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Abstract

Inferring evolutionary trees is an interesting and important problem in biology that is very di�cult
from a computational point of view as most associated optimization problems are NP�hard� Although it
is known that many methods are provably statistically consistent �i�e� the probability of recovering the
correct tree converges on � as the sequence length increases�� the actual rate of convergence for di�erent
methods has not been well understood� In a recent paper we introduced a new method for reconstructing
evolutionary trees called the Dyadic Closure Method �DCM�� and we showed that DCM has a very fast
convergence rate� DCM runs in O�n� log n� time� where n is the number of sequences� so although it is
polynomial it has computational requirements that are potentially too large to be of use in practice� In
this paper we present another tree reconstruction method� the Witness�Antiwitness Method� or WAM�
WAM is signi�cantly faster than DCM� especially on random trees� and converges at the same rate as
DCM� We also compare WAM to other methods used to reconstruct trees� including Neighbor Joining
�possibly the most popular method among molecular biologists�� and new methods introduced in the
computer science literature�

� Introduction

Rooted leaf�labelled trees are a convenient way to represent historical relationships between extant objects�
particularly in evolutionary biology �where such trees are called �phylogenies��� Molecular techniques have
recently provided large amounts of sequence data that are being used to reconstruct such trees� These
methods exploit the variation in the sequences due to random mutations that have occurred at the sites�
and statistically�based approaches typically assume that sites mutate independently and identically down
the tree� For such models� it is possible with high probability to recover the underlying unrooted tree from



adequately long sequences generated by the tree� How long the sequences have to be to guarantee high
probability of recovering the tree depends on the reconstruction method� the details of the model� and the
number n of species� Determining bounds on that length and its growth with n has become more pressing
since biologists have begun to reconstruct trees on increasingly larger numbers of species �often up to several
hundred� from such sequences�

In a previous paper ��	
� we addressed this question for trees under the Neyman ��state model of site
evolution� and obtained the following results�

�� We established a lower bound of logn on the sequence length that every method� randomized or
deterministic� requires in order to reconstruct any given n�leaf tree in any ��state model of sequence
evolution�

�� We showed that the Maximum Compatibility method of phylogenetic tree construction requires se�
quences of length at least n logn to obtain the tree with high probability� and

� We presented a new polynomial time method �the Dyadic Closure Method �DCM�� for reconstructing
trees in the Neyman ��state model� and showed that polylogarithmic length sequences su�ce for
accurate tree reconstruction with probability near one on almost all trees� and polynomial length
sequence length always su�ces for any tree under reasonable assumptions on mutation probabilities�

Thus� the Dyadic Closure Method ��	
 has a very fast convergence rate� which on almost all trees is
within a polynomial of our established lower bound of logn for any method� However� although DCM uses
only polynomial time� it has large computational requirements �it has O�n�k � n� logn� running time� and
uses O�n�� space�� which may make it infeasible for reconstructing large trees�

In this paper� we present theWitness�Antiwitness Method �WAM�� a new and faster quartet�based method
for tree reconstruction� which has the same asymptotic convergence rate as the Dyadic Closure Method� This
method works signi�cantly faster then DCM� with a worst�case bound O�n�k � n� logn log k�� but actually
runs provably faster under reasonable restrictions on the model �see Theorem �� for details�� The provable
bounds on the running time of WAM depend heavily on the depth of the model tree� We introduced the
�depth� in ��	
 and showed that depth�T � is bounded from above by logn for all binary trees T � and that
random trees have depths bounded by O�log logn��

In addition to presenting the new method� we present a framework for a comparative analysis of di�erent
distance based methods� and use this framework to compare the convergence rate of several promising
distance�based tree reconstruction methods� Neighbor Joining ��
� the Agarwala et al� ��
 approximation
algorithm and its variant ���
� and the Naive Quartet Method� which we describe in this paper� We show
that all these distance�based methods may require sequences to grow exponentially in the diameter of the
tree� and analyze the diameter of random trees under two distributions� We show that the diameter of
random trees is ��

p
n� under the uniform distribution� and ��logn� under the Yule�Harding distribution�

Consequently� these other distance�based methods may require� on any tree� longer sequences than required
by either DCM or WAM �and much longer on almost all trees�� in order to be guaranteed �by this analysis�
to yield an accurate estimation of T � Finally we generalize our methods and results to more general Markov
models� improving results of Ambainis et al� in ��
�

The structure of the paper is as follows� In Section � we provide de�nitions and discuss tree reconstruction
methods in general� In Section � we describe the analytical framework for comparing the sequence lengths
needed by di�erent methods for exact accuracy in tree reconstruction� and we use this framework to provide
an initial comparison between various distance�based methods� In Section �� we describe the Witness�
Antiwitness Tree Construction algorithm �WATC�� and in Section �� we describe the Witness�Antiwitness
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Method �WAM� in full� In Section �� we analyze the performance of WAM for reconstructing trees under the
Neyman model of site evolution� and compare its performance to other promising distance based methods�
We extend the analysis of WAM to reconstructing trees under the general r�state Markov model in Section
�� In Section � we discuss some important issues relevant for users of our algorithms on real data� and
discuss the signi�cance of DCM and WAM for multiple sequence alignment� We close in Section 	 with some
discussion of future research and the limitations of existing methods for inferring trees from real biological
data�

� De�nitions

Notation� IP�A
 denotes the probability of event A� IE�X 
 denotes the expectation of random variable X �

We denote the natural logarithm by log� The set �n
 denotes f�� �� � � � � ng and for any set S�
�
S
k

�
denotes

the collection of subsets of S of size k� IR denotes the real numbers�

De�nitions� �I� Trees� We will represent a phylogenetic tree T by a semi�labelled tree whose leaves �vertices
of degree one� are labelled by extant species� numbered by �� �� � � � � n� and whose remaining internal vertices
�representing ancestral species� are unlabelled� We will adopt the biological convention that phylogenetic
trees are binary� so that all internal nodes have degree three� and we will also assume that T is unrooted �this
is due to scienti�c and technical reasons which indicate that the location of the root can be either di�cult
or impossible�� We let B�n� denote the set of all ��n� ���� � ��n� ����n� �� � � �  � � semi�labelled binary
trees on the leaf set �n
�

The path between vertices u and v in the tree is called the uv path� and is denoted P �u� v�� The topological
distance L�u� v� between vertices u and v in a tree T is the number of edges in P �u� v�� A cherry in a binary
tree is a pair of leaves i� j with L�i� j� � �� The edge set of the tree is denoted by E�T �� Any edge adjacent
to a leaf is called a leaf edge� any other edge is called an internal edge� For a phylogenetic tree T and S � �n
�
there is a unique minimal subtree of T � containing all elements of S� We call this tree the subtree of T
induced by S� and denote it by TjS� We obtain the contracted subtree induced by S� denoted by T �jS � if we
substitute edges for all maximal paths of TjS in which every internal vertex has degree two� We denote by
ijjkl the tree on four leaves i� j� k� l in which the pair i� j is separated from the pair k� l by an internal edge�
When the contracted subtree of T induced by leaves i� j� k� l is the tree ijjkl� we call ijjkl a valid quartet
split of T on the quartet of leaves fi� j� k� lg� Since all trees are assumed to be binary� all contracted subtrees
�including� in particular� the quartet subtrees� are also binary� Consequently� the set Q�T � of valid quartet
splits for a binary tree T has cardinality

�
n
�

�
�

�II� Sites� Let us be given a set C of character states �such as C � fA�C�G� Tg for DNA sequences�
C � fthe �� amino acidsg for protein sequences� C � fR� Y g or f�� �g for purine�pyrimidine sequences��
A sequence of length k is an ordered k�tuple from C�that is� an element of Ck� A collection of n such
sequences�one for each species labelled from �n
�is called a collection of aligned sequences�

Aligned sequences have a convenient alternative description as follows� Place the aligned sequences as
rows of an n� k matrix� and call site i the ith column of this matrix� A pattern is one of the jCjn possible
columns�

�III� Site substitution models� Many models have been proposed to describe the evolution of sites as a
stochastic process� Such models depend on the underlying phylogenetic tree T and some randomness� Most
models assume that the sites are independently and identically distributed �i�i�d��� In addition the models
on which we test our algorithm also assume the Markov property that the random assignment of a character





state to a vertex v is expressed from the random character state of its immediate ancestor� and a random
substitution on the connecting edge� In the most general stochastic model that we study the sequence sites
evolve i�i�d� according to the general Markov model from the root ���
� We now brie�y discuss this general
Markov model� Since the i�i�d� condition is assumed� it is enough to consider the evolution of a single site in
the sequences� Substitutions �point mutations� at a site are generally modelled by a probability distribution
� on a set of r � � character states at the root � of the tree �an arbitrary vertex or a subdividing point on an
edge�� and each edge e oriented out from the root has an associated r� r stochastic transition matrix M�e��
The random character state at the root �evolves� down the tree�thereby assigning characters randomly to
the vertices� from the root down to the leaves� For each edge e � �u� v�� with u between v and the root�
�M�e���� is the probability that v has character state � given that u has character state ��

�IV� The Neyman model� The simplest stochastic model is a symmetric model for binary characters due
to Neyman ��
� and was also developed independently by Cavender ���
 and Farris ��
� Let f�� �g denote
the two states� The root is a �xed leaf� the distribution � at the root is uniform� For each edge e of T we
have an associated mutation probability� which lies strictly between � and ���� Let p � E�T �� ��� ���� denote
the associated map� We have an instance of the general Markov model with M�e��� � M�e��� � p�e�� We
will call this the Neyman ��state model� but note that it has also been called the Cavender�Farris model�

The Neyman ��state model is hereditary on subsets of the leaves�that is� if we select a subset S of �n
�
and form the subtree TjS � then eliminate vertices of degree two� we can de�ne mutation probabilities on the
edges of T �jS so that the probability distribution on the patterns on S is the same as the marginal of the
distribution on patterns provided by the original tree T � Furthermore� the mutation probabilities that we
assign to an edge of T �jS is just the probability p that the endpoints of the associated path in the original
tree T are in di�erent states�

Lemma � The probability p that the endpoints of a path P of topological length k are in di�erent states is
related to the mutation probabilities p�� p�� ���� pk of edges of P as follows�

p �
�

�

�
��

kY
i��

��� �pi�

�
�

Lemma � is folklore and is easy to prove by induction�

�V� Distances� Any symmetric matrix� which is zero�diagonal and positive o��diagonal� will be called a
distance matrix�� An n�n distance matrix Dij is called additive� if there exists an n�leaf tree �not necessarily
binary� with positive edge lengths on the internal edges and non�negative edge lengths on the leaf edges�
so that Dij equals the sum of edge lengths in the tree along the P �i� j� path connecting i and j� In ���
�
Buneman showed that the following Four�Point Condition characterizes additive matrices �see also ���
 and
���
��

Theorem � �Four Point Condition�
A matrix D is additive if and only if for all i� j� k� l �not necessarily distinct�� the maximum of Dij�Dkl� Dik�
Djl� Dil �Djk is not unique� The tree with positive lengths on internal edges and non�negative lengths on
leaf edges representing the additive distance matrix is unique among the trees without vertices of degree two�

�These �distances� may not satisfy the triangle inequality� this is therefore an abuse of the terminology� but is motivated
by the observation that the distance corrections used in phylogenetics �and described below� do not always satisfy the triangle
inequality� Since it is nevertheless the practice in systematics to refer to these quantities as �distances�� we will do so here as
well�
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Given a pair of parameters �T� p� for the Neyman ��state model� and sequences of length k generated by
the model� let H�i� j� denote the Hamming distance of sequences i and j and hij � H�i� j��k denote the
dissimilarity score of sequences i and j� The empirical corrected distance between i and j is denoted by

dij � ��

�
log��� �hij�� ���

The probability of a change in the state of any �xed character between the sequences i and j is denoted by
Eij � IE�hij�� and we let

Dij � ��

�
log��� �Eij�� ���

denote the corrected model distance between i and j� We assign to any edge e a positive length

l�e� � ��

�
log��� �p�e��� ��

By Lemma �� Dij is the sum of the lengths �see previous equation� along the path P �i� j� between i and
j� and hence Dij is an additive distance matrix� Furthermore� dij converges in probability to Dij as the
sequence length tends to in�nity� These mathematical facts also have signi�cance for biology� since under
certain continuous time Markov models ��
� which may be used to justify our models� l�e� and Dij are the
expected number of back�and�forth state changes along edges and paths� respectively� A similar phenomenon
and hence a similar distance correction exists for the general stochastic model ���
� and is discussed in detail
in Section ��

