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1 Introduction

In recent years, various nonlinear methods have been proposed and deeply investigated in
the context of nonparametric estimation: shrinkage methods [21], locally adaptive band-
width selection [16] and wavelet thresholding [7].

One way of comparing the performances of two different method is to fix a class of
functions to be estimated and to measure the estimation rate achieved by each method over
this class. In this context, most of these methods have been proved to achieve minimax
rate for a given loss function, over various classes modelled by the unit balls of function
spaces: Hölder, Sobolev and more generally Besov and Triebel-Lizorkin spaces.

It should be noted that the choice of such a class is quite subjective. Moreover it
happens very often that the minimax properties can be extended (without deteriorating
the rate of convergence) to larger spaces (see e.g. [11]).

It is thus natural to address the following question: given an estimation method and a
prescribed estimation rate for a given loss function, what is the maximal space, over which
this rate is achieved ? If it exists, such a space will appear as naturally linked with the
method under consideration. The goal of this paper is to discuss the existence and the
nature of maximal spaces in the context of nonlinear methods based on thresholding (or
shrinkage) procedures.

Before going further, some remarks should be made:

• The maximal space will be of particular interest if in addition the rate provided by
the method is minimax in this space. Note that if the method is proved to achieve a
minimax rate n−α on some space E, then the same necessarily holds for the maximal
space F associated to this rate since it contains E.

∗This work has been supported in part by the Office of Naval Research Contract N0014-91-J1076 and
the Army Research Office Contract DAAG55-98-1-0002
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• Such an approach has been investigated for linear methods. We have in mind the
classical Parzen kernel estimates or linear spline and wavelet methods [14]. The
results take the following form. For an Lp-loss function (p ≥ 2) the maximal set
where a rate n−αp is attained is a ball of the Besov space Bs

∞(Lp) where s is defined
by the equation α = s/(1+2s). An especially interesting remark is that this result is
rather robust with respect to the method of estimation provided that the method is
linear. This suggests the following questions: (i) are the maximal spaces associated
to non linear methods also very robust and not much varying from one method to
the other? (ii) are they bigger than those associated to linear methods?

• While it is not difficult to see that the set of functions corresponding to a certain rate
of estimation for a linear method is indeed a linear space, this point is not clear (and
probably not true in general) for a nonlinear method: f and g could be estimated
at rate n−α while f + g is estimated at the rate n−β with β < α. In the context of
the methods which are considered in the present paper, the maximal space will be
proved to be linear.

As we have already pointed out, we are interested in estimation methods based on
thresholding procedures. Typically, the function f to be estimated is assumed to have an
expansion in some basis, i.e. f =

∑
k≥0 ckek, and the method consists in three steps:

• A linear step corresponding to the estimation of the ck’s by some estimators ĉk.

• A nonlinear step consisting in a thresholding procedure ĉk �→ ĉkI{|ĉk| ≥ tk}.

• A reconstruction step to derive the global estimator f̂ =
∑

k≥0 ĉkI{|ĉk| ≥ tk}ek.

Although the basis (ek)k≥0 can be of any type, a natural setting to derive these re-
sults is provided by wavelet bases. Indeed, such bases provide characterizations of various
classical smoothness classes from the approximation rate of (deterministic) thresholding
procedures. While this fact is well-known in approximation theory, we shall see here that
similar statements hold for statistical estimation. It turns out in this setting that for the
nonlinear estimation methods under consideration, the maximal spaces will coincide with
known smoothness classes.

Before proceeding further with the description of our results in a simple case, we shall
shall introduce the notation we shall utilize for wavelet bases.

1.1 Wavelets

Wavelet bases have been documented in numerous textbooks and survey papers (see e.g.
[4] and [17] for a general treatment). With a little effort, they can be adapted to a bounded
interval [1] and to more general domains Ω ⊂ R

d (see [3] for a survey of these adaptations as
well as a discussion of the characterizations of function spaces on Ω by wavelet coefficients).

A wavelet basis consists of two types of functions: scaling functions ϕλ and wavelet
functions ψλ. The index λ concatenates the usual scale and space parameters j,k. Thus for
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standard wavelet bases on IR, we simply have ψλ = ψj,k = 2j/2ψ(2j ·−k) (and similarily for
ϕλ). However, the notation ψλ takes into account the possible adaptations of wavelets to
multivariate bounded domains in which case the functions ψλ and ϕλ usually change form
near the boundary.

