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  Abstract

Two new elementary proofs are given of Landau’s Theorem on necessary and
sufficient conditions for a sequence of integers to be the score sequence for some
tournament. The first is related to existing proofs by majorization, but it avoids depending
on any facts about majorization.  The second is natural and direct, but a bit more basic than
existing proofs. Both proofs are constructive, so they each provide an algorithm for
obtaining a tournament realizing a sequence satisfying Landau’s conditions.

I. Introduction.   

In 1953 H. G. Landau [2] proved that  some rather obvious necessary conditions
for a non-decreasing sequence of n integers to be the score sequence for some n-
tournament are, in fact, also sufficient.  Namely, the sequence is a score sequence if and

only if, for each k, 1 ≤k ≤n, the sum of the first k terms is at least 
k

2
⎛
⎝
⎜

⎞
⎠
⎟ , with equality when

k = n.   There are now several proofs of this  fundamental result in tournament theory,
ranging from clever arguments involving gymnastics with subscripts, arguments involving
arc reorientations of properly chosen arcs, arguments by contradiction, arguments
involving the idea of majorization, to a constructive argument utilizing network flows and
another one involving systems of distinct representatives. Many of these existing proofs are
discussed in a 1996 survey by Reid [4].  The notation and terminology here will be as in
that survey, except that for vertices x and y,  x→y will be used to denote both an arc from
x to y and the fact that x dominates y, where the context makes clear which use is intended.

In this paper we give a basic self-contained  proof and algorithm that is related to
known proofs by majorization ( Aigner [1] in 1984 and Li [3] in 1986), but it is faster and
not dependent on any appeals to chains and covers in lattices. And, we give a new direct
proof (and algorithm) that is as basic as any in the literature, and perhaps more natural.

First we give the statement of Landau’s Theorem.
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Theorem (Landau [2]).  A sequence of integers s = (s1 ≤ s2 ≤ … ≤ sn), n ≥ 1, is a score
sequence if and only if

      i
i 1

k
s

k

2
, 1 k n, with equality for k = n.

=
∑ ≥

⎛
⎝
⎜

⎞
⎠
⎟ ≤ ≤                        (1)

All of the published proofs concern the sufficiency of conditions (1) since the
necessity follows easily from the observation that if s is a score sequence of some n-
tournament T, then any k vertices of T form a subtournament W and, hence, the sum of
the scores in T of these k vertices must be at least the sum of their scores in W which is just

the total number of arcs in W, 
k

2
⎛
⎝
⎜

⎞
⎠
⎟ .

II. A Majorization Proof.

Let s be an integer sequence satisfying conditions (1).   Starting with the transitive
n-tournament, denoted TTn, we successively reverse the orientation of the two arcs in
selected 2-paths until we construct a tournament with score sequence s.

Suppose that at some stage we have obtained n-tournament U with score sequence

u = (u1, u2, . . . ,un-1, un),  such that,  for 1 ≤ k ≤ n,  i
i

k

i
i

k

s u
= =
∑ ≥ ∑

1 1
  (with equality for

k = n).  This holds initially, when U = TTn, by our hypothesis concerning s, since TTn has
score sequence tn = (0, 1, 2, . . . ,n-1).  If u = s, we are done (s is the score sequence of
U), so suppose that u ≠ s.  Let  α denote the smallest index such that uα < sα.  Let β denote

the largest index such that uβ = uα.  Since  i
i

n

i
i

n

s u
n

= =
∑ = ∑ =

⎛
⎝
⎜

⎞
⎠
⎟

1 1 2
( ),  by (1) there exists a

smallest index γ  > β such that uγ > sγ.  By maximality of β, uβ+1 > uβ, and by minimality of

γ, uγ > uγ-1.  We have  (u1, . . uα-1) = (s1, . . . ,sα-1),  uα = . . . = uβ < sα ≤ . . . ≤ sβ ≤ sβ+1 ,

sβ+1 ≥ uβ+1, . . . , sγ-1 ≥ uγ-1, sγ < uγ, and, of course, uγ ≤ . . . ≤ un and sγ ≤ . . . ≤ sn.  Then

uγ > sγ ≥ sβ > uβ, or uγ ≥ uβ+2.   So, if vertex vi in U has score ui, 1 ≤ i ≤ n, there must be a

vertex vλ, λ ≠ β, γ, such that vγ→vλ→ vβ in U.  Reversing this 2-path yields an n-

tournament U′ with score sequence u′ = (u1′, u2′, . . . ,un′), where

ui′ = 
γ

β

γ

β

u if i

u if i

u otherwisei

− =

+ =
⎧

⎨
⎪

⎩
⎪

1

1

,

,

, .
By choice of indices,  u1′≤ u2′ ≤ . . . ≤ un′.  It is easy to check that for 1 ≤ k ≤ n,

i
i

k

i
i

k

s u
= =
∑ ≥ ′∑

1 1
.

For n-tuples of real numbers a and b recall the “Manhattan”  metric d(a,b) =

i i
i

n

a b−∑
=1

.   Then, for the sequences s, u, u′ above,  d(u′, s) = d(u,s) - 2.  Now, modulo

2, d(u,s) ≡  i i
i

n

i
i

n

i
i

n

u s u s−( )∑ = ∑ − ∑ =
= = =1 1

0.   So, eventually, after (1/2)d(tn,s)  such steps, we

arrive at u = s and U realizes s.  €
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III. A New Basic Proof.