�VI� Tree reconstruction� A phylogenetic tree reconstruction method is a function � that associates either
a tree or the statement Fail to every collection of aligned sequences� the latter indicating that the method is
unable to make such a selection for the data given� Some methods are based upon sequences� while others
are based upon distances�

According to the practice in systematic biology �see� for example� ���� �	� ��
�� a method is considered
to be accurate if it recovers the unrooted binary tree T � even if it does not provide any estimate of the
mutation probabilities� A necessary condition for accuracy� under the models discussed above� is that two
distinct trees� T� T �� do not produce the same distribution of patterns no matter how the trees are rooted�
and no matter what their underlying Markov parameters are� This �identi�ability� condition is violated
under an extension of the i�i�d� Markov model when there is an unknown distribution of rates across sites as
described by Steel et al� ���
� However� it is shown in Steel ���
 �see also Chang ��
� that the identi�ability
condition holds for the i�i�d model under the weak conditions that the components of � are not zero and
the determinant det�M�e�� �� �� ����� and in fact we can recover the underlying tree from the expected
frequencies of patterns on just pairs of species�

Theorem � and the discussion that follows it suggest that appropriate methods applied to corrected
distances will recover the correct tree topology from su�ciently long sequences� Consequently� one approach
�which is guaranteed to yield a statistically consistent estimate� to reconstructing trees from distances is to
seek an additive distance matrix of minimum distance �with respect to some metric on distance matrices�
from the input distance matrix� Many metrics have been considered� but all resultant optimization problems
have been shown or are assumed to be NP�hard �see ��� ��� ��
 for results on such problems��

�VII� Speci�c tree construction algorithms� In this paper� we will be particularly interested in certain
distance methods� the Four Point Method �FPM�� the Naive Method� Neighbor Joining� and the Agarwala
et al� algorithm� We now describe these methods�

Four�Point Method �FPM� Given a � � � distance matrix d� return the split ijjkl which satis�es
dij � dkl � minfdik � djl� dil � djkg� If there is no such split� return Fail�

�



FPM is a tree reconstruction method in a narrow sense since it applies to four leaves only�

The Naive Method uses the Four�Point Method to infer a split for every quartet i� j� k� l� Thus� if the
the matrix is additive� the Four Point Method can be used to detect the valid quartet split on every quartet of
vertices� and then standard algorithms ��� ��
 can be used to reconstruct the tree from the set of splits� Note
that the Naive Method is guaranteed to be accurate when the input distance matrix is additive� but it will
also be accurate even from non�additive distance matrices under conditions which we will describe later �see
Section �� Most quartet�based methods �see� for example� ��� ��� ��
� begin in the same way� constructing a
split for every quartet� and then accommodate possible inconsistencies using some technique speci�c to the
method� the Naive Method� by contrast� only returns a tree if all inferred splits are consistent with that tree�
The obvious optimization problem ��nd a maximum number of quartets which are simultaneously realizable�
is of unknown computational complexity�

The Agarwala et al� algorithm ��
 is a �approximation algorithm for the nearest tree with respect to
the L��metric� where L��A�B� � maxij jAij �Bij j� Given input d� the result of applying the Agarwala et
al� algorithm to d is an additive distance matrix D such that L��d�D� � L��d�Dopt�� where Dopt is an
optimal solution�

The use of the Agarwala et al� algorithm for inferring trees has been studied in two papers �see ���
 for a
study of its use for inferring trees under the Neyman model� and ��
 for a study of its use for inferring trees
under the general Markov model�� However� both ���
 and ��
 consider the performance of the Agarwala
et al� algorithm with respect to the variational distance metric� Optimizing with respect to this metric
is related to � but distinct from � estimating the tree T � since it is concerned as well with the mutational
parameters p�

The Neighbor Joining method ��
 is a method for reconstructing trees from distance matrices� which
is based upon agglomerative clustering� It is possibly the most popular method among molecular biologists
for reconstructing trees� and does surprisingly well in some experimental studies� see� for example� ��� �
�

All these methods are known to be statistically consistent for inferring trees both under the Neyman
��state model and under the general r�state Markov model of site evolution�

� A framework for the comparison of distance�based methods

Although it is understood that all reasonable distance�based methods will converge on the true tree given
sequences of adequate length� understanding the rate of convergence �as a function of sequence length� to the
true topology is more complicated� However� it is possible sometimes to compare di�erent distance�based
methods� without reference to the underlying model� The purpose of this section is to provide a framework
for an explicit comparison among di�erent distance�based methods� We will use this technique to compare
the �approximation algorithm of Agarwala et al� to the Naive Method� Our analysis of these two algorithms
shows that on any distance matrix for which the �rst algorithm is guaranteed to reconstruct the true tree�
so is the Naive Method� Since our new method� WAM� outperforms the Naive Method on every input� this
analysis also establishes a comparison between the Agarwala et al� algorithm and WAM�

By the Four Point Condition �Theorem �� every additive distance matrix corresponds to a unique tree
without vertices of degree �� and with positive internal edge lengths and non�negative leaf edge lengths�

De�nition �� Let M denote the class of additive distance matrices that correspond to binary trees� The
	�neighborhood around the distance matrix d� denoted N�d� 	�� is the set of all distance matrices d� such

�



that L��d� d�� � 	� A distance�based method � is said to be combinatorially consistent if ��D� � D for all
D � M� A combinatorially consistent method � is continuous at D � M if for every 
 � � there exists a
	 � � such that if d � N�D� 	� then ��d� � N�D� 
��

Let T be the binary model tree with additive distance matrix D� Let d be the observed distance matrix�
Furthermore let � � L��d�D�� Finally� let x be the minimum edge�weight among internal edges in T under
the correspondence with D� For every distance�based reconstruction method �� we seek a constant c���
such that

c��� � inf fc � � � cx �� ��d� yields Tg �

Lemma � �i� Two additive distance matrices D and D� de�ne the same topology if and only if for all quartets
the relative orders of the pairwise sums of distances for that quartet are identical in the two matrices�
�ii� For every distance�based method � continuous at D � M� there is a 	 � � such that � is guaranteed to
reconstruct the topology of T when applied to any d � N�D� 	��
�iii� However� for every edge�weighted binary tree T with minimum internal edge weight x� and any � � ��
there is a di�erent binary tree T � such that L��D�D�� � x�� � �� where D� is the additive distance matrix
for T ��
�iv� Given any n�n distance matrix d� four indices i� j� k� l in �n
� let pijkl denote the di�erence between the
maximum and the median of the three pairwise sums� dij � dkl� dik � djl� dil� djk� Let P be the maximum of
the pijkl over all quartets i� j� k� l� Then there is no additive distance matrix D such that L��d�D� � P���

Proof� Claim �i� is a direct consequence of the Four Point Condition �Theorem ���
To prove �ii�� put 
 � x��� and set 	 for 
 in the de�nition of continuity at D� and assume ��d� � D� and T � is
the tree corresponding to D�� We will show using Part �i� that T � has the same topology as T� Suppose that
in T the quartet fi� j� k�lg induces the topology ijjkl� Then Dij �Dkl � �t � Dik �Djl � Dil �Djk� where
t is the path length of the middle path segment� Applying L��D�D�� � 
 twice� we obtain D�

ik � D�
jl �

Dik �Djl � �
 � Dij �Dkl ��t� �
 � �D�
ij �D�

kl � �
� � �t� �
 	 D�
ij �D�

kl whenever t 	 �
 � x� Hence�
the relative order of distance pair sums is the same�
To prove �iii�� for a given T � contract an internal edge e having minimum edge weight x� obtaining a non�
binary tree T �� T � has exactly one vertex adjacent to four edges� Add x�� to the weight of each of the four
edges� Insert a new edge of weight � to resolve the vertex of degree four� so that we obtain a binary tree T ���
di�erent from T � Let D be the additive distance matrix for T and let D�� be the additive distance matrix
for T ��� It is easy to see that then L��D�D�� � x�� � ��
For the proof of �iv�� let D be an additive distance matrix with L��d�D� � 
 � t��� For all quartets i� j� k� l�
the median and the maximum of the three pairwise sums induced by i� j� k� l are identical in D� Now consider
the quartet i� j� k� l for which pijkl � t� The maximum and the median of the three pairwise sums in d di�er
by pijkl� In order for the maximum and median of the three pairwise sums to be equal in D� at least one
pairwise distance must change by at least pijkl��� However 
 � pijkl��� contradicting the assumption� �

Theorem � Let D be an additive n�n distance matrix de�ning a binary tree T � d be a �xed distance matrix�
and let 	 � L��d�D�� Assume that x is the minimum weight of internal edges of T in the edge weighting
corresponding to D�
�i� A hypothetical exact algorithm for the L��nearest tree is guaranteed to return the topology of T from d if
	 � x���
�ii� �a� The �approximation algorithm for the L��nearest tree is guaranteed to return the topology of T from
d if 	 � x��� �b� For all n there exists at least one d with 	 � x�� for which the method can err� �c� If
	 	 x��� the algorithm can err for every such d�
�iii� The Naive Method is guaranteed to return the topology of T from d if 	 � x��� and there exists a d for
any 	 � x�� for which the method can err�

�



Proof� To prove �i�� assume that D� is an additive distance matrix with L��d�D�� � 	� and let T � denote
the tree topology corresponding to D�� According to Lemma � Part �i�� D� and D de�ne the same tree i�
the relative order of pairwise sums of distances agree for all quartets in the two matrices� Assume without
loss of generality that �P�Dij�Dkl � Dik�Djl and D

�
ij�D�

kl � D�
ik�D�

jl��
� these formulae hypothesize
that the relative order of pairwise sums of distances over the quartet fi� j� k� lg switches between D and D��
Now 
 � � and P 	 x� since P is an internal path length in T � By the triangle inequality we have

L��D�D�� � �	� ���

We have
�P � �
 � Dik �Djl �Dij �Dkl �D�

ij �D�
kl �D�

ik �D�
jl ���

and hence by the triangle inequality
�x � �P � �
 � �	 ���

as required�

To prove �ii a�� let D� denote the output of the �approximation algorithm and T � denote the corre�
sponding tree� Following similar arguments� L��d�D�� � 	� so that corresponding to Formula ��� we
have L��D�D�� � �	� and corresponding to Formula ��� we have �x � ��	� To prove �ii b�� we now give
an example where the �approximation algorithm can fail in which L��D� d� � x��� Let d be distance
matrix de�ned by duv � dwx � ��� duw � dvx �  and dux � dvw � ���� By item �iv� of Lemma ��
it follows that there is no additive distance matrix D with L��d�D� � ���� Now let D be the additive
distance matrix induced by the binary tree T on leaves u� v� w� x with topology uvjwx and with edge length
as follows� the central edge in T has weight � and all other edges have weight ����� Then� L��D� d� � ���
so that D is a closest additive distance matrix to d� Furthermore� L��d�D� � x��� since x � � is the
lowest edge weight in T � However there is another additive distance matrix induced by a di�erent tree
which lies within  times this minimal distance� Namely� let D�� be the additive distance matrix induced by
the binary tree with topology uwjvx with interior edge weighted �� and other edges weighted ���� Then�
L��D��� d� � ��� � L��D� d� � minDfL��D� d�g� as claimed� It is easy to see that this example can be
embedded in any size distance matrix so that for all n such examples exist� For �ii c�� suppose d is a distance
matrix� D is its closest additive distance matrix� and x is the smallest weight of any edge in D� Then contract
the edge e of weight x in T � the edge�weighted realization of D� and add x�� to every edge originally incident
to e� Let D� be the distance matrix of the new edge�weighted tree� T �� It follows that L��D�D�� � x�� and
so that L��d�D�� � L��d�D� � L��D�D��� If L��d�D� � x��� then L��d�D�� � x��� by the triangle
inequality� Hence the �approximation algorithm could return the topology of T or of T �� and since they are
di�erent there is a possibility of making the wrong choice�

To prove �iii�� arguments similar to the ones above obtain

�P � �
 � Dik �Djl �Dij �Dkl � dij � dkl � dik � djl

and �x � �P � �
 � �	� The required example is in Lemma � Part �iii�� �

In other words� given any matrix d of corrected distances� if an exact algorithm for the L��nearest tree
can be guaranteed � by this analysis � to correctly reconstruct the topology of the model tree� then so can the
Naive Method� This may suggest that there is an inherent limitation of the L��nearest tree approach to
reconstructing phylogenetic tree topologies� However� note that the analytical results are pessimistic� that is�
they guarantee a high probability of an accurate performance once sequence lengths exceed some threshold�
but do not guarantee a low probability of accurate performance for sequences below those lengths� Even
so� these techniques are essentially the same ones that have been used in other studies to obtain analytical
results regarding convergence to the true tree �see also ��� ��
��

�



� The Witness�Antiwitness Tree Construction �WATC�

��� Introduction

In this section we describe the Witness�Antiwitness Tree Construction algorithm �WATC�� This procedure�
which is the heart of our Witness�Antiwitness Method �WAM�� solves certain restricted instances of the
NP�complete Quartet Consistency Problem ���
� and solves them faster than the Dyadic Closure Tree Con�
struction algorithm �DCTC� that we used as a procedure previously in our Dyadic Closure Method �DCM�
��	
� We therefore achieve an improvement with respect to computational requirements over DCM� and pay
for it by requiring somewhat longer sequences�

Let e be an edge in T � Deleting e but not its endpoints creates two rooted subtrees� T� and T�� these
are called edi�subtrees� where �edi� stands for �edge�deletion�induced�� Each edi�subtree having at least
two leaves can be seen as being composed of two smaller edi�subtrees� The algorithm we will describe� the
Witness�Antiwitness Tree Construction algorithm� or WATC� constructs the tree �from the outside in�� by
inferring larger and larger edi�subtrees� until the entire tree is de�ned� Thus� the algorithm has to decide at
each iteration at least one pair of edi�subtrees to �join� into a new edi�subtree� In the tree� such pairs can
be recognized by the constraints �a� that they are disjoint� and �b� that their roots are at distance two from
each other� These pairs of edi�subtrees are then said to be �siblings�� The algorithm determines whether a
pair of edi�subtrees are siblings by using the quartet splits� We will show that if the set Q satis�es certain
conditions then WATC is guaranteed to reconstruct the tree T from Q�

The conditions that Q must satisfy in order for WATC to be guaranteed to reconstruct the tree T are
slightly more restrictive than those we required in the DCTC method� but do not require signi�cantly longer
sequences� Sets Q which satisfy these conditions are said to be T �forcing� The �rst stage of WATC assumes
that Q is T �forcing� and on that basis attempts to reconstruct the tree T � If during the course of the
algorithm it can be determined that Q is not T �forcing� then the algorithm returns Fail� Otherwise� a tree
T � is constructed� At this point� the second stage of WATC begins� in which we determine whether T is the
unique tree that is consistent with Q� If Q fails this test� then the algorithm returns Fail� and otherwise it
returns T �

Just as in the Dyadic Closure Method �DCM� we will need a search technique to �nd an appropriate set
Q� Whereas binary search was a feasible technique for the DCM� it is no longer feasible in this case� Search
techniques for an appropriate set Q are discussed in Section ��

��� De�nitions and preliminary material

Within each edi�subtree t� select that unique leaf which is the lowest valued leaf among those closest topo�
logically to the root �recall that leaves are identi�ed with positive integers�� This is called the representative
of t� and is denoted rep�t�� If the edi�subtree consists of a single leaf� then the representative leaf is identical
with this single leaf� which also happens to be the root of the edi�subtree at the same time�

The diameter of the tree T � diam�T �� is the maximum topological distance in the tree between any pair
of leaves� We de�ne the depth of an edi�subtree t to be L�root�t�� rep�t��� and denote this quantity by
depth�t�� The depth of T is then maxtfdepth�t�g� as t ranges over all edi�subtrees yielded by internal edges
of T � We say that a path P in the tree T is short if its topological length is at most depth�T � � �� and say
that a quartet i� j� k� l is a short quartet if it induces a subtree which contains a single edge connected to four
disjoint short paths� The set of all short quartets of the tree T is denoted by Qshort�T �� We will denote the

	



set of valid quartet splits for the short quartets by Q�
short�T ��

For each of the n �  internal edges of the n�leaf binary tree T we assign a representative quartet
fi� j� k� lg as follows� The deletion of the internal edge and its endpoints de�nes four rooted subtrees� Pick
the representative from each of these subtrees to obtain i� j� k� l� by de�nition� the quartet i� j� k� l is a short
quartet in the tree� We call the split of this quartet a representative quartet split of T � and we denote the set
of representative quartet splits of T by RT � Note that by de�nition

RT � Q�
short�T � � Q�T �� ���

We will say that a set Q of quartet splits is consistent with a tree T if Q � Q�T �� We will say that Q is
consistent if there exists a tree T with which Q is consistent� and otherwise Q is said to be inconsistent� In
��	
� we proved�

Theorem � Let T be a binary tree on �n
� If RT is consistent with a binary tree T � on �n
� then T � T ��
Therefore� if RT � Q� then either Q is inconsistent� or Q is consistent with T � Furthermore� Q cannot be
consistent with two distinct trees if RT � Q��

Let S be a set of n sequences generated under the Neyman model of evolution� and let d be the matrix of
corrected empirical distances� Given any four sequences i� j� k� l from S� we de�ne the width of the quartet
on i� j� k� l to be max�dij � dik � dil� djk � djl� dkl�� For any w � R�� let Qw denote the set of quartet splits of
width at most w� inferred using the Four�Point Method�

��� The Dyadic Closure Method

The Dyadic Closure Method is based on the Dyadic Closure Tree Construction �DCTC� algorithm� which
uses dyadic closure �see ��	� ��
� to reconstruct a tree T consistent with an input set Q of quartet splits� The
dyadic closure of a set Q is denoted by cl�Q�� and consists of all splits that can be inferred by combining
two splits at a time from Q� and from previously inferred quartet splits� In ��	
� we showed that the dyadic
closure cl�Q� could be computed in O�n�� time� and that if Q contained all the representative quartet splits
of a tree� and contained only valid quartet splits� �i�e� if RT � Q � Q�T ��� then cl�Q� � Q�T �� Consequently�
the DCTC algorithm reconstructs the tree T if RT � Q � Q�T �� It is also easy to see that no set Q can
simultaneously satisfy this condition for two distinct binary trees T� T �� by Theorem � and furthermore� if
Q satis�es this condition for T � it can be quickly veri�ed that T is the unique solution to the reconstruction
problem� Thus� when Q is such that for some binary tree T � RT � Q � Q�T �� then the DCTC algorithm
properly reconstructs T � The problem cases are when Q does not satisfy this condition for any T �

We handle the problem cases by specifying the output DCTC�Q� to be as follows�


 binary tree T such that cl�Q� � Q�T � �this type of output is guaranteed when RT � Q � Q�T ��


 Inconsistent when cl�Q� contains two contradictory splits for the same quartet� or


 Insu�cient otherwise�

Note that this speci�cation does not prohibit the algorithm from reconstructing a binary tree T � even if
Q does not contain all of RT � In such a case� the tree T will nevertheless satisfy cl�Q� � Q�T �� therefore�
no other binary tree T � will satisfy Q � Q�T ���� Note that if DCTC�Q� � Inconsistent� then Q �� Q�T �
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for any binary tree T � so that if Q � Q� then DCTC�Q�� � Inconsistent as well� On the other hand�
if DCTC�Q� � Insufficient and Q� � Q� then DCTC�Q�� � Insufficient also� Thus� if DCTC�Q� is
Inconsistent� then there is no tree T consistent with Q� but if DCTC�Q� is Insu�cient� then it is still possible
that some tree exists consistent with Q� but the set Q is insu�cient with respect to the requirements of the
DCTC method�

Now consider what happens if we let Q be Qw the set of quartet splits based upon quartets of width at
most w� The output of the DCTC algorithm will indicate whether w is too big �i�e� when DCTC�Qw� �
Inconsistent�� or too small �i�e� when DCTC�Qw� � Insufficient�� Consequently� DCTC can be used as
part of a tree construction method� where splits of quartets �of some speci�ed width w� are estimated using
some speci�ed method� and we search through the possible widths w using binary search�

In ��	
� we studied a speci�c variant of this approach� called the Dyadic Closure Method �DCM�� in
which quartet trees are estimated using the Four�Point Method �see De�nition VII in Section ��� We
analyzed the sequence length that su�ces for accurate tree construction by DCM and showed that it grows
very slowly� for almost all trees under two distributions on binary trees the sequence length that su�ces for
tree reconstruction under DCM is only polylogarithmic in n� once � � f � g � �� are �xed and p�e� � �f� g

is assumed� Thus� DCM has a very fast convergence rate� DCM uses O�n�k � n� logn� time and O�n��
space� therefore it is a statistically consistent polynomial time method for inferring trees under the Neyman
model of evolution� For practical purposes� however� the computational requirements of the DCM method
are excessive for inferring large trees� where n can be on the order of hundreds�

��� Witnesses� antiwitnesses� and T �forcing sets

Recall that the Witness�Antiwitness Tree Construction Algorithm constructs T from the outside in� by
determining in each iteration which pairs of edi�subtrees are siblings� This is accomplished by using the
quartet splits to guide the inference of edi�subtrees� We now describe precisely how this is accomplished�

De�nition �� Recall that an edi�subtree is a subtree of T induced by the deletion of an edge in the tree�
Two edi�subtrees are siblings if they are disjoint� the path between their roots contains exactly two edges�
and there are at least two leaves not in either of these two edi�subtrees�� Let t� and t� be two vertex disjoint
edi�subtrees� A witness to the siblinghood of t� and t� is a quartet split uvjwx such that u � t�� v � t�� and
fw� xg � �t� � t�� � � We call such quartets witnesses� An anti�witness to the siblinghood of t� and t� is a
quartet split pqjrs� such that p � t�� r � t�� and fq� sg � �t� � t�� � � We will call these anti�witnesses�

De�nition �� Let T be a binary tree and Q a set of quartet splits de�ned on the leaves of T �


 Q has the witness property for T � Whenever t� and t� are sibling edi�subtrees of T and T � t� � t�
has at least two leaves� then there is a quartet split of Q which is a witness to the siblinghood of t�
and t��


 Q has the antiwitness property for T � Whenever there is a witness in Q to the siblinghood of
two edi�subtrees t� and t� which are not siblings in T � then there is a quartet split in Q which is an
antiwitness to the siblinghood of t� and t��

Theorem 	 If RT � Q� then Q has the witness property for T � Furthermore� if RT � Q � Q�T �� and t�
and t� are sibling edi�subtrees� then Q contains at least one witness� but no antiwitness� to the siblinghood of

�The last condition � that there are at least two leaves not in either of the two edi�subtrees � is nonstandard� but is assumed
because it simpli�es our discussion�
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t� and t�� �

The proof is straightforward� and is omitted�

Suppose T is a �xed binary tree� and Q is a set of quartet splits de�ned on the leaves of T � The problem
of reconstructing T from Q is in general NP�hard ���
� but in ��	
 we showed that if RT � Q � Q�T � we
can reconstruct T in O�n�� time� and validate that T is the unique tree consistent with Q� Now we de�ne a
stronger property for Q which� when it holds� will allow us to reconstruct T from Q �and validate that T is
the unique tree consistent with Q� in O�n� � jQj log jQj� time� Thus� this is a signi�cantly faster algorithm
than the DCTC algorithm that we presented in ��	
�

De�nition 	� T �forcing sets of quartet splits� A set Q of quartet splits is said to be T �forcing if there
exists a binary tree T such that

�� RT � Q � Q�T �� and

�� Q has the antiwitness property for T �

Two points should be made about this de�nition� Since RT � Q� Q has the witness property for T � and
it is impossible for Q to be both T �forcing and T ��forcing for distinct T and T �� since by Theorem � RT is
consistent with a unique tree� Finally� note that the �rst condition RT � Q � Q�T � was the requirement we
made for the Dyadic Closure Tree Construction �DCTC� algorithm in ��	
� and so T �forcing sets of quartet
splits have to satisfy the assumptions of the DCTC algorithm� plus one additional assumption� having the
antiwitness property�

��� WATC

The algorithm we will now describe operates by constructing the tree from the outside in� via a sequence of
iterations� Each iteration involves determining a new set of edi�subtrees� where each edi�subtree is either an
edi�subtree in the previous iteration or is the result of making two edi�subtrees from the previous iteration
siblings� Thus� each iteration involves determining which pairs of edi�subtrees from the previous iteration
are siblings� and hence should be joined into one edi�subtree in this iteration�

We make the determination of siblinghood of edi�subtrees by applying the witness and antiwitness prop�
erties� but we note that only certain splits are considered to be relevant to this determination� In other
words� we will require that any split used either as a witness or an anti�witness have leaves in four distinct
edi�subtrees that exist at the time of the determination of siblinghood for this particular pair� Such splits
are considered to be active� and other splits are considered to be inactive� All splits begin as active� but
become inactive during the course of the algorithm �and once inactive� they remain inactive�� We will use
the terms �active witness� and �active antiwitness� to refer to active splits which are used as witnesses
and antiwitesses� We will infer that two edi�subtrees are siblings if and only if there is an active witness to
their siblinghood and no active anti�witness� �Note that this inference will be accurate if Q has the witness
and antiwitness properties� but otherwise the algorithm may make a false inference� or fail to make any
inference��

We represent our determination of siblinghood as a graph on the edi�subtrees we have currently found�
Thus� suppose at the beginning of the current iteration there are p edi�subtrees� t�� t�� � � � � tp� The graph for
this iteration has p nodes� one for each edi�subtree� and we put an edge between every pair of edi�subtrees
which have at least one witness and no anti�witness in the set of quartet topologies� The algorithm proceeds
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by then merging pairs of sibling edi�subtrees �recognized by edges in the graph� into a single �new� edi�
subtree� The next iteration of the algorithm then requires that the graph is reconstructed� since witnesses
and antiwitnesses must consist of four leaves� each drawn from distinct edi�subtrees �these are the active
witnesses and antiwitnesses  thus� quartet splits begin as active� but can become inactive as edi�subtrees
are merged��

The last iteration of the algorithm occurs when the number of edi�subtrees left is four� or there are no
pairs of edi�subtrees which satisfy the conditions for siblinghood� If no pair of edi�subtrees satisfy the criteria
for being siblings� then the algorithm returns Fail� On the other hand� if there are exactly four edi�subtrees�
and if there are two disjoint pairs of sibling edi�subtrees� then we return the tree formed by merging each of
the two pairs of sibling edi�subtrees into a single edi�subtree� and then joining the roots of these two �new�
edi�subtrees by an edge�

If a tree T � is reconstructed by the algorithm� we will not return T � until we verify that

RT � � Q � Q�T ���

If the tree T � passes this test� then we return T �� and in all other cases we return Fail�

We summarize this discussion in the following�

The WATC algorithm

Stage I�

� Start with every leaf of T de�ning an edi�subtree�

� While there are at least four edi�subtrees do�


 Form the graph G on vertex set given by the edi�subtrees� and with edge set de�ned by siblinghood�
i�e�� �x� y� � E�G� if and only if there is at least one witness and no antiwitness to the siblinghood
of edi�subtrees x and y� All witnesses and antiwitnesses must be splits on four leaves in which each
leaf lies in a distinct edi�subtree� these are the active witnesses and antiwitnesses�


 Case� there are exactly four edi�subtrees�
Let the four subtrees be x� y� z� w� If the edge set of the graph G is f�x� y�� �z� w�g� then construct
the tree T formed by making the edi�subtrees x and y siblings� the edi�subtrees z and w siblings�
and adding an edge between the roots of the two new edi�subtrees� else� return Fail�


 Case� there are more than four edi�subtrees�
If the graph has at least one edge� then select one� say �x� y�� and make the roots of the edi�
subtrees x and y children of a common root r� and replace the pair x and y by one edi�subtree�
If no component edge exists� then Return Fail�

Stage II�

� Verify that T satis�es the constraints RT � Q � Q�T �� If so� return T � and else return Fail�

The runtime of this algorithm depends upon how the two edi�subtrees are found that can be siblings�
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��	 Implementation of WATC

We describe here a fast implementation of the WATC algorithm�

We begin by constructing a multigraph on n nodes� bijectively labelled by the species� Edges in this
multigraph will be colored either green or red� with one green edge between i and j for each witness to
the siblinghood of i and j� and one red edge between i and j for each antiwitness� Thus� each quartet
split ijjkl de�nes six edges in the multi�graph� with two green edges ��ij� and �kl�� and four red edges
��ik�� �il�� �jk�� �jl��� Each green edge is annotated with the quartet that de�ned it and the topology on that
quartet� so that the other edges associated to that quartet can be identi�ed� Constructing this multi�graph
takes O�jQj� time� Note that edi�subtrees x and y are determined to be siblings if there exists a green edge
�x� y� but no red edge �x� y��

We will maintain several data structures�


 Red�i� j�� the number of red edges between nodes i and j� so that accesses� increments� and decrements
to Red�i� j� take O��� time�


 Green�i� j�� the set of green edges between nodes i and j� maintained in such a way that we can
enumerate the elements in jGreen�i� j�j time� and so that we can union two such sets in O��� time�


 Ti� the i
th edi�subtree �i�e� the edi�subtree corresponding to node i�� maintained as a directed graph

with edges directed away from the root�


 Tree� an array such that Tree�i
 � j indicates that leaf i is in tree Tj � This is initialized by Tree�i
 � i
for all i� and


 Candidates� the set of pairs of edi�subtrees which have at least one green edge and no red edges between
them �and hence are candidates for siblinghood�� We maintain this set using doubly�linked lists� and
we also have pointers into the list from other datastructures �Green�i� j�� so that we can access� add�
and delete elements from the set in O��� time�

Finding a sibling pair A pair of edi�subtrees are inferred to be siblings if and only if they have at least
one green edges and no red edges between them� We maintain a list of possible sibling pairs of edi�subtrees
in the set Candidates� and the members of Candidates are pairs of the form i� j where both i and j are
edi�subtrees� �Testing whether i is a current edi�subtree is easy� just check that Tree�i
 � i�� We take an
element �i� j� from the set Candidates and verify that the pair is valid� This requires verifying that both
i and j are current names for edi�subtrees� which can be accomplished by checking that Tree�i
 � i and
Tree�j
 � j� If �i� j� fails this test� we delete �i� j� from the set of Candidates� and examine instead a di�erent
pair� However� if �i� j� passes this test� we then verify that the pair i� j have at least one green edge and no
red edges between them� For technical reasons �which we describe below�� it is possible that Green�i� j� will
contain a ghost green edge� We now de�ne what ghost green edges are� and how we can recognize them in
O��� time�

De�nition �� A ghost green edge is a green edge �a� b� which was de�ned by a quartet split abjcd� but which
was not deleted after the edi�subtrees containing c and d were merged into a single edi�subtree�

Detecting whether a green edge is a ghost is done as follows� Recall that every green edge �a� b� is
annotated with the quartet �a� b� c� d� that gave rise to it� Therefore� given a green edge �a� b�� we look up
the edi�subtrees for the members of the other green edge �c� d� �using the Tree array�� and see if c and d
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still belong to distinct edi�subtrees� If Tree�c
 � Tree�d
 then �a� b� is a ghost green edge �since c and d were
already placed in the same edi�subtree� and otherwise it is a true green edge�

Every ghost we �nd in Green�i� j� we simply delete� and if Green�i� j� contains only ghost edges� we
remove �i� j� from the set Candidates �the edi�subtrees i and j are not actually siblings�� If we �nd any
non�ghost green edge in Green�i� j�� then �i� j� are inferred to be sibling edi�subtrees� and we enter the next
phase�

Processing a sibling pair Having found a pair i and j of edi�subtrees which are siblings� we need to
update all the data�structures appropriately� We now describe how we do this�

First� we process every green edge e in Green�i� j� by deleting the four red edges associated to e �this is
accomplished by decrementing appropriate entries in the matrix Red�� Note that we do not explicitly �or
implicitly� delete the other green edge associated with edge e� and rather leave that green edge to be handled
later� this is how ghost green edges arise�

After we �nish processing every green edge� we merge the two edi�subtrees into one edi�subtree� We will
use one index� say i� to indicate the number of the new edi�subtree created� We update Ti so that it has
a new root� and the children of the new root are the roots of the previous edi�subtrees Ti and Tj � and we
update the Tree array so that all entries which previously held a j now hold i�

We also have to reset Red�i� k� and Green�i� k� for every other edi�subtree k� since the edi�subtree labelled
i has changed� We set Red�i� k� � Red�i� k� �Red�j� k�� and Green�i� k� � Green�i� k� �Green�j� k� for all
k� We then set Red�j� k� � � and Green�j� k� � � if we wish �this is for safety� but is not really needed��

We also have to update the Candidates set� This involves deletions of some pairs� and insertions of
others� The only pairs which need to be deleted are those i� k for which there is now a red edge between
edi�subtrees i and k� but for which previously there was none� This can be observed during the course of
updating the Red�i� k� entries� since every pair �i� k� which should be deleted has Red�i� k� � � before the
update� and Red�i� k� � � after the update� Pairs �i� k� which must be inserted in the Candidates set are
those �i� k� which previously had Green�i� k� �  and which now have Green�i� k� �� � Accessing� inserting�
and deleting the elements of Candidates takes O��� time each� so this takes O��� additional time�

We now discuss the runtime analysis of the �rst stage of WATC�

Theorem � The �rst stage of WATC uses O�n� � jQj� time�

Proof� Creating the multi�graph clearly costs only O�jQj� time� Initializing all the datastructures takes
O�n�� time� There are at most O�jQj� green edges in the multigraph we create� and each green edge is
processed at most once� after which it is deleted� Processing a green edge costs O��� time� since Tree can be
accessed in O��� time� There are at most n�� siblinghood detections� and updating the datastructures after
detecting siblinghood only costs O�n� time �beyond the cost of processing green edges�� Implementing the
datastructures Green�i� j� and Candidates so that updates are e�cient is easy through the use of pointers
and records� Hence� the total cost of the �rst stage is O�n� � jQj�� �

So suppose the result of the �rst phase constructs a tree T from the set Q of splits� The second stage
of the WATC algorithm needs to verify that RT � Q � Q�T �� we now describe how this is accomplished
e�ciently�

Given T � we can compute RT in O�n�� time in a straightforward way� for each of the O�n� edi�subtrees t�
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we compute the representative rep�t� in O�n� time� We then use the representatives to compute RT � which
has size O�n�� in O�n� additional time� Verifying that RT � Q then takes at most O�n log n � jQj log jQj�
time� First we make sorted list of quartet splits by the lexicographic order of the � vertices involved� Sorting
is in O�jQj log jQj� time� Then we use a binary search to determine membership� which costs O�log n� time
for each element of RT � since jQj � O�n��� Verifying that Q � Q�T � then can be done by verifying that
q � Q�T � for each q � Q� This is easily done in O��� time per q using O��� lca queries �to determine the
valid split for each quartet which has a split in Q�� Preprocessing T so that we can do lca queries in O���
time per query can be done in O�n� time� using the algorithm of Harel and Tarjan ���
� Consequently� we
have proven�

Theorem � The second stage of WATC takes O�n� � jQj log jQj� time� Therefore� WATC takes O�n� �
jQj log jQj� time�

��
 Proof of correctness of WATC

We begin by proving that the WATC algorithm correctly reconstructs the tree T provided that Q is T �forcing�

Theorem  If Q is T �forcing� then WATC�Q� � T �

Proof� If Q is T �forcing� then RT � Q� Now if t and t� are sibling edi�subtrees� then let e be the edge
in T whose deletion disconnects t � t� from the rest of the tree T � Let q be the representative quartet split
associated to e� This quartet split is a witness to the siblinghood of t and t�� which will remain active
throughout the iterations of the algorithm until the entire tree is constructed �otherwise there are only three
edi�subtrees present at some point� and this is contradicted by the structure of the algorithm�� Furthermore�
since Q � Q�T �� there is no invalid quartet split� and consequently no antiwitness to the siblinghood of t and
t�� Therefore� the algorithm will never fail to have opportunities to merge pairs of sibling edi�subtrees� and
the only question is whether any pairs of edi�subtrees which are not actually siblings are incorrectly inferred
to be siblings�

We prove that no incorrect decisions are made by the algorithm� by induction on the number of iterations�
At the �rst iteration� every edi�subtree is a leaf� and these are correct� Now assume that so far the WATC
algorithm applied to Q has constructed only correct edi�subtrees� and the next step merges two edi�subtrees�
t� and t�� into one� but that these are not actually siblings�

Since Q has the antiwitness property� there is an valid quartet split abjcd � Q with a � t�� c � t� and
fb� dg � �t� � t�� � � We need only show that this antiwitness is still active at the time that we merged t�
and t� into one edi�subtree�

Suppose that the split abjcd is not active at the time we merged t� and t�� In this case� then the four
leaves a� b� c� d are in fewer than four distinct edi�subtrees� The assumption fb� dg� �t�� t�� �  then implies
that we have already created an edi�subtree t containing both b and d� This edi�subtree is true� since we have
assumed all edi�subtrees constructed so far are accurate� Now� consider the edge e� whose deletion creates
the subtree t� This edge cannot exist� if abjcd is a valid quartet split and neither b nor d are in t� � t��
Consequently� the antiwitness abjcd is still active at the time we merged t� and t�� contradicting that we
made that merger� and hence all inferred edi�subtrees are correct� �

Theorem � If the WATC algorithm returns a tree T given a set Q of quartet splits� then Q is consistent
with T and with no other tree T �� If WATC does not return a tree T � then Q is not T �forcing�

��



Proof� The proof is not di�cult� If T is returned by WATC� then Q satis�es RT � Q � Q�T �� Under this
condition Q is consistent with T and with no other tree� by Theorem � Hence the �rst assertion holds� For
the second assertion� if Q is T �forcing� then by the previous theorem WATC returns T after the �rst stage�
The conditions for being T �forcing include that RT � Q � Q�T �� so that the veri�cation step is successful�
and Q is returned� �

� The Witness�Antiwitness Method �WAM�

In the previous section we described the WATC algorithm which reconstructs T given a T �forcing set of
quartet splits� Q� In this section we describe a set of search strategies for �nding such a set Q� These
strategies vary in their number of queries on quartet split sets �ranging from O�log logn� to O�n���� but also
vary in the sequence length needed in order for the search strategy to be successful with high probability�
All have the same asymptotic sequence length requirement as the Dyadic Closure Method ���	
�� but di�er
in terms of the multiplicative constant�

Before we describe and analyze these search strategies� we begin with some results on the Four�Point
Method� and on random trees�

��� Previous results

Lemma � �Azuma Hoe�ding inequality� see �


Suppose X � �X�� X�� � � � � Xk� are independent random variables taking values in any set S� and L � Sk � IR
is any function that satis�es the condition� jL�u��L�v�j � t whenever u and v di�er at just one coordinate�
Then�

IP �L�X�� IE�L�X�
 	 �
 � exp

�
� ��

�t�k

�
�

IP �L�X�� IE�L�X
 � ��
 � exp

�
� ��

�t�k

�
� �

In ��	
� we proved�

Theorem � Assume that z is a lower bound for the transition probability of any edge of a tree T in the
Neyman ��state model� y 	 maxEij is an upper bound on the compound changing probability over all ij
paths in a quartet q of T � The probability that FPM fails to return the correct quartet split on q is at most

�� exp
�����p�� �z����� �y��k���

�
�� ���

In ��	
 we also provided an upper bound on the growth of the depth of random trees under two distributions�

Theorem �� �i� For a random semilabelled binary tree T with n leaves under the uniform model� depth�T � �
�� � o���� log� log���n� with probability �� o����
�ii� For a random semilabelled binary tree T with n leaves under the Yule�Harding distribution� after sup�
pressing the root� depth�T � � �� � o���� log� log� n with probability �� o���� �
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��� Search strategies

The �rst step is the computation of the distance matrices d and h� where hij is the dissimilarity score between
i and j� and dij is based upon an appropriate distance correction� This is accomplished in O�n�k� time�
Let Qw denote the set of splits inferred using the Four�Point Method on quartets whose width is at most
w� recall that the width of a quartet i� j� k� l is the maximum of dij � dik � dil� djk � djl� dkl� The objective is to
�nd a set Qw such that Qw is T �forcing�

De�nition ��
A � fw � R� � RT � Qwg�
B � fw � R� � Qw � Q�T �g�

We now state without proof the following observation which is straightforward�

Observation � A is either � or is �wA��� for some positive real number wA� B is either � or is ��� wB��
for some positive real number wB � �

Sequential search for T �forcing Qw A sequential search through the sets Qw� testing each Qw for being
T �forcing by a simple application of WATC algorithm� is an obvious solution to the problem of �nding a
T �forcing set which will �nd a T �forcing set from shorter sequences than any other search strategy through
the sets Qw� However� in the worst case� it examines O�n�� sets Qw� since w can be any of the values in
fdij � � � i � j � ng� and hence it has high computational requirements�

Sparse�high search for a T �forcing Qw We describe here a sparse search that examines at most O�log k�
sets Qw and hence has lower computational requirements� but may require longer sequences� Even so� we
prove that the sequence length requirement has the same order of magnitude as the sequential search� This
sparse search examines the high end of the values of w� and so we call it the Sparse�high search strategy�

Let  � ��� be given� We de�ne Z� to be the set of quartets i� j� k� l such that
maxfhij � hik� hil� hjk� hjl� hklg � ��� � �� Note then that the set of splits �inferred using the Four Point
Method� on quartets in Z� is Qw���� where w�� � � �

� �log�����

The sparse�high search examines  � ���� ����� � � �� until it �nds a  such that Z� � Qw��� is T �forcing�
or until w�� exceeds every dij �

We now de�ne conditions under which each of these search strategies are guaranteed to �nd a T �forcing
set Qw� Recall the sets A � fw � RT � Qwg� and B � fw � Qw � Q�T �g� We now de�ne the following
assumptions�

A� B �� � �	�

�w� � A � B� s�t� Qw� has the antiwitness property� ����

��� s�t� � � ����� �
� w�� � A � B� and Qw��� has the antiwitness property� ����

It is clear that if Assumptions �	� and ���� hold� then the sequential search strategy will be guaranteed to
succeed in reconstructing the tree� and that the Sparse�high search strategy requires that Assumption ����
hold as well�

We now analyze the sequence length needed to get each of these assumptions to hold with constant
probability�

��



	 How WAM performs under the Neyman ��state model

In this section we analyse the performance of the Witness�Antiwitness Method �WAM�� with respect to
computational and sequence�length requirements� The analysis of the sequence length requirement follows
a similar analysis for DCM in ��	
� but turns out to be more complicated� and results in constant times
longer sequences� The analysis of the computational complexity of WAM is both in the worst case� and
under the assumption that the tree topology is drawn from a random distribution� Finally� we compare the
performance of WAM to other methods� with respect to both these issues�

	�� Sequence length needed by WAM

Theorem �� Suppose k sites evolve under the Cavender�Farris model on a binary tree T � so that for all edges
e� pe � �f� g
� where we allow f � f�n� and g � g�n� to be functions of n� We assume that lim supng�n� �
���� Then both the sparse�high and sequential search based on the WATC algorithm returns the true tree T
with probability �� o���� if

k �
c � logn

���p�� �f����� �g��depth�T �
����

where c is a �xed constant�

Proof� Note that the sparse�high search requires Assumptions �	�� ����� and ����� while the sequential
search only requires Assumptions �	� and ����� We will show that the given sequence length su�ces for all
three assumptions to hold with probability �� o����

We begin by showing that Assumption �	� holds� i�e� that RT � Qw � Q�T � for some w�

For k evolving sites �i�e� sequences of length k�� and �xed  � �� let us de�ne the following two sets�

S� � ffi� jg � hij � ���� g�

and

Z� � fq �
�
�n


�

�
� for all i� j � q� fi� jg � S��g�

and the following four events�

A � Qshort�T � � Z� ���

Bq � FPM correctly returns the split of the quartet q �
�
	n

�

�
����

B �
�
q�Z�

Bq ����

C � S�� contains all fi� jg with Eij � ����  and no fi� jg with Eij 	 ���� � ����

Note that B is the event that Qw��� � Q�T �� so that A � B is the event that Q�
short � Qw��� � Q�T �� or

w�� � A � B� Thus� IP�A � B �� 
 	 IP�A � B
� De�ne

� � ��� �g��depth�T ���� ����

We claim that�
IP�C
 	 �� �n� � n�e��

�k�� ����

�	



and
IP�AjC
 � �� if  � ��� � ��	�

To establish ����� �rst note that hij satis�es the hypothesis of the Azuma�Hoe�ding Inequality �Lemma 
with Xl � � if the lth bits of the sequences of leaves i and j di�er� and Xl � � otherwise� and t � ��k��
Suppose Eij 	 ����  � Then�

IP�fi� jg � S�� 
 � IP�hij � ���� � 


� IP
	
hij �Eij � ���� � �Eij


 � IP
	
hij � IE�hij 
 � �
 � e��

�k���

Since there are at most
�
n
�

�
pairs fi� jg� the probability that at least one pair fi� jg with Eij 	 ����  lies

in S�� is at most
�
n
�

�
e��

�k��� By a similar argument� the probability that S�� fails to contain a pair fi� jg
with Eij � ����  is also at most

�
n
�

�
e��

�k��� These two bounds establish �����

We now establish ��	�� For q � Qshort�T � and i� j � q� if a path e�e����et joins leaves i and j� then
t � �depth�T � �  by the de�nition of Qshort�T �� Using these facts� Lemma �� and the bound pe � g� we
obtain Eij � ��� ��� ��� �p�� � � � ��� �pt�
 � ��������� Consequently� Eij � ����  �by assumption that
 � ��� � and so fi� jg � S�� once we condition on the occurence of event C� This holds for all i� j � q� so
by de�nition of Z� we have q � Z� � This establishes ��	��

De�ne a set

X �

�
q �

�
�n


�

�
� maxfEij � i� j � qg � ���� 

�

�note that X is not a random variable� while Z� � S� are�� Now� for q � X � the induced subtree in T has
mutation probability at least f�n� on its central edge� and mutation probability of no more than maxfEij �
i� j � qg � ����  on any pendant edge� Then� by Theorem 	 we have�

IP�Bq
 	 �� �� exp
�
����

p
�� �f���k��

�
����

whenever q � X � Also� the occurence of event C implies that

Z� � X ����

since if q � Z� � and i� j � q� then i� j � S�� � and then �by event C�� Eij � ����  � hence q � X � Thus�

IP�B � C
 � IP��
�
q�Z�

Bq� � C
 	 IP��
�
q�X

Bq� � C


where the second inequality follows from ����� as this shows that when C occurs�
T
q�Z�

Bq �
T
q�X Bq �

Invoking the Bonferonni inequality� we deduce that

IP�B � C
 	 ��
X
q�X

IP�Bq 
� IP�C 
� ����

Thus� from above�
IP�A � B
 	 IP�A � B � C
 � P �B � C


�since IP�AjC
 � ��� and so� by ���� and �����

IP�A � B
 	 �� ��
�n
�

�
exp

�
����

p
�� �f���k��

�
� �n� � n�e��

�k���

Formula ���� follows by an easy calculation for  � c � �� for any � � c� � ����
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Fig� � � Finding an antiwitness�

We are going to show that
fa� b� u� vg � Z� � ����

and aujbv � Qw���� The proof of ���� is the only issue� since by ���� the split of fa� b� u� vg is correctly
reconstructed� and is aujbv by construction� Clearly

IP


Ht��t�

����A � B � C
�
� IP


fa� b� u� vg �� Z�

����A � B � C
�
� ����

��



The RHS of ���� can be further estimated by

IP


hau 	 ���� �

����A � B � C
�

� IP


hav 	 ���� �

����A � B � C
�
�

IP


hbu 	 ���� �

����A � B � C
�

� IP


hbv 	 ���� �

����A � B � C
�
�

IP


huv 	 ���� �

����A � B � C
�
� ����

The �fth term IP�huv 	 ���� � jA � B � C
 � �� since it is easy to �nd a short quartet which contains u� v�
and therefore by ���� huv � ���� � � Here is how to �nd a short quartet containing u and v� Let a� denote
the neighbor of p on the ab path towards a� and let q denote the the neighbor of q on the ab path towards b�
Consider the edi�subtree t� de�ned by pa�� which contains the leaf a� and the edi�subtree t� de�ned by qb��
which contains the leaf b� It is easy to check that fu� v� rep�t��� rep�t��g is a short quartet�

In order to �nish the proof of ����� and hence the proof of ���� it su�ces to show that the other four
terms in ���� are zero as well� The third and fourth terms are symmetric to the �rst and second� and in fact
the second has a worse bound than the �rst� Therefore it su�ces to prove that

IP


hav 	 ���� �

����A � B � C
�
� �� ��	�

We assume that fa� vg �� S�� � and show that consequently  is large� Hence� for a properly small  � Formula
��	�� and hence ��� holds� From fa� vg �� S�� � conditioning on C�

Eav � ���� � ���

and fa� bg � S�� � and hence� conditioning on C�

Eab � ���� � ���

There is no di�culty to extend the de�nition of Eij to cases when at least one of i� j is an internal vertex of
the tree� Simple algebra yields from formula ��� and Lemma �� that

� 	 �� �Eav � ��� �Epv���� �Epa�� ���

We have
�� �Epv 	 ��� �g�depth�T ��� �

p
���� �g� ��

by the de�nition of � �see Formula ����� and the choice of v as representative� By formula ����� it is easy to
see that

�� �Epa 	 ��� �g��
p
�� �Eab ���

Combining ��� �� � and ��� we obtain � �
p
���� �g���� �g��

p
� � This formula fails� if we select

 � c� � ��� �g��� ���

with a su�ciently small positive constant c��

Case �� p �� t� and q �� t� �as in Fig� ���
Then aujbv � Qw��� is an anti�witness� as desired�

When Case � does not hold� the only problem that can arise is if the valid split aujbv does not satis�es
the condition fu� vg � �t� � t�� � � and hence is not an antiwitness�

��



Case �� p � t� or q � t��
Without loss of generality we may assume p � t�� Now we rede�ne the location of the edge pq on the ab
path as follows� Let p denote the �rst vertex after root�t�� on the ab path and let q denote the second�
Clearly q �� t�� since t� and t� are not siblings� We also rede�ne p�� q�� t�� u� t�� v according to the new p and
q� Rede�ne a to be rep�t�� and call the old a as a�� Now we are going to show ���� and that aujbv � Qw���

is the sought�for antiwitness �note a� u� v have been rede�ned� but b has not�� Again� we have to see ����
and prove that ���� is termwise zero�

Now handle the case where fu� vg � S�� exactly as in Case �� Observe that Ebu and Ebv decreased during
the rede�nition� so a calculation like ��	 �� still goes through� Observe that L�a� u� � �depth�T � � ��
L�a� v� � �depth�T � � � and hence fa� ug � S�� and fa� vg � S�� � exactly as in the proof of ��	�� The only
thing left to prove is fa� bg � S�� �

In order to prove IP�hab 	 ��� � � jA � B � C
 � �� since under the condition C� it su�ces to prove
�� �Eab � � � However�

�� �Eab � ��� �Ea�root�t������ �Eroot�t���b� 	 ��� �g�depth�T ���� �g��
p
��Ea�b�

and we still have
p
��Ea�b �

p
� according to ���� A calculation like the one resulting in ��� gives the

result wanted� Now we are �nished with the proof of ����

Using these statements� IP�A�B�D
 	 IP�A�B�DjA�B�C
�IP�A�B�C
 � IP�A�B�C
 � IP�B�C
�
and we are back to the same estimates that proved Assumption �	�� but we need a slightly smaller  and
consequently slightly larger k�

Note that the proof above applies to all c� � �c���� c�
� if it applies to c� � c� and c� � c���� so that
Assumption ���� holds� �

Note that the proof also handled the problem that arises if some of the dissimilarity scores exceed �!��
and so we cannot even compute corrected distances� The morale is that those pairs are not needed according
to the proof� Therefore there is no need for additional conditioning for the shape of the observed data�

	�� Runtime analyses of search strategies

Theorem �� �i� The running time of WAM based on sequential search is always O�n�k � n� logn��
�ii� The running time of WAM based on sparse�high search is always O�n�k � n� logn log k��
Assume now that our model tree is a random binary tree� under the uniform or Yule�Harding distribution�
and all mutation probabilities are taken from an interval �p� 
n� p� 
n�� for a su�ciently small sequence 
n�
If k is as large as in �	
�� then with probability �� o���
�iii� The running time of WAM based on sequential search is O�n�k � n�polylogn��
�iv� The running time of WAM based on sparse�high search is O�n�k � n�polylogn��

Proof� Computing the matrices h and d takes O�n�k� time� �All distance methods begin by computing
these distance matrices� but this �overhead cost� is usually always mentioned in the running time analysis
of a given method�� Let w� be de�ned to be the smallest w � hij such that Qw is T �forcing� Let i�w� be the
order of w within the sorted hij values� Then� since each call of the WATC algorithm uses O�n�� jQj log jQj�
time� the running time of the sequential search is O�i�w���n

� � jQw�
j log jQw�

j��� after the preprocessing�

�



For �i�� the sequential search application of the WATC algorithm is O�n� logn�� since we need never do
more than examine all sets Qw� and the largest such set has cardinality O�n���

For �ii�� the sparse�high search calls the WATC algorithm at most O�log k� times� and each call costs at
most O�n� logn� time�

The depth of a random tree �under either the uniform or Yule�Harding distributions� is with high proba�
bility O�log logn� by Theorem ��� and so there are at most O�polylogn� leaves which are no more than about
O�log logn� distance �measured topologically� from any �xed leaf� This is the only fact that we exploit from
the assumption of randomness of the tree�

For two leaves i� j� recall that L�i� j� denotes the topological distance between i and j� We are going to
show that if  is the value at which the search reconstructs the tree in the proof of Theorem ��� then with
probability ��o��� we have L�i� j� � O�log logn�� whenever i� j � q � Q� � This yields jQw���j � n�polylog�n��

In the proof of Theorem ��� according to Formula ����� event C holds with probability �� o���� In that
proof Qw��� is denoted by Z���� Now

��� �g�L�i�j� � �� �Eij 	 ��� ���

where the equality follows from Lemma �� and the inequality follows from the conditioning on the event C�
Plugging in ��� for  immediately yields L�i� j� � O�log logn��

To �nish the proof of �iii�� realize that the sequential search makes at most n� calls of the WATC
algorithm�

To obtain �iv�� observe that Formulae ��� ���� and depth�T � � O�log logn� imply that the number of
iterations in the sparse�high search is

� log�  � O�� log��� �g� � depth�T �� � O�log logn���

	�� The performance of other distance methods under the Neyman ��state

model

In this section we describe the convergence rate for the WAM and DCM method� and compare it brie�y to
the rates for two other distance�based methods� the Agarwala et al� �approximation algorithm ��
 for the
L��nearest tree� and Neighbor Joining ��
� We make the natural assumption that all methods use the same
corrected empirical distances from Neyman ��state model trees� The comparison we provide in this section
will establish that our method requires exponentially shorter sequences in order to ensure accuracy of the
topology estimation than the algorithm of Agarwala et al�� for almost all trees under uniform or Yule�Harding
probability distributions� The trees for which the two methods need comparable sequence lengths are those
in which the diameter and the depth are as close as possible�such as complete binary trees� Even in these
cases� WAM and DCM will nevertheless need shorter sequences than Agarwala et al� to obtain the topology
with high probability� as we showed it in Section � �Again� note that this analysis is inherently pessimistic�
and it is possible that the methods may obtain accurate reconstructions from shorter sequences than su�ce
by this analysis��

The Neighbor Joining method is perhaps the most popular distance�based method used in phylogenetic
reconstruction� and in many simulation studies �see ��� �� 	
 for an entry into this literature� it seems
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to outperform other popular distance based methods� The Agarwala et al� algorithm ��
 is a distance�
based method which provides a �approximation to the L� nearest tree problem� so that it is one of the
few methods which provide a provable performance guarantee with respect to any relevant optimization
criterion� Thus� these two methods are two of the most promising distance�based methods against which to
compare our method� All these methods use polynomial time�

In ���
� Farach and Kannan analyzed the performance of the Agarwala et al� algorithm with respect to
tree reconstruction in the Neyman ��state model� and proved that the Agarwala et al� algorithm converged
quickly for the variational distance� Personal communication from S� Kannan gave a counterpart to ����� if
T is a Neyman ��state model tree with mutation rates in the range �f� g
� and if sequences of length k� are
generated on this tree� where

k� �
c� � logn

f���� �g��diam�T �
���

for an appropriate constant c�� and where diam�T � denotes the �diameter� of T � then with probability
�� o��� the result of applying Agarwala et al� to corrected distances will return the topology of the model
tree� In ��
� Atteson proved the same result for Neighbor Joining though with a di�erent constant� �The
constant for Neighbor Joining is smaller than the constant for the Agarwala et al� algorithm� suggesting
that Neighbor Joining can be guaranteed to be accurate from shorter sequences than Agarwala et al�� on
any tree in the Neyman ��state model� However� remember that this analysis is pessimistic� and it may be
that correct reconstruction is possible from shorter sequences than this analysis suggests��

Comparing this formula to ����� we note that the comparison of depth and diameter is the issue� since
���p�� �f�� � "�f�� for small f � It is easy to see that diam�T � 	 �depth�T � for binary trees T � but the
diameter of a tree can in fact be quite large �up to n� ��� while the depth is never more than logn� Thus�
for every �xed range of mutation probabilities� the sequence length that su�ces to guarantee accuracy for
the Neighbor Joining or Agarwala et al� algorithms can be quite large �i�e� it can grow exponentially in the
number of leaves�� while the sequence length that su�ces for the witness�antiwitness method will never grow
more than polynomially�

In order to understand the bound on the sequence length needed by these methods� we now turn to an
analysis of the diameter of random trees� The models for random trees are the uniform model� in which each
tree has the same probability� and the Yule�Harding model� studied in ��� �� ��
� This distribution is based
upon a simple model of speciation� and results in �bushier� trees than the uniform model�

Theorem �� �i� For a random semilabelled binary tree T with n leaves under the uniform model� diam�T � �


p
n with probability ��O�
���

�ii� For a random semilabelled binary tree T with n leaves under the Yule�Harding distribution� after sup�
pressing the root� diam�T � � "�logn�� with probability �� o����

Proof� We begin by establishing �i�� The result of Carter et al� ���
 immediately implies that leaves a� b
have distance m�� with probability exactly m�N�n���m����n������ For 
 small� m � 


p
n� this probability

is "�mn �� Two leaves a� b have distance at most 

p
n in the random semilabelled tree under the uniform model

with probability O�
�� for 
� �� thus establishing the diameter� Summing up the probabilities from m � �
to m � 


p
n� we get the required O�
���

We now consider �ii�� First we describe rooted Yule�Harding trees� These trees are de�ned by the
following constructive procedure� Make a random permutation ��� ��� � � � � �n of the n leaves� and join ��
and �� by edges to a root R of degree �� Add each of the remaining leaves sequentially� by randomly �with
the uniform probability� selecting an edge incident to a leaf in the tree already constructed� subdividing the

��



edge� and make �i adjacent to the newly introduced node� For a rooted Yule�Harding tree TR� let h�TR�
denote the maximum distance of any leaf from the root� Let T be the unrooted Yule�Harding tree obtained
from TR by suppressing the root� and identifying the two edges incident with the root� Let diam�T � denote
the diameter of T � Then� we always have�

h�TR� � diam�T � � �h�TR�� ��

Now Aldous ��
 shows that h�TR�� logn converges in distribution to a �nonzero� constant c� Then� with
probability tending to �� diam�T �� logn will lie between c and �c� �

In the following table� we summarize sequence length that su�ce for accurate reconstruction with high
probability of WAM and DCM� and compare these to the sequence lengths that su�ce for the Agarwala et
al� algorithm� according to the analyses that we have given above �thus� our summary is based upon �����
���� and theorems �� and ��� Sequence lengths are given in terms of growth as a function of n� and assume
that mutation probabilities on edges lie within the speci�ed ranges�

range of mutation probabilities on edges�

�f� g

f� g are constants


�

logn
�
log logn

logn

�
binary trees DCM!WAM polynomial polylog
worst�case Agarwala et al� superpolynomial superpolynomial
random binary trees DCM!WAM polylog polylog
�uniform model� Agarwala et al� superpolynomial superpolynomial
random binary trees DCM!WAM polylog polylog
�Yule�Harding� Agarwala et al� polynomial polylog