With this notation, the wavelet decomposition takes the form

f =
∑

λ∈Γj0

αλϕλ +
∑
j≥j0

∑
λ∈∆′

j

βλψλ, (1)

where (ϕλ)λ∈Γj is the scaling function basis spanning the approximation at level j, (ψλ)λ∈∆′
j

is the wavelet basis spanning the details at level j, and α = α(f) and βλ = βλ(f) are the
scaling function and wavelet coefficients of f respectively. In what follows, we shall (merely
for notational convenience) always take j0 := 0.

The approximation and detail coefficients of f are linear functionals of f which can be
evaluated according to

αλ = 〈f, ϕ̃λ〉 and βλ = 〈f, ψ̃λ〉, (2)

where ϕ̃λ and ψ̃λ are the corresponding dual scaling functions and wavelets. In the or-
thonormal case, these are the same as the primal scaling functions and wavelets ϕλ and
ψλ.

We also use the notation |λ| = j if λ ∈ Γj or λ ∈ ∆′
j . Finally, to simplify notation even

more, we define Λ0 := Γ0 ∪ ∆′
0 and ∆j := ∆′

j , j > 1. Then, with ∆ = ∪j≥0∆j , we have an
even simplier notation

f =
∑
λ∈∆

〈f, ψ̃λ〉ψλ =
∞∑

j=0

∑
λ∈∆j

〈f, ψ̃λ〉ψλ. (3)

It is well known (see e.g. [3]) that wavelet bases provide characterizations of smoothness
spaces such as the Hölder spaces Cs, Sobolev spaces W s(Lp) and Besov spaces Bs

q(Lp) for a

range of indices s that depend both on the smoothness properties of ψ and ψ̃. In the scale
of Besov spaces (which includes Cs = Bs

∞(L∞) and W s(Lp) = Bs
p(Lp) if s /∈ N as particular

cases), the characterization result has the form

‖f‖Bs
q(Lp) ∼ ‖(2s|λ|2d|λ|(1/2−1/p)‖(βλ)λ∈∆j‖�p)j≥0‖�q , (4)

where d is the space dimension (Ω ⊂ R
d).

1.2 A simple example

Let us consider the white noise model on the unit interval

dY (t) = f(t)dt +
1√
n

dW (t), t ∈ [0, 1]. (5)
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We want to reconstruct f from observations of Y , which is a polution of f by the addition
ofthe white noise W . The local thresholding estimators proposed in [7] have the following
general form

f̂n =
∑

|λ|≤j0(n)

β̂λI{|β̂λ| ≥ t(n)}ψλ, (6)

where β̂λ =
∫

ψ̃λ(t)dY (t)dt is the linearly estimated coefficient.
We choose here the L2 norm as the loss function, i.e. we are interested in the mean

square error E(‖f̂n − f‖2
L2

). This error is majorized by

E(‖f̂n − f‖2
L2

) ≤ 2[B(n) + V (n)], (7)

where
B(n) = ‖f − ∑

|λ|≤j0(n) βλI{|βλ| ≥ t(n)}ψλ‖2
L2

≤ C
∑

|λ|>j0(n) or |βλ|<t(n) |βλ|2,
denotes the bias term, and

V (n) = E(‖∑
|λ|≤j0(n)(βλI{|βλ| ≥ t(n)} − β̂λI{|β̂λ| ≥ t(n)})ψλ‖2

L2
)

≤ C
∑

|λ|≤j0(n) E(|βλI{|βλ| ≥ t(n)} − β̂λI{|β̂λ| ≥ t(n)}|2),

the variance term. In both case, the constant C is 1 for an orthonormal wavelet basis, and
fixed in the case of biorthogonal wavelets.

The choice of an appropriate threshold t(n) and maximal scale j0(n) have been widely
investigated in the context where the properties of f are modelled by Besov smoothness:
one typically assumes that f sits in a class

V (r, s) = {‖f‖Br
∞(L2) ≤ Cr} ∩ {‖f‖Bs

p(Lp) ≤ Cs}, (8)

where 0 < r < s and p is given by 1/p = 1/2+s. The parameters s and r should be viewed
as two different measure of smoothness:

• ¿From (4), ‖f‖Bs
p(Lp) is equivalent to the discrete �p norm of the wavelet coefficients of

f . This space provides a measure the L2 error resulting from a thresholding procedure
by the estimate

‖f −
∑

|βλ|≥t

βλψλ‖2
L2

≤ C
∑

|βλ|<t

|βλ|2 ≤ Ct2−p‖f‖p
Bs

p(Lp). (9)

Thus, in the context of thresholding, the parameter s is thus a natural measure of
the sparsity of a function in a wavelet basis. Note that the space Bs

p(Lp) is embedded
in L2 but not compactly.

