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Abstract� The paper contains two theorems on approximation of functions with
bounbed mixed derivative. These theorems give some progress in two old open
problems. The first one gives, in particular, an upper estimate in the Bernstein
L1-inequality for trigonometric polynomials on two variables with harmonics in hy-
perbolic crosses. The second one gives the order of the entropy numbers and Kol-
mogorov’s widths in the L∞-norm of the class MW r

∞,α of functions of two variables.

1. Introduction

In this paper we report some progress in two old problems from approximation
of multivariate functions with bounded mixed derivative. These two problems orig-
inate from the very first publications (see [B1], [B2], [M], [Te]) on the subject. We
introduce first some notations. We give these notations in the general d-dimensional
(functions on d variables) case and point out that the results in this paper concern
only the 2-dimensional case. Let s = (s1, . . . , sd) be a vector whose coordinates are
nonnegative integers and

ρ(s) := {k ∈ Zd : [2sj−1] ≤ |kj| < 2sj , j = 1, . . . , d},

where [a] means the integer part of a number a. Denote

Qm :=
⋃

‖s‖1≤m

ρ(s)

and denote by T (Qm) the subspace of trigonometric polynomials with harmonics
in Qm.

Problem 1. (The Bernstein inequality in L1). Find the order in m of the
sequence

b(m, r, L1) := sup
f∈T (Qm)

‖f (r,...,r)‖1/‖f‖1, m = 1, 2 . . . .

This problem is open for all r > 0 and d ≥ 2. The corresponding problem for
the Lp-norm, 1 < p ≤ ∞, was solved in early 60-th. K.I. Babenko [B2] proved the
upper bound

b(m, r, L∞) � md−12rm

1This research was supported by the National Science Foundation Grant DMS 9622925 and
by ONR Grant N0014-96-1-1003
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and S.A. Telyakovskii [Te] proved the lower bound

b(m, r, L∞) � md−12rm.

B.S. Mityagin [M] proved for 1 < p < ∞

b(m, r, Lp) � 2rm.

For these results see also [T1], Ch.1, s.1. The known bounds for b(m, r, L1) are
simple

2rm � b(m, r, L1) � md−12rm.

We prove here a new upper bound in the 2-dimensional case:

b(m, r, L1) � m1/22rm.

The second problem we are dealing with here is about the Kolmogorov widths
of classes MW r

∞,α in the L∞-norm. Let for r > 0 and α ∈ R

Fr(t, α) = 1 + 2
∞∑

k=1

k−r cos(kt − απ/2), t ∈ [0, 2π],

and for x = (x1, . . . , xd) and α = (α1, . . . , αd)

Fr(x, α) =
d∏

j=1

Fr(xj , αj).

Define
MW r

q,α = {f : f = Fr(·, α) ∗ φ(·), ‖φ‖q ≤ 1},
where ∗ means the convolution. We recall the definition of the Kolmogorov width
of a centrally symmetric set A in a Banach space X

dn(A, X) := inf
gj∈X,j=1,...,n

sup
f∈A

inf
cj ,j=1,...,n

‖f −
n∑

j=1

cjgj‖X .

Problem 2. Find the order of the sequence {dn(MW r
∞,α, L∞)}∞n=1.

The first upper bounds in this problem were obtained by K.I. Babenko [B2]

dn(MW r
∞,α, L∞) � n−r(log n)(d−1)(r+1).

We prove in this paper the lower bound

dn(MW r
∞,α, L∞) � n−r(log n)r+1/2, r > 1/2,

in the 2-dimensional case. This lower estimate combined with the corresponding
known upper estimate (see [Be]) gives the solution to Problem 2 in the case d = 2
and r > 1/2 :

dn(MW r
∞,α, L∞) � n−r(log n)r+1/2.

Problem 2 is open in the case d > 2.
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2. The Bernstein inequalities

We introduce some more notations. Let for two integers a ≥ 1 and 0 ≤ b < a
AP (a, b) denote an arithmetic progression of the form al + b, l = 0, 1, . . . and

Hn(a, b) := {s : s ∈ Z
2
+, ‖s‖1 = n, s1, s2 ≥ a, s1 ∈ AP (a, b)}.

It will be convenient for us to consider subspaces T (ρ′(s)) of trigonometric polyno-
mials with harmonics in

ρ′(s) := {k ∈ Z
2 : [2sj−2] ≤ |kj | < 2sj , j = 1, 2}.

For a subspace Y in L2(Td) we denote by Y ⊥ its orthogonal complement.

Lemma 2.1. Take any trigonometric polynomials ts ∈ T (ρ′(s)) and form the func-
tion

Φ(x) :=
∏

s∈Hn(a,b)

(1 + ts(x)).