 Extension to general stochastic models

In this section we consider the generalization of the WAM and DCM for inferring trees in the general
stochastic model� Just as in the case of the Neyman ��state model� we �nd that WAM and DCM obtains
accurate estimations of the tree from sequences whose length is never more than polynomial in the number
of leaves �for every �xed range for the mutation probabilities�� and in general only polylogarithmic in the
number of leaves� This should be contrasted to the study of Ambainis et al� ��
�

Suppose the sequence sites evolve i�i�d� according to the �general� Markov model � that is� there is some
distribution of states � at the root of the tree� and each edge e has an associated stochastic transition matrix
M�e�� and the �random� state at the root evolves down the tree under a natural Markov assumption� as in
the general stochastic model of De�nition �III��

Let fij��� �� denote the probability that leaf i is in state � and leaf j is in state �� By indexing the
states� fij��� �� forms a square matrix� Fij � �fij��� ��
� Then

�ij � � log det�Fij � ���

denotes the corrected model distance between i and j� �There will be a guarantee for det�Fij� � ���

The corrected empirical distance #�ij of two species is computed as in ���� but uses the matrix #Fij
composed of the relative frequencies #fij��� �� of i being in state � and j being in state �� instead of the
probability fij��� ���

#�ij � � log det� #Fij�� �	�

��



Then� �ij can be derived from a positive edge weighting of the model tree� provided that the identi�a�
bility condition described in Section � �Tree Reconstruction
 holds� These mild conditions only require that
det�M�e�� not take on the values �� ����� and that the components of � are nonzero �i�e� every state has a
positive probability of occurrence at the root��

Note that det�M�e�� takes the values � or �� precisely if M�e� is a permutation matrix� Also� for the
Neyman ��state model det�M�e�� � � � �p�e�� where p�e� is the mutation probability on edge e� thus�
det�M�e�� � � and det�M�e�� tend to � as p approaches ���� and tend to � as p approaches �� In general�
�������� det�M�e�
 plays the role of p�e� in the general model� Thus� a natural extension of our restriction
f � p�e� � g and from the Neyman ��state model corresponds to

� � �� �x� � det�M�e�� � �� �x � �� ����

for suitable x� x�� and we will henceforth impose this restriction for all edges of the tree� For technical
reasons� we also impose the mildly restrictive condition� that every vertex can be in each state � with at
least a certain �xed positive probability�

��v�� � 
� ����

Now� let ��e� be the weight of edge e in the realization of � on the �unrooted version� of the true
underlying tree T �

Lemma 	 Set 	�x� � ���� log��� �x�� Then

��e� 	 ���� log�det�M�e��� 	 	�x� ����

for every edge e of T �

Proof� The second inequality follows from the restriction we imposed above on det�M�e��� The �rst
inequality in ���� follows from similar arguments to those appearing in Steel ���
� for the sake of completeness
we give a proof�

Let T be the unrooted version of T �� Now the edges of T correspond bijectively to the edges of T ��
except perhaps for one troublesome edge of T which arises whenever the root of T � has degree two � in that
case� two edges e�� e� of T � adjacent to � are identi�ed to form e� For convenience� we assume in this proof
that � is not a leaf�

We now prove that ��e� 	 ���� logdet�M�e�� for all �non�troublesome� edges e of T � and if T has a
troublesome edge e corresponding to edges e� and e� in T �� then ��e� 	 ���� log �det�M�e��� det�M�e���� �

For any edge e � �v� w� of T � where w is a leaf� let

h�e� � � log det�M�e��� ��� log

Y
�

��v��

�

while� for any edge e � �v� w� of T � for which neither of v� w are leaves� let

h�e� � � log det�M�e��� ��� log

Y
�

��v��

�
� ��� log

Y
�

��w��

�
�

�This condition certainly holds under the Neyman 	�state model� the Kimura 
�st model �
�� and much more general models
�providing each state has positive probability of occurring at the root�� Indeed this last weaker condition might be enough� but
it would seem to complicate the analysis quite a lot�

��



Thus� h describes a weighting of the edges of T � and thereby a weighting h� of the edges of T by setting h�

equal to h on the non�troublesome edges� and the convention that if T has a troublesome edge e arising from
the identi�cation of a pair e�� e� of edges of T � then h��e� � h�e���h�e��� Now� h realizes the �ij values on
T �� Thus� h� also realizes the �ij values� on T and since �as we show� the edge weighting is strictly positive�
it follows� by classical results ���
� that this is the unique such edge weighting of T � Thus � � h��

Now for an edge e � �v� w� of T � where w is a leaf�

h�e� 	 � log det�M�e�� 	 ���� log det�M�e��

as claimed� Alternatively� for an edge e � �v� w� of T for which neither of v� w are leaves� we have

h�e� � � log det�M�e��� ��� log

Y
�

��v��

�
� ��� log

Y
�

��w��

�
�

In order to derive our desired inequality we establish a further result� Let us suppose M � �M�� 
 is any
r� r matrix with non�negative entries and x is a row vector of length r with non�negative entries� We claim
that Y

�

�xM�� 	 j det�M�j
Y
�

x� �

To obtain this� note that the left hand side is just�

Y
�

�X
�

x�M��

�
	
�X

�

M�����M����� � � �M��r�r

�Y
�

x��

where the second summation is over all permutations � of ��� �� � � � � r�� and so this sum is at least j det�M�j�
since the permanent of a nonnegative matrix is never smaller than the absolute value of its determinant� Now�
���w��� � � � � ��w�r 
 � ���v��� � � � � ��v�r 
M�e�� and so� applying the above inequality to the case M � M�e�
and x � ���v��� � � � � ��v�r
� we obtainY

�

��w�� 	 det�M�e��
Y
�

��v�� �

Thus�

��� log det�M�e�� � ��� log

Y
�

��w��

�
� ��� log

Y
�

��v��

�

and so�

h�e� � ���� log det�M�e��

�
�
��� log det�M�e�� � log

Y
�

��v��

�
� log

Y
�

��w��

��

	 ���� log det�M�e���

as claimed�

The inequalities for h now extend to h� � � for all �non�troublesome� edges of T � If T � has a troublesome
edge e then ��e� � h��e� � h�e���h�e��� and from the above we have h�ei� 	 ���� logdet�M�ei�� for i � �� ��
�

��



Theorem �	 Let x � x�n� and x� � x��n� be such that for all edges in the tree T � � � ���x� � det�M�e�� �
�� �x � �� Assume x� has an upper bound strictly less than ���� Mutatis mutandis� algorithms FPM� DCM
and WAM� Theorems �� 		� and 	
 generalize to the general stochastic model under ��� �	�� WAM and
DCM returns the binary model tree T with probability �� o��� if

k �
c � logn

x���� �x���depth�T �
���

with a certain constant c�

Proof� Recall the de�nition of the corrected empirical distance� #�ij � By analogy with the proof of Theorem
	 �also see Theorem � and Formula ���� from ��	
������ij � #�ij

��� � 	�x��� ����

is the same� as x tends to zero� as requiring the counterparts of ��	
� Formulae ��	� and ���� for a � � �����det�F ij�� det� #F ij�
��� � x��� �� det�F ij���� ����

�We return to ��	
� Formula ���� later�� To apply Lemma � we need to know how det� #F ij� responds to the
replacement at one site of a pattern by a di�erent pattern� If #F ij

� is the resulting F �matrix for this perturbed
data set� then

#F ij
� � #F ij � ���k�Dij

where Dij has one entry of ��� one entry of ��� and all other entries �� Consequently�

j det� #F ij
� �� det� #F ij�j � c��k

for some constant c�� Also� since det� #F ij� is a polynomial in the entries of F ij � we have����IE�det� #F ij�
� det�F ij�
��� � c��k ����

for some constant c�� Combining ���� with the triangle inequality gives

j det�F ij�� det� #F ij�j �
���det� #F ij�� IE�det� #F ij�


���� c��k

and so�

IP
h
j det�F ij�� det� #F ij�j � t

i
� IP

h
j det� #F ij�� IE�det� #F ij�
j � �t� c��k�

i
����

for any t � �� Hence by Lemma � we have that� as x tends to zero�

IP
h
j det�F ij�� det� #F ij�j � x��� �� det�F ij���

i
� � exp

�
�d�x��� ��det�F ij�

�
� c�

k

��
k

�
����

for a constant d� A counterpart of the troublesome ��	
� Formula ���� also can be established� with a slightly
worse RHS than that of ����� Putting the pieces ���������� together we see that�

IP
h
j�ij � #�ij j � 	�x���

i
� � exp

�
�d�x��� ���det�F ij�� c�

k 


�
� c�

k

��
k

�
� ��	�

�	



Now� what can we say about det�F ij� in the exponent on the right�hand side of ��	�$ det�F ij� is just the
product of det�M�e�� over all edges on the path from i to j� times the product of ��vij �� over all states ��
where ��v� is the vector of probabilities of states at vertex v� and vij is the most recent common ancestor of
i and j in the tree� Due to our hypotheses ���� and ����� we have

IP
h
j�ij � #�ij j � �����min

e
f��e�g

i
� � exp

�
�D�x���� �x��d�i�j� � c�

k 


�
� c�

k

��
k

�

where D is a constant �dependent on 
 and �� and d�i� j� is the number of edges in T separating leaves i and
j� Hence� for any �xed quartet q of diameter diam�q��

IP�FPM errs on q
 � exp
�
�Dx���� �x���diam�q�

�
� ����

Thus we have an analogue of Theorem 	 �but also see Theorem � in ��	
��

Now we show how to generalize the proof of Theorem ��� To avoid needless repetitions� we give details
for the proof of Assumption �	� only� and leave the proofs of Assumptions ���� and ���� to the Reader� Note
that the proof of correctness of DCM hinges exactly on Assumption �	�� Having a distance function in the
general model� the width and algorithmic operations based on width generalize in a straightforward way�

For k evolving sites �i�e� sequences of length k�� and  � �� let us de�ne the following two sets�

S� � ffi� jg � det� #F ij� � �g and Z� � fq �
�
	n

�

�
� for all i� j � q� fi� jg � S��g �note the

similarity between the de�nition for the set Z� � and that for the set Qw of quartet splits of quar�
tets of width at most w�� We also de�ne the following two events� A � fQshort�T � � Z�g and
B � FPM correctly reconstructs the tree for all q � Z� � Thus� IP�A � B �� 
 	 IP�A � B
� Let C be
the event� �S�� contains all pairs fi� jg with det�F ij� � � � and no pair fi� jg with det�F ij� � ��� De�ne
� � 
r��� �x���depth�T ���� We claim that�

IP�C
 	 �� �n� � n�e�c�
�k ����

for a constant c � � and
IP�AjC
 � �� if  � ��� � ����

Suppose det�F ij� � � � To establish ����� using arguments similar to those between ���� and ���� one
easily sees that Lemma  applies and

IP �fi� jg � S�� 
 � IP
h
det� #F ij� � �

i
� IP

h
det� #F ij�� det�F ij� 	 �

i
� e�c�

�k

for a constant c � ��

Since there are at most
�
n
�

�
such pairs fi� jg such that det�F ij� � � � the probability that at least one

such pair lies in S�� is at most
�
n
�

�
e�c�

�k� By a similar argument� the probability that S�� fails to contain

a pair fi� jg with det�F ij� � � is also at most
�
n
�

�
e�c�

�k� These two bounds establish �����

We now establish ����� For q � Qshort�T � and i� j � q� if a path e�e����et joins leaves i and j� then
t � �depth�T � �  by the de�nition of Qshort�T �� Using these facts� and the bound det�M�e�� 	 � � �x��
we obtain det�F ij� 	 
r�� � �x��t� Consequently� det�F ij� � � �by assumption that  � ��� � and so
fi� jg � S�� once we condition on the occurrence of event C� This holds for all i� j � q� so by de�nition of
Z� we have q � Z� � This establishes �����

�



Then for any quartet q � Qshort�T �� if e is the central edge of the contracted subtree induced by q
in T � then det�M�e�� � � � �x� Furthermore� conditional on C� for any pendant edge e� det�M�e�� �
minfdet�F ij� � i� j � qg � �� Thus� by ����� the analogue of Theorem 	� and the Bonferroni inequality�
following the corresponding proof from Theorem ��� we obtain