• The parameter r measures the smoothness of f in L2, or equivalently the approxima-
tion error commited by truncating the function at some scale. One can indeed easily
derive from (4) that

‖f‖Bs∞(L2) ∼ ‖f‖L2 + sup
j≥0

2js‖f −
∑
|λ|≤j

βλψλ‖L2. (10)
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An assumption of minimal smoothness in this classical sense is unavoidable in order
to limit the thresholding procedure in (6) to a finite number of coefficients below a
maximal scale j0(n) and to discard all other coefficients at higher scales.

With such assumptions, it is known that the minimax estimation rate

E(‖f − f̂n‖2
L2

) ≤ C[
n

log(n)
]−

2s
1+2s , (11)

can be achieved with the choices 2j0(n) ∼ n
s

r+2rs and t(n) = κ
√

log(n)/n for κ large enough

(depending on r). Such choices correspond to balancing the upper bounds for the bias and
variance terms given above. The constant C in (11) depends on the constants Cr and Cs

in the definition of the class V (r, s).
It turns out that the above rate can be extended to a slightly larger class Ṽ (r, s),

where the assumption ‖f‖Bs
p(Lp) ≤ Cs is replaced by the assumption that the following

thresholding estimate holds:

‖f −
∑

|βλ|≥t

βλψλ‖L2 ≤ Cst
1−p/2. (12)

This estimate can be shown to be equivalent to requiring that the wavelet coefficients of f
belong to the weak space �w

p , i.e.

#{λ ∈ ∆ ; |βλ| ≥ t} ≤ Ct−p, t > 0. (13)

Unlike Bs
p(Lp), the corresponding function space Bs,w

p (Lp) does not correspond to a classical
smoothness class, although it can be viewed as an interpolation space: if s′ > s, 1/p′ =
1/2 + s′ and (1 − θ)/2 + θ/p′ = 1/p, elementary interpolation results on �p spaces give

Bs,w
p (Lp) = [L2, B

s′
p′(Lp′)]θ,∞. (14)

Our general results will reveal as a particular case that Br
∞(L2) ∩ Bs,w

p (Lp) is precisely
the maximal space associated to the above described thresholding estimator: if, for a given
function f , the rate (11) is achieved, then one necessarily has

‖f‖Bs,w
p (Lp) + ‖f‖Br

∞(L2) ≤ C̃, (15)

where C̃ depends on the constant C in (11).

1.3 Contents of the paper

In this paper, we shall consider various thresholding methods:

• local (coefficients are thresholded individually),

• global (the sets of coefficients (βλ)λ∈∆j are globally thresholded),
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• block (subsets of (βλ)λ∈∆j are globally thresholded).

We shall also consider two different types of loss functions:

• Norms which can be expressed as weighted �p norm of the corresponding wavelet
coefficients, e.g. L2 and Bs

p(Lp). We refer to such norms as “p-sequential”.

• Lp norms (which are not p-sequential for p �= 2).

In the second case, which is technically more difficult, the results are only obtained for
the local thresholding, whereas in the first case comparison between the different methods
are obtained.

The main conclusions of the present paper are the following: the spaces associated to
nonlinear methods vary from one method to another. We do not obtain a precise classi-
fication of the different types thresholding, unless we leave aside the distinction between
rates of convergence that differ by a logarithmic factor. It is interesting to note that the
maximal spaces obtained here correspond to the widespread idea that the thresholding
methods behave well on spaces whose functions have a regular behaviour except on a lower
dimensional set of singularities. The advantage of these spaces is to carefully measure what
is the amount of singular behaviour that can be tolerated in the function to be estimated.

Another interesting observation is that the gain of nonlinear methods over linear meth-
ods decreases as the loss function tends the L∞ norm.