Then for any a ≥ 6 and any 0 ≤ b < a this function admits the representation

Φ(x) = 1 +
∑

s∈Hn(a,b)

ts(x) + R(x)

with R ∈ T (Qn+a−6)⊥.

The proof of this lemma is similar to the proof of Lemma 2.1 from [T2] (for the
idea of the proof see also [T1], p. 57(60)).

Remark 2.1. For any real numbers |yl| ≤ 1, l = 1, . . . , N , we have (i2 = −1)

|
N∏

l=1

(1 +
iyl√
N

)| ≤ C.

Lemma 2.2. For any function f of the form

f =
∑

s∈Hn(a,b)

ts

with a ≥ 6, 0 ≤ b < a, and ts, s ∈ Hn(a, b), is a real trigonometric polynomial in
T (ρ′(s)) such that ‖ts‖∞ ≤ 1 we have

E⊥
Qn+a−6

(f)∞ := inf
g∈T (Qn+a−6)⊥

‖f − g‖∞ � (1 + n/a)1/2.

Proof. Let us form the function

RP (f) := Im
∏

s∈Hn(a,b)

(1 + its(1 + n/a)−1/2),

which is an analog of the Riesz product. Then by Remark 2.1 we have

(2.1) ‖RP (f)‖∞ ≤ C.

Lemma 2.1 provides the representation

(2.2) RP (f) = (1 + n/a)−1/2
∑

s∈Hn(a,b)

ts + g, g ∈ T (Qn+a−6)⊥.

Combining (2.1) and (2.2) we get the statement of Lemma 2.2.
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Remark 2.2. It is clear that in Lemma 2.2 we can drop the assumption that the
ts are real polynomials.

Lemma 2.3. For any function f of the form

f =
∑

‖s‖1=n

ts, ts ∈ T (ρ′(s)), ‖ts‖∞ ≤ 1,

we have for any a ≥ 6

E⊥
Qn+a−6

(f)∞ ≤ Ca(1 + n/a)1/2.

Proof. Let us introduce some more notations. Denote

θn := {s : ‖s‖1 = n}; θn,a := {s ∈ θn, s1 < a or s2 < a}.

Then

f =
∑

s∈θn

ts =
∑

s∈θn,a

ts +
a−1∑

b=0

∑

s∈Hn(a,b)

ts

and

E⊥
Qn+a−6

(f)∞ ≤
∑

s∈θn,a

‖ts‖∞ +
a−1∑

b=0

E⊥
Qn+a−6

(
∑

s∈Hn(a,b)

ts)∞.

Using the assumption ‖ts‖∞ ≤ 1, Lemma 2.2 and Remark 2.2 we get from here the
required estimate.

Lemma 2.3 is proved.

It proved to be useful in studying approximation of functions with bounded
mixed derivative to consider along with the Lp-norms the Besov type norms. Let
Vn(t) be the de la Vallée-Poussin polynomials, t ∈ [0, 2π]. We define

A0(t) := 1, A1(t) := V1(t) − 1, An(t) := V2n−1(t) − V2n−2(t), n ≥ 2,

and for x = (x1, x2), s = (s1, s2)

As(x) := As1(x1)As2(x2).

Consider the convolution operator As with the kernel As(x),

As(f) := f ∗ As,

and define the Br
1,1-norm as follows

‖f‖Br
1,1

:=
∑

s

2r‖s‖1‖As(f)‖1.
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Theorem 2.1. Let r > 0 be given. For any f ∈ T (Qm) we have

‖f‖Br
1,1

≤ C(r)m1/22rm‖f‖1.

Proof. Take any n ≤ m + 2 and consider the sum

Sn :=
∑

‖s‖1=n

‖As(f)‖1.

Define the polynomials ts := As(signAs(f)) and

gn :=
∑

‖s‖1=n

t̄s.

It is clear from the definition of As(·) that t̄s ∈ T (ρ′(s)). Next, on one hand we
have

(2.3) 〈f, gn〉 =
∑

‖s‖1=n

‖As(f)‖1

and on the other hand we have

(2.4) 〈f, gn〉 ≤ ‖f‖1E
⊥
Qm

(gn)∞.

By Lemma 2.3 with a = max(m − n + 6, 6) we get

(2.5) E⊥
Qm

(gn)∞ � (m − n + 6)(1 + n/(m − n + 6))1/2.

The relations (2.3)–(2.5) imply the inequality

∑

s

2r‖s‖1‖As(f)‖1 =
∑

n≤m+2

2rnSn ≤ C(r)m1/22rm‖f‖1,

that is what was required.

