ratio Np
n
that governs this e�ect�

Theorem � Let n� N be positive integers� n even� n � �N � Then

s
�

�

�
�� �N

n� �

�
� Qopt

n�N 
�� �
s
�
�
�� �N

n� �

�
� ����

Furthermore� the following relations hold true for n � N � �

e�
�N�

n � Qopt
n�N 
e

�in�� � Qcol
n�N 
e

�in�� �� � min
�
��
p
�ne�

Np
n

�
� ����

�



The meaning of the next statement is the following�
�� Solutions of the problem Req �equispaced ridge approximation� for f � frad and f � fharm are
qualitatively and quantitatively the same� and in essence coincide with E�
�� For f � frad� freedom in the choice of directions� in particular� the e�ect of collapse is not
associated with any essential gain in approximation orders of Rfr compared with Req or E�
�� On the contrary� for f � fharm free ridge approximation Rfr is �almost square times better� than
Req� due to the e�ect of collapse of wave vectors�

Theorem � The following relations hold true

Req
N 
f � �

vuut� �X
q��

�E�qN 
f ���
�q� � � �

s
�

�
E�N 
f � � Req

N 
f � � E�N 
f � � f � frad �

s
�

�
EN��
f � � Req

N 
f � � EN 
f � � f � fharm � ����

Rfr
N 
f � � sup

M�N

s
M �N

�M
E�M 
f � � sup

M�N

s
M �N

�M
Req

M 
f � � f � frad � ����

e�� EN�
f � � Rfr
N 
f � � Rcol

N 
f � � min
M�N

�p
�Me

� Np
M EN 
f � � EM��
f �

�
� N � �� f � fharm � ����

Corollary � If f � frad then

Rfr
N 
f � � sup

���

s


��� � �
E������N 
f � � sup

���

s


��� � �
Req

�����N 
f � �

If f � fharm then

�i� 
 � � �c� � � � Rfr
N 
f � � c� �Req

N 
f � exp��N �� �Req
N����
f �� �

�ii� �� � � � EN��� 
f � � o �EN 
f �� ��Rfr
N 
f � � o �Req

N 
f �� �

�iii� �
 � � � Req
N 
f � � O�N�	� �� 
 � � � Rfr

N 
f � � O�N��	���� N ���

�



� Proofs

��� Chebyshev � Fourier analysis in L��IB��

For a given non	negative integer n� let Dn��� denote the Dirichlet kernel for the subspace T �
n �

Dn��� ��
X

jmj�n���
eim� �

sin �n� ���

sin �
�

Obviously�

T ��� � 
T Dn���� ��
Z ��

�
T ���Dn��� ����d��� T � T �

n � ����

Further� let as above un�x� denote the n	th Chebyshev polynomial of the second kind� i� e� un�x� �

Dn�arccosx� �
sin �n��� arccosxp

��x� � jxj � ��
Chebyshev  Fourier analysis in L��IB�� consists in the orthogonal expansion

f�x�
L��IB��
�

Z ��

�

 �X
n��

�n � ��an�f� ��un�x � ��
�
��d��� ����

cf� 
��  
��� For each �xed � � S�� the corresponding planar wave Chebyshev polynomial un�x � ��
is orthogonal in L��IB�� to all polynomials of degree � n� ��Z

IB�
un�x � ��P �x���dx� � �� 
P �x� � P�

n��� ����

As mentioned above� the ortogonal momenta� or Fourier 	 Chebyshev coe�cients an�f� ��� are trigono	
metric polynomials an�f� � T �

n � The Parceval identity is given by

���f� L��IB��
���� � �X

n��

�n� ��
���an�f�� L�

��

���� � �

��

�X
n��

�n� ��
Z ��

�
jan�f� ��j� d�� ����

Furthermore� if fan���g�n�� is a sequence of trigonometric polynomials satisfying the conditions

an � T �
n �

�X
n��

�n� ��
���an� L�

��

���� 	��

then �Plancherel
s theorem� there exists a function f�x� � L��IB��� unique up to a set of Lebesgue
measure �� such that an�f� �� � an���� n � �� �� � � � �

�



Orthogonal projection ProjN 
f ��x� in L��IB�� of a function f�x� � L��IB�� onto the subspace of
algebraic polynomials of degree N � � is given by the partial sum of �rst N terms of the expansion
�����

ProjN 
f ��x� �
Z ��

�


N��X
n��

�n � ��an�f� ��un�x � ��
�
��d��� N � �� �� � � � �

and in particular

EN 
f � �
vuut �X

n�N

�n� �� kan�f�� L�
��k� � ����

��� Momenta of radial� harmonic and planar wave functions

Lemma � �� If f�x� � g�jxj��� where g�x� � L���� �� and g�x�
L������
�

P�
��� �g� l��x� is the Fourier 	

Legendre expansion of g�x�� then

a�����f� � �� a���f� �
�g�p
�� � �

� � � �� �� � � � � ����

�� If f�r�� � �f��� �
P�

n�� r
n
�
�f��n�e�in
 � �f �n�ein


�
� � � r 	 � is the standard representation

of a harmonic function f � fharm � L��IB�� in the polar coordinates x � r�� then

a��f� � �f ���� an�f� �� �
�f��n�e�in� � �f �n�ein�

n � �
� n � �� �� � � � � ����

�� Let ��x� �� �
�

p
�� x�� jxj � �� W �x� � L�

����� �� and W �x�
L���������

P�
n��

�Wnun�x� 	 the
Fourier 	 Chebyshev expansion of W � � � S� 	 a �xed unit vector� Then W �x ��� � L��IB�� and

an �W �x ���� �� �
�Wn

n� �
Dn��� �� �

�Wn sin �n� ����� ��

�n� �� sin ��� ��
� n � �� �� � � � � ����

Proof� For the proof of ����� see e�g� 
��� Let us also note the following relations between Legendre
and Chebyshev polynomials of the second kind�

Z ��

�
u�����x � ����d�� � ��

Z ��

�
u���x � ����d�� � l��jxj��p

�� � �
� � � �� �� � � � �

�



For the proof of claim ��� let us note that the terms p�m�x� �� rme�im
 are harmonic algebraic
polynomials� p�m�x� � P�

m� By �����
R
IB� un�x � ��p�m�x���dx� � � for all m 	 n� The same relations

are valid form � n� Indeed� for each �xed jxj � r � �� un�x��� � un�r cos ��� ��� is a trigonometric
polynomial in �� of degree n� so that

R ��
� un�r cos ��� ���e�im
 d� � �� if m � n� Thus� for the

proof of ���� we need to consider only the case m � n�
Let Tn�x� �� cos �n arccos x�� jxj � � denote the n	th Chebyshev polynomial of the �rst kind�

We have u��x� � T��x�� un�x� � �
P

��m�n��� Tm�x� for n � �� and Tn�x� � �n��xn � q�x��
where q�x� � P�

n��� Thus un�x� � �n��xn � q��x�� q��x� � P�
n�� and for �xed n � �� r � � and

�� un�r cos ��� ��� � �n�r cos ��� ���n � t �ei
� � �rn cosn��� �� � t� �ei
� where t� t� � T �
n���

Consequently�
R ��
� un�r cos ��� ���e�in
 ��d�� � rne�in� andZ

IB�
p�n �x�un�x � ����dx� � �

Z �

�
r

�Z ��

�
rne�in
un�r cos ��� �����d��

�
dr � �e�in�

Z �

�
r�n�� dr�

whence the relations ���� follow� Let us also note that for f � fharm � L��IB�� �

kf � L��IB��k� �
�X

n���

j �f �n�j�
jnj � � �

Further� for a �xed vector x� un�x � �� is a trigonometric polynomial in �� and un�x � �� � T �
n �

Thus� by ���� Z ��

�

�Wn

n� �
Dn��� ��un�x � ����d�� �

�Wn

n� �
un�x ����

and ���� follow from �����

��� Proof of theorem �

Now let us consider a ridge function R�x� �
PN

j�� Wj�x � �j� � L��IB��� Then the momenta of R�x�
are linear combinations of shifted Dirichlet kernels�

an�R��� �
�

n� �

NX
j��

�Wj�nDn��� �j�� ����

where �Wj�n denotes the n	th Fourier  Chebyshev coe�cient of the function Wj�x� � L�
����� ��� cf�

����� Let us upply vector notations�

��W n �� f �Wj�ngNj�� � CN � j ��W nj� ��
NX
j��

j �Wj�nj�� �U � �V �
NX
j��

UjVj �

�Note that the condition f�x� � L��IB�� does not guarantee the existence of the boundary values f����

��



let alsoDn���� denote theN�N symmetricmatrix fDn��j��k�gNj�k��� and D�
n�
��� �� Dn�����Dn���I �

Dn����� �n � ��I� where I is the N 	th identity matrix� z� 	 the conjugate of a complex number z�
Lemma � Let n be a positive integer� N 	 a natural number� �� � f�jgN� � IRN � where �j are

pairwise distinct mod�� Further� let a��� be a �xed polynomial of the class T �
n � �a���� �� fa��j�gN� �

Then�

�� Qn
a� ��� � min
�w�CN

������a����
NX
j��

wjDn��� �j�� L��IB��

������ � ����

�� Denote �w � fwjgN� the vector of optimal weights� or� which is the same� the minimizer of the
extremal problem on the right of ���� Then �w satis�es the following system of N linear equations�

NX
j��

wjDn��k � �j� � a��k�� k � �� � � � � N� or Dn�����w � �a����� ����

�� rank Dn���� � dimSpan fDn��� �j�gNj�� � min �N�n� ��� ����

�� Qn
a� ��� � �� n � N � �� Qn
a� ��� �
q
ka�L�

��k� � �w � �a������ n � N� ����

where �w is the vector of optimal weights�

�� sup
n
kD�

n����kl� �	l� � C���� 	�� ����

i� e�� the l� �� l��norm of the matrix D�
n�
��� is uniformly bounded in n�

Proof� First of all�

������a����
NX
j��

wjDn��� �j�

������ � sup
T�IB�T �n �

������
Z ��

�
a���T �����d���

NX
j��

wjT ��j�

������ �
This relation is a corollary of �����

Z ��

�
a���T �����d���

NX
j��

wjT ��j� �
Z ��

�

�
�a���� NX

j��

wjDn��� �j�

�
A T �����d���

and the resonance case of Cauchy inequality� Thus� ���� follows from the de�nition of Qn
a� ����

��



Next� ���� follows from ����� because

Z ��

�
Dn��� �j�Dn��� �k���d�� � Dn��j � �k��

Z ��

�
a���Dn��� �k���d�� � a��k��

The system ���� is consistent for every polynomial a��� � T �
n � Since dimT �

n � n� �� by Lagrange

interpolation over ��� from here we conclude that

rank Dn���� � dimfDn�����w � �w � CNg � dimf�a���� � a��� � T �
n g � min �N�n� ���

Further� dimSpan fDn����j�gNj�� � rank Dn����� because Dn���� is the Grammmatrix of the system
fDn��� �j�gNj��� which completes the proof of �����

Since Span fDn����j�gNj�� � T �
n for n � N ��� the equalities Qn�a� ��� � �� n � N �� follow

from �����
Remark� Linear independence of the system fDn��� �j�gNj�� for n � N � � and ���� is not a new
result� cf� e�g� 
���

The equality

�
Qn
a� ���

i�
� min

�w�CN

������a����
NX
j��

wjDn��� �j�� L��IB��

������
�

� ka�L�
��k� � �w � �a�����

is a corollary of ����� Finally� the entries of the matrixD�
n���� are majorized by maxj 
�k j csc ��j � �k�j�

which implies �����
Theorem � follows from the Parceval identity ����� claim �� of Lemma �� ���� and the de�nition

of Qn
a� ���� Indeed� by ���� the n	th momentum of a ridge function R�x� �
PN

j�� Wj�x � �j� is a
linear combination of shifted Dirichlet kernels�

an�R��� �
NX
j��

wj�nDn��� �j�� wj�n ��
�Wj�n

n� �
� j � �� � � � � N� ����

Therefore� the selection of optimal pro�les Wj�x� for a given f�x� � L��IB�� and a non	degenerate

set of directional angles �� � f�jgNj�� � IRN is performed in the following three steps�
Step �� Find the point values of the Chebyshev momenta

an�f� �j� �
Z
IB�

f�x�un�x � �j���dx�� j � �� � � � � N� n � �� �� � � � �

��



Step �� For each �xed n � �� �� � � �� solve the system of N linear equations

NX
j��

Dn��j � �k�wj�n � an�f� �k�� k � �� � � � � N�

with respect to the unknown �wn � fwj�ngNj��� Note� that all these systems are cosistent� However�
the solution is not unique� if n � N � � ��low frequences��� and is unique for all n � N � � ��high
frequences���
Step �� Let

Wj�x� ��
�X
n��

�n � ��wj�nun�x�� j � �� � � � � N�

Due to non	uniqueness on Step �� optimal pro�les Wj�x� are always non	unique� if N � �� However�
it is easy to see that these pro�les are �unique up to low frequences�  in the orthogonal complement
�P�

N�� �� L��IB�� � P�
N�� of the subspace of algebraic polynomials P�

N�� within L��IB��� Thus�

the set of optimal pro�les fWj�x�gN� � fWj�f� ���x� ���gN� � i� e� the minimizer in the problem