This paper is organized as follows. A general setting for nonlinear estimation is intro-
duced in §2, which allows different thresholding methods (local, global or block) as special
examples. In §3, we introduce a class of weak spaces that occur in nonlinear approxima-
tion. These weak spaces will provide our description of maximal spaces. In that section,
we recall various results of nonlinear approximation theory which are central to our anal-
ysis, both for proving the estimation rate for a given weak space and the maximality of a
weak space for a given rate. The p-sequential case is addressed in §4. A general theorem
is given which shows that the saturation space of a general thresholding procedure is the
intersection of a certain weak space with a compact subest of the space induced by the
loss. This compact subset can be thought of as a minimal basic regularity below which the
method seriously degrades. We discuss cases for which the intersection with this compact
set is not necessary. The special case p = ∞ is treated separately. We devote §5 to the
application of the general theorem to different examples of wavelet thresholding. The case
of measuring loss in Lp is adressed in §6, in the context of local thresholding.

2 Models and thresholding estimators

In this section, we shall describe the general setting and the notation we shall employ
throughout this paper. We shall also give several examples which fall into our general
setting.

Our aim is to estimate a function f belonging to some Banach space V . We are given
a sequence of models indexed by n > 0 from which we derive a sequence of estimators f̂n,
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which aims to converge to f in some average sense. Generally speaking, our loss will be of
the form ‖f̂n − f‖p where ‖ · ‖ = ‖ · ‖V is the norm of V and p > 0. We are thus interested
in the behaviour of E(‖f̂n − f‖p) as n goes to +∞.

For instance, in the white noise model (5), the estimators f̂n are obtained from the
observation modelized as f deteriorated by an additive noise of variance 1/n. Other closely
related model are regression (we observe Yi = f(i/n)+ εi for i = 1, · · · , n where εi are i.i.d.
Gaussian variables) and density estimation (we observe n independent realizations Xi of a
random variable from which we want to estimate the density f(x)dx).

Our results will deal with the application of thresholding estimators to such models.
We now describe typical examples of these estimators.

2.1 General thresholding estimators

Throughout this paper, we shall assume that the functions to be estimated have the fol-
lowing atomic decomposition :

f =
∑
i∈N

fi, (16)

where the series converge in V and each function fi is in a fixed closed subspace Vi of V .
It can happen that the norm ‖.‖ for V in which we measure the loss has a special

behavior with respect to this atomic decompostion, in the sense that there exists a sequence
of positive numbers pi and two constants C1, C2 > 0 such that for all f

C1

∑
i∈N

pi‖fi‖p
i ≤ ‖f‖p ≤ C2

∑
i∈N

pi‖fi‖p
i , (17)

where for each i ∈ N, ‖.‖i is a norm for Vi. In this case, we say that the norm is p-sequential.
A trivial case of p-sequential norm is the discrete �p norm, in which case the fi are simply
the i-th component of the sequence f and ‖fi‖i = |fi|.

To the atomic decomposition of f corresponds a thresholding estimator:

f̂n =
∑
i∈λn

f̂n
i +

∑
i∈Λn\λn

f̂n
i I{‖f̂n

i ‖i ≥ κc(n)}, (18)

where f̂n
i ∈ Vi is an estimator of fi coming from our observation.

The two subsets λn ⊂ Λn reflect the idea that at the “low level of resolution” (i ∈ λn)
one does not threshold, while at the “very high level” (i /∈ Λn) one does not estimate.
In between these two sets, we operate a thresholding according to the rate κc(n). Our
estimation procedure is thus characterized by λn, Λn and κc(n), which all depend on n.
The estimators f̂n

i are coming from our observation.
The assumptions on the sequence of models will only be made through the behaviour

of the estimators f̂n
i . For sake of simplicity the index n will be omitted in f̂ as well as in

f̂i when no confusion is possible. We will also investigate later the case where the norm
can be represented as previously but with a formula where the sum in i is replaced by a
supremum.
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2.2 Examples of thresholding estimators

2.2.1 Local wavelet thresholding

Let us consider the white noise model (5) and let (ψλ)λ∈∆ be a wavelet basis adapted to
the interval [0, 1] (we use here the notation of §1.1).

In [9], [7] and [8], the following estimator, based on wavelet thresholding, was proposed
and studied:

f̂n =
∑

|λ|≤j0(n)

β̂λψλI{|β̂λ| ≥ κtn}, (19)

where

β̂λ =
∫

ψ̃λ(t)dY (t), 2j0(n) � n/ log n and tn = (
log n

n
)1/2. (20)

For models other than (5) - e.g. density estimation, regression spectral density estima-
tion, drift or volatility of a diffusion model - the estimator has the same general form (19),
and the modifications occur only in the estimation formula for the coefficients β̂λ.

