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Abstract
P. L. Erdds and G. O. H. Katona gave an inequality involving bi-
nomial coefficients summed over an antichain in the product of two
chains. Here we present the common generalization of this inequality
and Lubell’s famous inequality for the Boolean lattice to an arbitrary
product of chains (lattice of divisors). We also describe the connection
between this inequality and the LYM property.

1 Introduction

Let X be an n—set provided with a partition in M subsets X, called color
classes, for 1 < ¢ < M. Let n; = |X;| for all 7. Associated with this coloring,
we consider the poset R(ny,...,ny,) ={0 < - <ni}p x---x{0<--- <
nar}, which consists of the product of M chains with ranks n;. This poset
is isomorphic to the lattice of divisors of N = pj* ---p}}’, where the p;’s are
distinct primes.

P. L. Erdés and G. O. H. Katona [3] discovered the following inequality
for the product of just two chains in connection with their study of more-part
Sperner families of subsets: For every antichain I C R(ni,n2),
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Their arguments were somehow lengthy, and a proof of a generalization for
M colors was not apparent. We present such a generalization here along
with some related observations.

Theorem 1.1 If I C R(ni,...,na) is an antichain, then
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Notice that this extends Lubell’s familiar inequality [7] for the Boolean
lattice By of all subsets of an M -set, which is the case that all n; = 1. In the
next section we present two different proofs, both simpler than the original
one in [3] for M = 2. The first is by counting chains, an argument that just
extends Lubell’s proof of Sperner’s theorem [7]. We recently discovered the
same proof, for M = 2 only, in a paper [1] of Ahlswede and Zhang.

It is also stated in [1] that (1) is just the LYM inequality for the poset
(evidently, R(n1,n2)), which is not quite true. Let P be a ranked poset,
with rank function » : P — {0,1,...}. Let Pj denote the set of elements
with rank k. Let Np(x) denote the number of elements of rank r(z). We
recall that P is said to be LYM provided that for every antichain I C P,

1
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It is well-known that R(ni,....ny) is LYM. (See [4] for a survey). Note
that the contribution of an element = € I to the sum in the LYM inequality
depends only on its rank, which is not the case for inequality (1).

Our second proof of Theorem 1.1 shows that it is in fact the LYM in-
equality for a weighted poset obtained naturally as a quotient of the Boolean
lattice B,, of all subsets of X.

We must mention that (1) is in fact just a special case of an earlier
inequality which lies at the heart of the proof of the product theorem for
LYM posets, as presented in the survey by Greene and Kleitman ([4], p. 42).
They show that for LYM, rank-log-concave posets I’ and P» and maximum

chains C7; C P; and Cs C Ps, every antichain I C P; X P, satisfies
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We obtain (1) when we take P; to be the Boolean lattice B,,, for i = 1,2
in (2). Restricting the proof of Greene and Kleitman to this instance gives



another proof of (1), although we cannot yet see how to extend it to prove
Theorem 1.1 for general M. However, looking at (2) and Theorem 1.1
together, a common generalization is suggested, with (2) extended to general
M and Theorem 1.1 extended to arbitrary LYM, rank-log-concave posets.

Theorem 1.2 If P, ..., P, are LYM and rank-log-concave posets, and C; C

P; are mazimum chains (¢ = 1,...,m), then for any antichain I C P; X
e X Pm;
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We use the LYM Product Theorem of Harper, for weighted posets, to derive
this result in Section 3. Note that it restricts to yet another proof of Theorem
1.1 when P; = B,,.

2 Two Proofs of Theorem 1.1

First Proof of Theorem 1.1

Suppose that I is an antichain as stated in Theorem 1.1. The total number
of maximal chains in the product poset {0,...,n1} X +-- x {0,...,ny} is
given by
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For any vector (i1, ...,757), the number of maximal chains that pass through
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Finally, since I is an antichain,
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and (1.1) follows after rewriting this last expression. O

it is given by

Second Proof of Theorem 1.1

We need to recall a well-known result derived from Lubell’s proof of
Sperner’s Theorem.



Theorem 2.1 The Boolean lattice B, of subsets of X has the LYM prop-
erty. O

A weighted poset is a pair (P,v), with P a finite ranked poset and v
a function that assigns a positive real number to each element of P. A
weighted poset (P, v) satisfies the LY M inequality if for any antichain I C P,

If P is a poset and G is a group of automorphisms of P, then the quotient
poset P/G consists of the orbits of PP under G ordered by A < B in P/G
whenever there exist € A and y € B with x <y in P.

We will use the following theorem due essentially to Harper (1974) [6].
(See [2] for a complete treatment.)

Theorem 2.2 A finite ranked poset P has the LYM property if and only
if (P/G,v) has the LYM property, where G is any subgroup of the group of
automorphisms of P and v(A) is the size |A| of the class A € P/G. O

Now consider the subgroup G of permutations of X that are color pre-
serving, that is, if 0 € G, 0(X;) C X;, for each 1 < i < M. Clearly G
induces a subgroup of the group of automorphisms of 2, which we will still
call G. Tt is immediate to check that the quotient poset 2% /G with the
canonical weight function as described in Theorem 2.2 is isomorphic to the
weighted poset

P=({0,....n} x - x{0,....,n0}, v)
where v((ig,..., i) = (11) coe (MY,

LM
Now, since 2% is LYM, by Theorem 2.2 (we are using the ‘easy direc-

tion’), P is LYM. Hence, if I C {0,...,n1}x---x{0,...,n)} is an antichain,
the LYM inequality ensures that
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Finally, the stated inequality follows from
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3 The Proof of Theorem 1.2

A weighted poset (P, v) is said weight-log-concave if the sequence {v ()} is
log-concave. We recall the following Product Theorem due to Harper [6].

Theorem 3.1 If (P1,v1) and (P2, v2) are weight-log-concave and satisfy the
LYM inequality, then (P X Pa,viv2) also satisfies the LYM inequality and
1s weight-log-concave. O

By induction we obtain the following.

Corollary 3.2 If (P1,v1),...,(Py,vy) are weight-log-concave and satisfy
the LYM inequality, then (Py X -+« X Pyr,v1---vyr) also satisfies the LYM
inequality and 1s weight-log-concave. O

To prove (1.2) we consider the weighted posets (C1, Np, ), ..., (Cu, Npy,)
and apply the corollary. The inequality in Theorem 1.2 is just the LYM
inequality for (C1 x --- x Cy, Np, ---Np,,). O
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