IP�B � C
 	 ��
�n
�

�
exp

�
�Dx���� �x���depth�T ���

�
���

for a constant D � �� Combining the above� and invoking ����� we have�

IP�A � B
 	 IP�B � C
 �

From ���� and ��� we have�

IP�A � B
 	 ��
�n
�

�
exp

�
�Dx���� �x���depth�T ���

�
� �n� � n�e�d	

�k�

Formula ��� follows by an easy calculation�

For biological reasons we can think that the number of states r is bounded by an absolute constant� so
r � O���� Turning to the generalization of Theorem ��� observe that det� #Fij� is a rational number between �
and � with denominator kr� Since log�kr� � O�log k�� the analysis of the performance of sparse�high search
under the general Markov model is the same as under the Neyman�� model� The case of sequential search
is even simpler� �

Note that the proof also handled the problem that arises if some logarithms are to be taken of negative
numbers and so we cannot even compute corrected distances� The morale is that those pairs are not needed
according to the proof� Therefore there is no need for additional conditioning for the shape of the observed
data�

� Using WAM or DCM for inferring trees in practice

In an earlier paper we presented a similar tree construction method� the Dyadic Closure Method �DCM��
The DCM method is related to WAM because both reconstruct trees by using splits on quartets of leaves
which lie close together in the tree� In this section� we describe certain properties of these two methods �and
other similar methods� which reconstruct trees based upon small and compact subtrees�

��� Peculiarities of biological data

Systematic biologists have identi�ed desirable properties of tree reconstruction methods� which address
issues that arise because biological data do not have the properties that are present in the assumptions of
the mathematical models of sequence evolution� The following �not exhaustive� list presents some of the
features that methods should have if they are to be truly useful in analyzing real data�


 Flexibility in the type of input data that the method can use� Most methods can accept only one type of
input data at a time� and traditional distance methods in particular need to be able to infer a distance
matrix from the entire data� This makes the use of a mixture of types of data �combining morpho�
logical characters with biomolecular characters� and using di�erent types of biomolecular characters�
problematic� On the other hand� although WAM is based upon distances� as we have described it� it is

�



clear that the WATC algorithm can be applied to quartets inferred using other methods �including� for
example� Maximum likelihood�� In this case� the selection of which quartets to analyze can be based
upon the strength of the likelihood score or some other objective criterior� rather than upon distances�


 Ability to handle missing and inapplicable data� It is typically problematic to include characters �genes�
morphological features� etc�� which do not apply to all the taxa in the input� Distance methods� for
example� cannot necessarily extrapolate from distances based upon subsets of the characters to the
entire set of characters� unless it is reasonable to assume that all sites evolve at the same rate �real
data may not satisfy this constraint�� However� DCM avoids the problem of missing or inapplicable
data� since we never analyze more than four taxa at a time� and under those conditions we may use all
characters that apply to all four taxa without worrying about whether these characters also apply to
taxa outside that quartet� This may make signi�cantly longer sequences available to the reconstruction
e�ort of very large trees than can currently be accommodated using traditional methods� �See ���
 for
a discussion of this particular issue��


 Robustness to model violations� The stochastic models of sequence evolution we have discussed make
the unrealistic assumption that the sites evolve identically and independently� Surprisingly� WAM may
be robust to violations of these assumptions� For example� the use of appropriately selected methods
robust to such model violations on four�taxon trees will increase robustness to the i�i�d� assumption�
and while this may entail an increase in computational expense �if we use a computationally expensive
method� such as MLE�� the increase will not be as great as if we had applied MLE to the entire data
set�


 Robustness to errors in the multiple sequence alignment on the input sequences� The multiple sequence
alignment problem �MSA� is one of the most computationally di�cult problems involved in tree recon�
struction� All optimization problems which have been proposed are NP�hard� and heuristics are used
to infer alignments instead� Typically these heuristics are based upon a tree for the sequences� but
since the tree reconstruction methods require �generally� an alignment to start with� there is a problem
with circularity� Therefore� heuristics based upon the unaligned sequences are used to infer a tree� and
then the tree is used to infer an alignment� Unfortunately� the reliability of these heuristics is not at
all clear� and the problem is clearly compounded on large trees� Furthermore� it is easy to see that the
reliability of the tree reconstruction methods may be seriously compromised if the multiple sequence
alignment is incorrect� and that even small errors in the alignment may a�ect the reliability of the
short edges in the tree� However� robustness to multiple sequence alignment errors may be reasonable
to expect in WAM� Consider the following approach to using WAM in the presence of an unreliable
multiple sequence alignment� We let the multiple sequence alignment de�ne the pairwise distances �or
else we use pairwise alignments to de�ne distances�� Then� given a set of four taxa� instead of using
the distances to infer the topology on the tree for those four taxa� we determine a multiple sequence
alignment on the sequences representing the taxa� In other words� we ignore the preliminary multiple
sequence alignment� and start from scratch� Since these are closely related taxa� their alignment is eas�
ier to identify� and since there are only four taxa� we can solve various optimization problems exactly�
rather than heuristically �this is an important point� since MSA is one of the most di�cult problems
from a computational point of view in computational molecular biology�� Given this multiple sequence
alignment on four taxa� we then infer the best topology� using the most statistically powerful method
available � perhaps MLE� if we have the time� At this point� the point should be noted that WAM only
requires that each four�taxon subtree �on a short quartet� be reconstructed correctly� consequently� we
do not need to have a completely accurate multiple sequence alignment on four taxa� but rather only a
good enough one� so that it su�ces to indicate the correct topology� We direct the interested reader to
the following papers which discuss the multiple sequence alignment problem and present results about
the computational complexity of the multiple sequence alignment problem �� ��� ��� �� ��� ��
�
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��� Con�dence in the output tree

If we apply the Witness�Antiwitness Method �WAM� to a given set of sequences� we may succeed in recovering
the tree correctly� or we may reconstruct a tree di�erent from the true tree� or we may not return any tree
at all �i�e� the algorithm may return Fail�� In this section� we address the possibility of the two types of
failure�

We �rst discuss the case where WAM returns the wrong tree� All phylogenetic methods may fail to
reconstruct the correct tree� and the question is whether the errors made by a method can be detected and
corrected �or at least minimized�� The conditions necessary for WAM to reconstruct any tree are su�ciently
restrictive that it seems reasonable to expect that when WAM succeeds in reconstructing a tree that the
reconstructed tree should be identical �with some high probability� to the true tree� indeed� this has been
experimentally veri�ed �T� Warnow� personal communication�� However� when WAM does reconstruct the
wrong tree� the same conditions indicate the types of errors WAM is likely to make� and also indicate how
to correct the errors that WAM may make�

In systematic biology studies� errors in topology estimation are quanti�ed according to how the biparti�
tions implied by the reconstructed tree compare to the bipartitions in the model tree� Thus� every edge in
a leaf�labelled tree de�nes a partition of the leaves into two sets� and so the tree topology can be exactly
described by the set of bipartitions induced by the edges of the tree� Thus� we can say that an edge e in
the model tree appears in the reconstructed tree if the bipartition induced by that edge in the model tree
also exists for the reconstructed tree� Edges in the model tree which do not appear in the reconstructed
tree are false negatives� while edges which appear in the reconstructed tree but not in the model tree are
false positives� While an exact topology reconstruction is the objective� quantifying and understanding the
types of mistakes �false positives vs� false negatives� is useful� and may lead to corrections to the initial
estimate of the tree topology� For example� if the reconstructed tree has some possibly ill�supported edges�
these edges can be contracted �thus replacing a degree three node by a degree four node�� and this results in
possibly reducing the false positive rate� at the expense of possibly increasing the false negative rate� How�
ever� systematic biologists prefer false negatives to false positives� since all evolutionary assertions made by a
tree without false positives are accurate� even if they provide only an incomplete picture of the evolutionary
process� The key to success in this is being able to identify which edges are not well supported� this is not
always easy�

However� in trees reconstructed by WAM it is generally an easy task� By its construction� edges in a tree
reconstructed by WAM are likely to be accurate �i�e� they also appear in the model tree� if they are large
enough� consequently� only the very short edges need to be reconsidered as possible false positives� There are
several techniques which can be used to determine whether those edges are well�supported �likelihood ratio
tests� for example�� and all edges which are insu�ciently supported can then be contracted� The outcome
then will be a tree which is likely to be a contraction of the true tree� while retaining all long enough edges
from the model tree� Because the threshold for �long enough� is actually very low� this is a very nice property
of WAM�

The other type of �failure� is when no tree is constructed� We see this �failure� to return a tree as
providing an advantage over methods �such as all popular methods� which will reconstruct trees from any
input� even if their input is not generated by a tree at all� By contrast� the return of �failure� by WAM can
provide a test of the �t between the data and the model� and hence make it possible to reject �and accept�
trees with greater con�dence� However� if WAM does not construct a tree� adjusting the method to permit a
search for the maximum number of quartets which can be simultaneously satis�ed is a promising approach�
and heuristics may be used to approximate the optimal solution�





��� Experimental results

The analysis of our algorithm heavily depends on a quantity that we introduced� the depth of a tree� while
the performance of other algorithms heavily depend on the diameter of the tree� so that these quantities
occur as exponents with the same base� For an n�leaf binary tree the diameter may be n� while the depth is
at most logn� furthermore� random binary trees from two natural distributions �uniform and Yule�Harding�
have depth O�log logn�� The log logn function is so slow growing� that it can be considered as bounded
for n%s that may occur in practice� Trees with the smallest possible depth�depth one�are caterpillars�
Therefore it is instructive to check the performance of our algorithm on caterpillars� the binary trees with
depth one� since very large random trees� from the point of view of depth� are rather similar to caterpillars�

In a joint paper with K� Rice ���
� we presented the results of a preliminary experimental performance
analysis comparing a popular method Neighbor Joining ��
 and a primitive version of WAM� This study was
obtained by simulating sequence evolution under the Neyman ��state model on a ���taxon caterpillar in which
we had uniform edge mutation probabilities on all edges except the two most extreme edges� which each had
mutation probabilities � times as great as the remaining edges� We varied the mutation probabilities on the
edges while maintaining the ratio between every pair of edges� and we generated sequences of varying lengths�
The performance advantage enjoyed by WAM over Neighbor Joining is very dramatic on this experimental
study�

� Summary and future research

In this paper we presented a new method� WAM �a speed�up of a method� DCM� that we proposed before��
for constructing phylogenetic trees based upon constructing trees on �short� quartets and constructing trees
consistent with the inferred topological constraints� We analysed a variant of the method in which we
compute the topologies of quartets using a simple method derived from Buneman%s Four Point Condition�
We analysed the convergence rate of our method and compared it to the analysis of the convergence rate of
the Agarwala et al� algorithm provided by Sampath Kannan� This comparison showed that the short quartet
based methods can reconstruct Cavender�Farris trees from much shorter sequences than the �approximation
algorithm of Agarwala et al� for the L��nearest tree problem� We also showed that our method will be
accurate on any distance matrix for which even an exact algorithm for the �NP�hard� L��nearest tree can
be guaranteed� on the basis of the L��metric alone� to be accurate�

Although our results seem surprisingly strong� there is an intuitive explanation for why we might expect
to obtain such an improvement in the performance over even an exact algorithm for the L��nearest tree�
That is� the slack permitted by the L� metric allows all distances to change within the required bound� and
thus does not constrain the topology of the reconstructed tree as closely as other criteria might�

However� the real gain in our method is obtained by relying upon the depth of the tree rather than
the diameter� Almost all �actually� all others� to our knowledge� distance�based methods are sensitive to
the diameter� by contrast� and hence su�er when attempting to reconstruct large trees containing widely
divergent sequences� Hence short quartet based methods seem utterly appropriate for problems like the Eve
hypothesis� the evolution of the HIV virus� or the Tree of Life� The research project ���
 used mitochondrial
DNA� described as �fast ticking clock�� to discover the phylogeny of modern humans� and concluded with
the controversial �Eve hypothesis�� an African female who lived about ������� years ago� was a common
ancestor of all present humans� Their tree ���
 on p� �	 has ��� leaves� and by a hand investigation seems
to have diameter �	 and depth �� Even so� our predicted improvement in performance needs to be veri�ed
on real data�

�



To apply short quartet based methods successfully to very large data sets may require further improve�
ments on the method� ��� faster procedures for DCTC and!or WATC algorithm ��� use and analysis of
sequence�based methods for obtaining quartet splits �� proper handling of �slightly� inconsistent sets of
quartet splits ��� extensions to allow non�binary trees�
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