This enters the general framework of §2.1 with the fi = fλ identified as the components
fλ = βλψλ of the function f in the wavelet basis, ‖fi‖i = |βλ|, Λn := {λ ∈ ∆ ; |λ| ≤ j0(n)},
c(n) = tn and λn the empty set.

If we measure the loss in the Besov norm ‖ · ‖Bσ
p (Lp) for some σ ≥ 0 and p < ∞,

then according to (4), we are in the p-sequential case, with the coefficients pi given by
pi = pλ = 2|λ|p(σ+(1/2−1/p)). The case Bσ

∞(L∞) corresponds to replacing the summation in
(17) by a supremum with exponent p = 1 and pi = pλ = 2|λ|(σ+1/2).

2.2.2 Global thresholding

In [15], a global thresholding strategy was proposed for the density estimation model.
For simplicity, we describe the estimator in the white noise setting (5). We estimate the
function f by

f̂n =
∑

j<j1(n)

∑
|λ|=j

β̂λψλ +
j0(n)∑

j=j1(n)

I{
∑
|λ|=j

|β̂λ|2 ≥ κ2j/n}
∑
|λ|=j

β̂λψλ, (21)

where 2j0(n) � n and 2j1(n) � nε for some fixed ε ∈]0, 1[.
This enters the general framework of §2.1, with fj :=

∑
|λ|=j βλψλ the component of f

at scale level j, ‖fj‖j := 2−j/2[
∑

|λ|=j |βλ|2]1/2 ∼ 2−j/2‖fj‖L2 , λn := {j < j1(n)}, Λn :=

{j ≤ j0(n)} and c(n) := n−1/2. Here, Vj is the space spanned by the wavelet function ψλ,
|λ| = j.

If we measure the loss in the Besov norm ‖ · ‖Bσ
2 (L2) for some σ ≥ 0, then according

to (4), we are in the p-sequential case, with p = 2 and with the coefficients pj given by
pj = 2j(2σ+1).

More general global thresholding estimators can be constructed using integral operators
which approximate the identity: in this setting the function f is approximated at scale
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2−j by Ejf where Ejf(x) =
∫

Ej(x, y) f(y) dy. Here Ej can either be a convolution, i.e.
Ej(x, y) = 2jE(2j(x − y)), or a projection (or more generally quasi-interpolation), i.e.
Ej(x, y) =

∑
|λ|=j ϕλ(x)ϕ̃λ(y). Introducing the “innovation” kernel, Dj = Ej+1 − Ej , and

setting D0 := E1, we have the formal decomposition

f :=
∑
j≥0

Djf. (22)

In the white noise model, the Djf are naturally estimated according to

D̂j := D̂n
j :=

∫ 1

0
Dj(t, s)dY (s). (23)

Given such an estimation procedure for the individual Djf , we can thus derive the corre-
sponding global thresholding estimator by setting fj = Djf , ‖fj‖j ∼ 2−j/2‖fj‖L2, λn :=
{j < j1(n)}, Λn := {j ≤ j0(n)} and c(n) := n−1/2. Here Vj is the range of the operator Dj .

If we measure the loss in the Besov norm ‖ · ‖Bσ
2 (L2) for some σ ≥ 0, then it is well

known that under suitable assumptions on the kernel Ej we have the norm equivalence

‖f‖2
Bσ

2 (L2) ∼
∑
j≥0

22jσ‖Djf‖2
L2

. (24)

Therefore, we are again in the p-sequential case, with p = 2 and with the coefficients pi

given by pj = 2j(2σ+1).

2.2.3 Block thresholding using a kernel

In [11], block thresholding has been studied in the density estimation model, based on a
decomposition of the type (22).

At each level j, one considers the partition of R into intervals Ijk := [k2−jlj , (k+1)2−jlj ],
k ∈ ZZ, where lj ≥ 1 is a sequence of positive numbers such that lj → +∞ and 2−jlj → 0 as

j goes to +∞. We then define the block Bj,k = χIj,k
Djf and its estimator B̂j,k = χIj,k

D̂jf .
The choice lj := j2, which is studied in [11], corresponds to a “logarithmic growth” of the
relative size of the blocks with respect to the resolution.