We consider a more general derivative than standard mixed derivative. For a
polynomial f ∈ T (Qm) we define its (r, α)-derivative as the convolution with the
kernel

Ur
m(x, α) := 4

∑

k∈Qm,k>0

(k1k2)r cos(k1x1 + α1π/2) cos(k2x2 + α2π/2).

Thus,
f (r)(x, α) := Dr,αf := f(·) ∗ Ur

m(·, α).
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Corollary 2.1. For any r > 0, α ∈ R
2, we have for any function f ∈ T (Qm) on

two variables the inequality

‖f (r)(x, α)‖1 ≤ C(r)m1/22rm‖f‖1.

Proof. By Bernstein inequality for trigonometric polynomials with harmonics in
rectangles we get

‖f (r)(x, α)‖1 ≤
∑

s

‖Dr,αAs(f)‖1 ≤ C(r)
∑

s

2r‖s‖1‖As(f)‖1 ≤

and using Theorem 2.1 we continue

≤ C(r)m1/22rm‖f‖1.

Remark 2.3. The inequality in Theorem 2.1 is sharp. The multiplier m1/22rm

can not be replaced by smaller function on m even if we write ‖f‖p, p < ∞, instead
of ‖f‖1 in Theorem 2.1.

Proof. Indeed, take
f =

∑

‖s‖1=m

cos 2s1x1 cos 2s2x2.

Then ∑

s

2r‖s‖1‖As(f)‖1 � m2rm

and by Littlewood-Paley Theorem

‖f‖p � m1/2, p < ∞.

The next theorem shows that we can improve the inequality in Theorem 2.1 if
replace ‖f‖1 by ‖f‖∞.

Theorem 2.2. Let r > 0 be given. For any f ∈ T (Qm) we have

‖f‖Br
1,1

≤ C(r)2rm‖f‖∞.

Proof. Using functions Φ(x) defined in Lemma 2.1 and their property ‖Φ‖1 = 1
instead of functions RP (f) defined in the proof of Lemma 2.2 and their property
‖RP (f)‖∞ ≤ C we get the following analog of Lemma 2.3 (see also Lemma 2.1 in
[T2]).

Lemma 2.4. For any function f of the form

f =
∑

‖s‖1=n

ts, ts ∈ T (ρ′(s)), ‖ts‖∞ ≤ 1,

we have for any a ≥ 6
E⊥

Qn+a−6
(f)1 ≤ Ca.

We repeat now the arguments from the proof of Theorem 2.1 with (2.4) replaced
by

〈f, gn〉 ≤ ‖f‖∞E⊥
Qm

(gn)1
and Lemma 2.3 replaced by Lemma 2.4.
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3. The Kolmogorov widths

We prove in this section estimates for the entropy numbers and Kolmogorov’s
widths of the class MW r

∞,α. We use the following definition of the entropy numbers

εm(F, X) = inf{ε : ∃f1, . . . , f2m ∈ X : F ⊂ ∪2m

j=1(fj + εB(X))},

where B(X) is the unit ball of the Banach space X .

Theorem 3.1. Let r > 1/2. We have for the class MW r
∞,α of functions on two

variables the asymptotic relations

εm(MW r
∞,α, L∞) � m−r(log m)r+1/2,

dm(MW r
∞,α, L∞) � m−r(log m)r+1/2.

Proof. The upper estimates are known (see [Be]). We prove here the corresponding
lower estimates. We consider first the entropy numbers and use the interpolation
property of these numbers (see [P], s. 12.1.12)

(3.1) ε2m(MW r
4,α, L∞) ≤ 2εm(MW r

2,α, L∞)1/2εm(MW r
∞,α, L∞)1/2.

Next, from [T2] we get for r > 1/4

ε2m(MW r
4,α, L∞) ≥ C(r)m−r(log m)r+1/2

and from [Be] we have for r > 1/2

εm(MW r
2,α, L∞) ≤ C(r)m−r(log m)r+1/2.

Substituting these two estimates into (3.1) we get the required lower estimate for
the entropy numbers.

It is known (see [L]) that the entropy numbers give in a certain sense the lower
bounds for the Kolmogorov widths. We formulate this in a way convenient for us
(see [KT] and also [T3]).

Lemma 3.1. Let A be a compact set in a separable Banach space X. Assume that
for two real numbers r > 0 and b we have

εm(A, X) � m−r(log m)b.

Then for Kolmogorov’s widths of this set we have

dm(A, X) � m−r(log m)b.

Application of this lemma completes the proof of Theorem 3.1.
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