The specific sequence tn = (0, 1, 2, . . . ,n-1) satisfies conditions (1) as it is the
score sequence of the transitive n-tournament.  If sequence s ≠ tn satisfies (1), then s1 ≥ 0

and sn ≤ n-1, so s must contain a repeated term.  The object of this proof is to produce a

new sequence s′ from s which also satisfies (1), is “closer” to tn than is s, and is a score
sequence if and only if s is a score sequence.  Toward this end, define k to be the smallest
index for which sk = sk+1, and define m to be the number of occurrences of the term sk in s.
Note that k  ≥ 1 and m  ≥ 2, and that either k + m - 1 = n or sk = sk+1= . . . = sk+m-1 < sk+m .

Define s′ as follows:  for 1 ≤ i ≤ n, i

i

i

i

s

s if i k

s if i k m

s otherwise

′ =

− =

+ = + −
⎧

⎨
⎪

⎩
⎪

1

1 1

,

,

.

Then s1′ ≤ s2′ ≤ . . . ≤ sn′.     

If s′ is the score sequence of some n-tournament T in which vertex vi has score si′,

1 ≤ i ≤ n, then, since sk+m-1′ > sk′+1, there is a vertex in T, say vp, for which vk+m-1 → vp

and vp → vk.  Reversal of those two arcs in T yields an n-tournament with with score
sequence s.  On the other hand, if s is the score sequence of some n-tournament W in
which vertex vi has score si, 1 ≤ i ≤ n, then we may suppose that vk → vk+m-1 in W, for
otherwise, interchanging the labels on vk  and  vk+m-1 does not change s.  Reversal of the arc
vk → vk+m-1 in W yields an n-tournament with score sequence s′.  That is, s′ is a score
sequence if and only if s is a score sequence.

Next, we show that  i
i

j

s
j

=
∑ >

⎛
⎝
⎜
⎞
⎠
⎟

1 2
, k ≤ j ≤ k+m-2.  The proof is by induction on

m ≥ 2.  The case m = 2 is very similar to the induction step and is omitted.  Suppose that

for some j, k ≤ j < k+m-2, i
i

p

s
p

=
∑ >

⎛
⎝
⎜

⎞
⎠
⎟

1 2
 for k ≤ p ≤ j.  Conditions (1) imply

that i
i

j

s
j

=

+

∑ ≥
+⎛

⎝
⎜

⎞
⎠
⎟

1

1 1

2
, but we want strict inequality.  So, suppose that equality holds in this

inequality.  Recall that k < j+2 ≤ k+m-1, so sj+2 = sj+1 = . . . = sk.  Also, sj+2 =

i
i

j

i
i

j

s s
j j

j
=

+

=

+

∑ − ∑ ≥
+⎛

⎝
⎜

⎞
⎠
⎟ −

+⎛
⎝
⎜

⎞
⎠
⎟ = +

1

2

1

1 2

2

1

2
1.  So, sj+1 ≥ j+1.  Consequently, by the induction

assumption, i j i
i

j

i

j

js s s s
j

j
j j j

= + ∑∑ > +
⎛
⎝
⎜
⎞
⎠
⎟ ≥ + +

⎛
⎝
⎜
⎞
⎠
⎟ =

+⎛
⎝
⎜

⎞
⎠
⎟ + >

+⎛
⎝
⎜

⎞
⎠
⎟+

==

+

+1
11

1

1
2

1
2

1

2
1

1

2
( ) ,

a contradiction to our assumption that i
i

j

s
j

=

+

∑ =
+⎛

⎝
⎜

⎞
⎠
⎟

1

1 1

2
.  So, strict inequality must hold above.

This completes the induction step and the proof of the claim.
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Now we can show that s satisfies (1) if and only if s′ satisfies (1).  If s satisfies
(1), then

i
i

j

i
i

j

i
i

k

k i
i k

j

i
i

k

k i
i k

k m

k m i
i k m

j

s

s if j k

s s s if k j k m

s s s s s if j k m

′∑ =

∑ ≤ −

∑ + − + ∑ ≤ ≤ + −

∑ + − + ∑ + + + ∑ ≥ +

=

=

=

−

= +

=

−

= +

+ −

+ −
= +

1

1

1

1

1

1

1

1

2

1

1

1 2

1 1

,

( ) ,

( ) ( ) −−

⎧

⎨

⎪
⎪

⎩

⎪
⎪ 1.

In cases j ≤ k-1 and j ≥ k+m-1, we see that i
i

j

i
i

j

s s
j′∑ = ∑ ≥

⎛
⎝
⎜
⎞
⎠
⎟

= =1 1 2
.  In cases k ≤ j ≤ k+m -2,

the strict inequality established above implies that i
i

j

i
i

j

s s
j′∑ = ∑ − >

⎛
⎝
⎜
⎞
⎠
⎟ −

= =1 1
1

2
1( ) .  So, s′

satisfies (1).  On the other hand, if s′ satisfies (1), then it is clear that s satisfies (1).
Let us define an order pppp on integer sequences that satisfy (1) as follows:

a = (a1, a2, . . . ,an) p b = (b1, b2, . . . ,bn)  if an = bn, an-1 = bn-1, . . . ,ai+1 = bi+1, ai < bi,
for some i, 1 ≤ i ≤ n.  Note that, for any sequence s ≠ tn satisfying (1), s p tn, where tn is
the fixed sequence (0, 1, 2, . . . ,n-1), the score sequence for the transitive n-tournament.
We have shown that for every sequence s ≠ tn satisfying (1) we can produce another

sequence s′ satisfying (1) such that s p s′.  Moreover, s is a score sequence if and only if

s′ is a score sequence.  So, by repeated application of this transformation starting from the
original sequence satisfying (1) we must eventually reach tn.  Thus, s is a score sequence,
as required. €
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