RN �f � ProjN 
f �� ���� is uniquelly de�ned�
In the next statement we apply the notation �W �x� � fWj�x�gN� for a set of N univariate functions

and let

EM 
 �W � ��

vuuut NX
j��

�EM 
Wj�x � �j���� �
vuut �X

n�M

j ��W nj� � M � �� �� � � � �

Theorem � Assume that the components �j of �� � IRN are pairwise distinct mod�� and let R�x� �PN
j�� Wj�x � �j�� Then

EM 
 �W � �
�
� �O��

�
�

M

��
EM 
R�� M ��� EM 
 �W � � C����EM 
R�� M � N � �� ����

where the constant in O��
and C���� depend only upon ���

Further� the operator

�WN � f�x� �� �WN �f� � fWj�f� x�gNj�� �� argmin
������f�x��

NX
j��

Wj�x � �j��L��IB��

������
is well�de�ned� linear and bounded from �P�

N�� into �L��N � where ��x� � �
�

p
�� x� and

�L��N ��
�	

 �W �x� � fWj�x�gNj�� �

��� �W� �L��N
��� � NX

j��

kWj�x��L�
����� ��k 	�

��
� �

��



Proof� According to ���� and �����

�EM 
R��� �
�X

n�M

�n� ��kan�R��L�
��k� �

�X
n�M

Dn����

n� �
��Wn � ��W

�
n

�
�X

n�M

�
�j ��W nj� � D�

n����

n� �
��W n � ��W

�
n

�
A � �

EM 
 �W �
�� � �X

n�M

D�
n����

n� �
��W n � ��W

�
n� ����

and making use of ����� we further have������
�X

n�M

D�
n�
���

n� �
��W n � ��W

�
n

������ �
C����

M � �

�X
n�M

j ��W nj� � C����

M � �

�
EM 
 �W �

��
�

and the asymptotic formula in ���� follows� This also implies the estimate EM 
 �W � � C����EM 
R� for
all su�ciently large M �M������ To prove that the same estimate is true for all remaining M � i� e�

N � � � M 	 M������ we note that� according to ����� for n � M � N � �� all matrices Dn���� are
strictly positive de�nite� and thus �cf� �����

X
M�n�M�����

j ��W nj� � C �����
X

M�n�M�����

Dn����

n� �
��Wn � ��W

�
n�

The proof of claim �� is analogous� and we omit the details�
Remark� If R�x� �

PN
j�� Wj�x � �j�� then obviously kRk � PN

j�� kWj�x � �j�k� It is also true that
if R�x� � L��IB��� then all summands Wj�x � �j� are in L��IB��� too� However� it is easy to see that
for N � � it is impossible to estimate the norms of the Wj�x � �j� via that of R� Indeed� the set of
ridge functions of the class W���� contains �kernels� of the type � �PN

j�� Pj�x � �j�� where fPj�x�g
are non	trivial collections of single variate polynomials of degree N � ��

Thus� ���� is a correct form of inverse type estimates of the planar wave components Wj�x � �j�
via their sum R ��

��� Equispaced quadrature formulas and ridge approximation

In this section� we consider equispaced quadrature formulas and prove the relations ���� of theorem
� concerning equispaced ridge approximations of frad and fharm�

�It is an interesting open problem whether estimates of such type are true for the functional norms other than
L��IB���

��



We will explicitly solve the series of optimization problems Qeq
n�N 
a�� cf� also 
�� and 
��� In this

section� we consider only equispaced nodes �j �
�j

N
�

Let us consider the spectral matrix� whose entries are Fourier coe�cients of the Chebyshev mo	
menta an�f� �� of the given function f�x� � L��IB���

�A�f� ��
n
f�am�n�f�gjmj�n���

o�
n��

� an�f� �� �
X

jmj�n���
�am�n�f�e

im�� ����

Fix n and denote �a � �an�f� � h�am�nijmj�n��� the nth column of �A�f�� j�aj ��
qP

jmj�n��� j�am�nj� �
kan�f��L�

��k� Optimization of quadrature formulas for recovery of
R ��
� a���T ��� d� via equispaced

nodal data is dual to the following type of approximation of the vector �a�

EdifN 
�a� �� minfj�a� cj � cl � cm� l � m��N�� jlj� jmj � n���g� c��a� N� �� arg EdifN ��a��

Geometrically� this problem is solved by orthogonal projection in l� of �a onto the subspace of vectors
c whose coordinates cm� jmj � n��� are constant along arithmetical progressions mod�N �

cm��a� N� �
�

��m�n�N�

X
l�m��N�

�al� ��m�n�N� ��
�
n �m

�N

�
�
�
n�m

�N

�
� �� jmj � n���� ����

� 
x� is the integral part of x � IR��� The operator CN�n � �an �� c��a� N� di�racts the coordinates
of �an� It is easy to see that

c��a� N� � �a� n � N � �� �a� c��a� N� � c��a� N� ����

Lemma � �� Let �cf� �����

B�a�N� �� ��
X

m���N�N 	�jmj�n���
cm��a� N� e

im��

Then the set of optimal weights �w�a� n�N� � fwjgN� and the optimal error of the equisapced quadrature
are given by the relations

wj �
B�a�N� �j�

N
� j � �� � � � � N � Qopt
a� ��� � EdifN 
�a� �

q
j�aj� � jc��a� N�j� � ����

�� For f�x� � L��IB��

Req
N 
f � �

vuut �X
n�N

�n � ��
�
EdifN 
�an�

��
� ����

��



and if f�x� �� P�
N��� then the set of optimal pro�les �high frequences� �W �x� � fWj�x�gN� �

arg min
���f�x��PN

j�� Wj�x � �j�
��� is determined by

Wj�x� �
�X

n�N

n� �

N
B�an�f�� N� �j�un�x� � ����

Proof� It is not hard to see that

NX
j��

eim�jDn��k � �j� � N��m�n�N�eim�k�
�

N

NX
j��

B�a�N� �j�Dn��k � �j� � a��k��

so that the equality �w � �
N
�B for the optimal weights follows from ����� The equality Qopt
a� ��� �

EdifN 
�a� follows from ���� and ���� in an anlogous way� and we omit the details� Relations ���� and
���� are corollaries of ���� ���� and �����

Now we can �nish the proof of the relations ���� in theorem ��
According to ����� momenta an�frad� are constants� and a�����frad� � �� Thus� for even n

�am�n � �� m �� �� �a��n � 
n� ���� n�N� � �
�
n

�N

�
� �� B��� �


n

���� n�N�

�
EdifN 
�an�

��
� j
nj�


� � �

���� n�N�

�
� j
nj�

�
h
n
�N

i
�
h
n
�N

i
� �

� j
nj� �q

�q � �
�

n � ��qN �m�� m � �� �� � � � � N � �� q � �� �� � � � � ����

Let n �� �En
f ��� � �n �� �n � ��j
n�f�j�� note that �n � � for odd n� Then� by ���� N �P�
n�N �n and according to ���� we have

�Req
N 
f ��

� �
�X

n�N

�n� ��
�
EdifN 
�an�

��
�

�X
n�N

�n
�
h
n
�N

i
�
h
n
�N

i
� �

�
�X
q��

�q

�q � �

��q���N��X
n��qN

�n �
�X
q��

�q

�q � �

�
�qN � ��q���N

�
� �

�X
q��

�qN

�q� � � �

whence ���� for frad follows�

��



It is also easy to �nd the minimizer W �x� �� arg min
���frad �PN

j�� W �x � �j�
���� if frad � g�jxj��

and g�x�
L������
�

P�
n�� �gn ln�x� is the FourierLegendre expansion of g� then

W �x�
L���������

�

N

�X
n��

�gnp
�n � �

�
�
h
n
N

i
� �

�u�n�x�� ��x� �
�

�

p
� � x��

Further� according to �����an�fharm� �� �� �e�in� � �ein�� In this case� �a��n� � �� �a�n� �

�� �a�l� � �� jlj 	 n���� ��	n� n�N� �
h
n
N

i
� ��

�
EdifN 
�an�

��
�

�	



�j�j�� j�j�� q

q�� if n � qN �m� m � �� � � � � N � �
j�j�� j�j� � j��j�

q�� if n � qN� q � �� �� � � � �

In particular�
�
EdifN 
�an�

�� � �
��j�j�� j�j�� for n � N � �� After these calculations� the estimates ����

for Req
N 
fharm� are proved like it was done above for Req

N 
frad�� We omit the details�

��� Proof of theorem �

Recovery of integrals� Let us start from the lower estimate of the quantities Qopt
�� in �����
The idea is that linear combinations

PN
j�� wjDn����� �j� of a small number of shifted Dirichlet

kernels of high order are always fast oscillating� and thus cannot approximate slow polynomials a����
say� � �� Let us re	write such a linear combination as follows�

NX
j��

wj

sinn��� �j�

sin ��� �j�
� F ��� sinn��G��� cos n� � H��� sin �n��  ����� ����

where

F ��� ��
NX
j��

wj cos n�j
sin ��� �j�

� G��� ��
NX
j��

wj sinn�j
sin ��� �j�

�  ��� �� arctan
G���

F ���
�

and H��� �
q
F ���� �G����� Let us consider the following sets

E� �� f� � � � 
�� ���� sin �n�� ���� � �g� E� �� 
�� ��� n E��
F� �� f� � � � n��  ���� � � E�g� G� �� f� � sin� � �� � � 
�� ��n�g�

��



and prove that the following estimates hold for Lebesgue measures�

jmeasE� � �j � ��N

n
�
��N

n
� ����

These estimates can be interpreted as that  ��� is a � slow� perturbation of the function n� if n is
essentially larger than N � Further� it is enough to prove just one estimate measE� � �� ��N

n
� because

E� S E� � 
�� ���� E� T E� � �� and the converse relations measE� � � � ��N
n
� meas E� � � � ��N

n

follow by symmetry�
Let N�t� denote the Banach indicatrix of the function  ���� i� e�

N�t� ��
 f� � 
�� ��� �  ��� � tg� jtj � �

�
�

By the de�nition of  ���� N�t� equals the number of solutions � � 
�� ��� of the equation G��� �
�tan t�H���� With a possible exception of one value of t� N�t� � �N � �� because a non	trivial
trigonometric polynomial of degree N � � cannot have more than �N � � zeros on the period�
Consequently� the period can be represented as a union of M � �N � � disjoint intervals SM

k�� Ik
so that  ��� is monotone and absolutely continuous on each of Ik� Taking also into account that
j ���j � �

�
we obtain�

measF� � nmeasE� �M� � nmeas E� � ��N � ��

On the other hand�

G�
�F� � �� G�

�F� �
�
��
�
� ��n�

�

�

�
� measG� �measF� � ��n� �� measG� � �n

so that measF� � �n� �� Comparing these estimates we see that �n� � � nmeasE� � ��N � ��
or measE� � � � ��N

n
� As mentioned above� this implies �����

It follows that

Z ��

�

�
�� � NX

j��

wjDn����� �j�

�
A�

��d�� �
Z ��

�

��H��� sin �n�� ������ ��d��

�
Z
E�

��d�� �
meas E�
��

� �

�

�
� � �N

n

�
�

and since the lower bound on the right is independent from the selection of �w and ��� this completes
the proof of the lower estimate of Qopt
�� in �����

��



The lower estimates of Rfr
N 
frad� in ���� follow from ���� lower estimates of Qopt

n�N 
�� in ���� and
the comparison result ���� of Req

N 
frad� and E�N 
frad��
�
Rfr

N 
frad�
�� � �X

m�N

��m� ��j
�mj�
�
Qopt

�m�N 
��
�� � �

�

�X
m�N

��m� ��j
�mj�
�
�� N

m

�

� sup
M�N

M �N

�M

�X
m�M

��m� ��j
�mj� � sup
M�N

M �N

�M
�E�M 
frad��� � sup

M�N

M �N

�M
�Req

M 
frad��
�
�

Let us prove the upper estimates of Qopt
n�N 
�� in ���� �the suggested method is not related with

ridge approximation problem because the nodes depend on n�� Let � �� n
�
� �� l �� � � N� �j �

�
�n�
j �� �j

�
� j � �� 	�� � � �� and consider the �incomplete� quadrature formula of rectangles� with the

nodes f�jg� j � �� � � � � N and weights wj ��
�
�
�

The idea of such formula belongs to E�A� Rakhmanov �personal communication�� Let us extend
this formula by adding l extra nodes �j ��

�j

�
� j � N � �� N � �� � � � � �� Since
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the extended �complete� formula of rectangles is exact for all polynomials in T �
n � Thus
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Further� we have
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where um � um�l are unimodular complex factors� i� e� jumj � �� so that
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It follows that
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which completes the proof of the upper estimate in �����
Collapsed quadratures and ridge functions� Now let us pass to optimization of collapsed
quadratures and ridge functions� cf� ��� and ����

Lemma � �� Let a��� �
P
jmj�n��� �ame

im� � T �
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j�am � P �m�e�im
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In particular� for � � � the problem of optimal collapsed quadrature formula is equivalent to the least
squares discrete algebraic approximation of the data sequence f�amgjmj�n����
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jmj�n���
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�� Let fWj�x�gNj�� jxj � � be an arbitrary set of su�ciently smooth single variate functions� Wj�x� �P�
n��

�Wj�nun�x� 	 the Fourier 	 Chebyshev expansion of the function Wj�x�� Then
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P
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whence ���� follows by Parceval identity and minimization in P � P�

N���
�� Let us apply termwise di�erentiation in the angular variable � to the expansion
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whence ���� follows by addition in j�
�� ����is an immediadte corollary of ���� and ����

Lemma � For each set of N points Z � fzjgN� � jzjj � � and each natural number m there exists a
polynomial P �z� � PZ�z� satisfying

P �z� � P�
mN � P ��� � �� P �zj� � �� j � �� � � � � N � max
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In particular� for n � N and �xed complex numbers �� �
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Lemma � Let n � N and �� � be �xed complex numbers� Then�
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�The problem concerning the structure of �minimizer� in Q
opt
n�N �e�in�� remains open� In particular� it seems

interesting to clarify when the collapsed nodes are exactly optimal� i� e� Qopt

n�N �e�in�� 	 Qcol
n�N �e�in���

��



and further
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Proof of lemma �� Let us make use of the known solution of the following problem posed by G�
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and the extremal polynomial for which the min is attained� The exact solution was found in 
���

�m �
�
sec �

��m���

�m��
� and it is interesting to note that a properly scaled Chebyshev polynomial of

the �rst kind is extremal� For our purpose� a simpli�ed version� namely� the estimate �m � � � �
m

is su�cient� The latter was proved by H�L� Motgomery �see 
��� Ch� ��� Let us take P �z� ��QN
j�� p�zz
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The lower estimates in ���� follow from ����� Indeed� let m ��
h
n
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i
and for a given set of

nodal points Z � fzjgN� � jzjj � � consider the polynomial "�z� �� e�
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is�es ����� Then " � P�
mN � P�

n� "�zj� � � and " � IB�P�
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Consequently� for each quadrature with the nodes on the set Z and arbitrary weights we have
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n � n � N � which completes the proof of the estimate
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Proof of lemma�� First of all� ���� is a particular case of ����� Further� let TM�x� � cos �M arccos x�� x �
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��� �� denote the Chebyshev polynomials of the �rst kind� M � N � � or M � N � �� and
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Relations ���� and ���� imply the claim ���� of theorem �� They also imply ���� of theorem ��
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��� Comments

It is hard to indicate the primary source in literature of the general problem of ridge approxima	
tion� For the author� such a source was 
��� Problems of ridge approximation naturally appear in
applications� such as Radon transformations and local tomography 
��� 
��� and in geometry 
���

Recently� a considerable attention was tributed to constrained ridge approximation� when restric	
tions of di�erent kinds are imposed on the wave pro�les� This includes a version of the so	called neural
networks approximations when the pro�les Wj�x� are assumed to be piecewise constant functions or
some more smooth splines� cf� e� g� 
����

It should be noted that a wide circle of problems remains open� concerning free and constrained
ridge approximation in functional metrics other than L�� in particular� uniform metric L�� Very
promising and di�cult seem to be generalizations to functions of more than two variables� see 
����

����

Estimates of free ridge approximation� in particular� comparison of Rfr
N 
f � with EN 
f � and Req

N 
f ��
were discussed by D�L� Donoho and I�M� Johnstone 
��� In 
��� cf� p� ��� a conjecture was made that
equispaced wave vectors are best for frad and fharm �for brevity� conjecture�eq� in the sequel� in the
problem Rfr

N posed in the weighted space L�
w�IR

�� with the Gaussian weight w�x� �� e��jxj
�
�

Rfr
N

h
f�L�

w�IR
��
i
�� inf

R�Wfr
N

sZ Z
IR�

jf�x��R�x�j�w�x� dx�

The strong form of conjecture�eq� is that exact equalities Rfr
N

h
f� L�

w�IR
��
i
� Req

N

h
f� L�

w�IR
��
i
hold

for all frad and fharm�
A weaker version of conjecture�eq�� concerning orders of ridge approximation of frad in the metric

L��IB��� is con�rmed by theorem � of the present paper �cf� ���� and ����� corollary � and 
����
On the contrary� ���� implies that for fharm and approximation in the metric of L��IB�� the

conjecture�eq� principally fails to be true�
���� apparently represents a new e�ect in non	linear ridge approximation� The complete freedom

in the choice of N wave vectors does bring an essential gain in the orders of approximation� Harmonic
functions represent a wide set for which this e�ect takes place�

Upper bounds of Rfr
N �f� on Sobolev classes were considered by V�E� Maiorov 
���� 
��� and V�N�

Temlyakov 
���� In particular� in the recent preprint 
��� Maiorov considers the upper bounds of free
ridge approximation on classes W r�d

� in the unit ball IBd� d � � of d	dimensional Euclidean space IRd�

dist
�
W r�d

� � WN � L��IBd�
�
�� sup

f�W r�d
�

Rfr
N 
f �� W r�d

� ��
�
f�x� � max

��r

���D�f � L��IBd�
��� � �� �

��



As an improvement and generalization of earlier results of the works 
��� and 
���� dealing with the

case d � �� the main result of 
��� �Theorem �� is the exact order estimate dist
�
W

r�d
� � WN � L��IBd�

�
�

N� r
d�� � N ���
Returning to the conjecture�eq�� let us note that there are corresponding counterexamples to its�

strong version for f � frad� too � cf� M�E� Davison and F�A� Grunbaum 
��� p� ����� There exist
radial polynomials P �jxj��� degP � �� �� � � � such that strict inequalitiesRfr

� 
P �jxj��� 	 Req
� 
P �jxj���

hold in the weighted spaces L�
��IB

��� where ��x� � �� � jxj���� x � IB� is a Gegenbauer weight� E�

g�� in the exact solution of the extremal problem Rfr
�

h
jxj� � jxj��L��IB��

i
� the angle between optimal

directions ��� �� satis�es �� � �� � arccos
q

�
�
� i� e� ��� �� are not mutually perpendicular� cf� 
���

In fact� this peculiarity is equivalent to the strict inequalityQopt
��� 
�� 	 Qeq

���
�� for optimal quadratures
with just two nodes for the class IB�T �

n �� or

Qopt
� 
�� IB�T��� 	 Qeq

� 
�� IB�T���� ����

Here IB�Tn� denotes the L�
��	unit ball in the subspace Tn of all trigonometric polynomials of degree

n� It is easy to see that Qopt
N 
�� IB�Tn�� � Qopt

N 
�� IB�T �
�n�� �� Qopt

�n�N 
���
Kolmogorov  Nikol�skii problem has a long history� cf� 
���
���	
���� Starting from the sixties� an

essential part of e�orts was concentrated on the conjecture�eq� for quadrature formulas� equispaced

nodes and the formula of rectangles �
N

PN
j�� f

�
��
N

�
are optimal for recovery of integrals

R ��
� f�����d��

on all periodic classes W r �Lp��� � � � p � �� That this conjecture is right for p �� and all natural
r � � �low smootheness cases r � �� �� � had been solved earlier� was proved by V�P� Motornyi 
����
Subsequently A�A� Zhensykbaev 
��� extended this result of Motornyi on all p � 
����� For large
indices r of di�erentiability �in fact� for r � ��� one of the di�culties was in the existence of the
optimal quadrature formula� in particular� the proof that the optimal nodes do not collapse�

To �nd the limits for validity of the conjecture�eq�� the author 
���� 
��� considered modi�cations
of the periodic classes W r �Lp���� �����P


d

d�

�
f���� Lp��

����� � ��
where P

�
d
d�

�
is a �xed di�erential operator� It turned out that the solution qualitatively depends

on the spectrum of P � In particular� for classes of the type kf ����� � ��f���� Lp��k � � �oscillatory
di�erential operators� the conjecture�eq� fails to be true� at least for some small initial values of N �
Relation ���� provides another counter	example� for the class IB�T���

Lower bounds for the quantities Qopt
N 
�� IB�Tn�� and their multivariate analogs were considered by

V�N� Temlyakov 
���� Basing on results of B�S� Kashin 
��� �cf� also 
����� it was proved in 
��� that

��



if N � �� � �n� where  � � then Qopt
N 
�� IB�Tn�� are bounded below� i� e� Qopt

N 
�� IB�Tn�� � c� � ��
Using the latter result� it was established in 
�� that 
 � �� �c� � � � Rfr

N �frad� � c�E������N�frad��
���� and ���� represent more explicit versions of these results�

Preliminary upper estimates of the righthand side of ���� based on Chebyshev polynomials TM�x�
appeared in discussions with my colleagues at USC P� Petrushev� B� Popov and O� Trifonov� A
subsequent improvement of the type ���� was later communicated to the author by I�I� Sharapudinov�
Recently� using properties of discrete Chebyshev polynomials� Sharapudinov 
��� proved that the
condition Np

n
�� is necessary and su�cient for

Qcol
N 
�� IB�P�

n� � min
P�P�

N

vuut��� P ����� �
nX

m��

P ��m� � ��

�In view of this result� it seems likely that the factor
p
�n on the right of ���� can be substituted by

a constant�� That the condition Np
n
� � is necessary� follows also from the lower estimate ���� of

errors of quadrature formulas with free nodes�
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