The corresponding block-thresholded estimator has the form

f̂n =
∑

j<j1(n)

D̂j +
∑

j1(n)≤j≤j0(n)

∑
k

B̂j,kI{l−1
j

∫
Ij,k

|B̂j,k|2 > κn−1}, (25)

where 2j0(n) � n, 2j1(n) � nε for some fixed ε ∈ ]0, 1[.
This enters the general framework of §2.1. with fi identified to the blocks Bj,k, ‖fi‖i =

l
−1/2
j ‖Bj,k‖L2, λn := {(j, k) ; j < j1(n)}, Λn := {(j, k) ; j ≤ j0(n)} and c(n) := n−1/2.

If we measure the loss in the L2 = B0
2,2 norm, then from (24) with σ = 0, we are in

the p-sequential case, with p = 2 and with the coefficients pi = pj,k given by pj,k = lj. For
σ > 0, the expression of the loss in Bσ

2,2 as in (17) with pj,k = lj2
2jσ requires smoother

cut-off than χIj,k
in the definition of the blocks Bj,k.
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3 V ∗
q (µ)-spaces and approximation results

We shall introduce certain spaces related to V which occur naturally in analyzing the
approximation performance of thresholding. The classical setting is when we use wavelet
decompositions. Then, the spaces we introduce are related to Besov spaces.

Let V be a space in which we measure error. Let µ be any positive measure defined
on N (in the case of wavelet bases, µ is defined on ∆ the set of wavelet indices). For any
0 < q < ∞, we define the space V ∗

q (µ) to be the collection of all functions in V such that
for all ε > 0,

(I) µ({i : ‖fi‖i > ε}) ≤ Aε−q,

for some constant A. The smallest constant A(f) for which (I) is valid is the “norm ”on
V ∗

q (µ). The condition (I) is the same as saying that the sequence (‖fi‖i)i∈N is in the sequence
space weak �q(µ). This is a slightly weaker condition than requiring that this sequence is
in �q(µ).

In §4, we shall only deal with the case when the norm on V is p-sequential (17) with
0 < p < ∞. We will utilize the measure

µ∗{i} = pi,

where pi be the numbers appearing in (17). In this case, we shall simply write V ∗
q := V ∗

q (µ∗).
In §6, when we treat the non sequential case V = Lp, we shall utilize other measures µ.

In the case of µ∗, it is easy to show that an equivalent statement to (I) is that for some
r > q, we have

(II)
∑

‖fi‖i≤ε

pi‖fi‖r
i =

∫
‖fi‖r

i I{‖fi‖i ≤ ε}dµ ≤ Bεr−q,

for all ε > 0 with B a constant. Moreover, the smallest constant B for which (II) is valid
is equivalent to ‖f‖V ∗

q
. To see this, let

Λj(f, ε) := {i : 2−j−1ε < ‖fi‖i ≤ 2−jε}.

If (I) holds then, for all r > q, we have

∑
‖fi‖i≤ε pi‖fi‖r

i =
∑

j≥0

∑
i∈Λj(f,ε) pi‖fi‖r

i

≤ ∑
j≥0[2

−jε]r
∑

i∈Λj(f,ε) pi

≤ A
∑

j≥0[2
−jε]r−q ≤ CAεr−q.

On the other hand, if (II) holds for some r > q, then we have

∑
‖fi‖i>ε pi ≤ ∑

j<0

∑
i∈Λj(f,ε) pi

≤ 2r ∑
j<0

∑
i∈Λj(f,ε) pi‖fi‖r

i [2
−jε]−r

≤ 2rB
∑

j<0[2
−jε]r−q[2−jε]−r

≤ CBε−q.
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Consider now the setting of the wavelet decompositions. For each s ≥ 0, 0 < p < ∞, the
space V = Bs

p(Lq) is a p-sequential space. Here fλ := 〈f, ψ̃λ〉ψλ, Vλ is the one dimensional

space spanned by ψλ and its norm is |〈f, ψ̃λ〉|. The norm equivalence (17) holds with
pλ = 2βp|λ|, β = s + 1/2− 1/p. Thus, f ∈ Bs

p(Lp) is equivalent to saying that the sequence

(2β|λ|‖fλ‖Vλ
)λ∈∆ is in �p.

The above holds in particular when V = B0
p(Lp), in which case pλ = 2|λ|(p/2−1). In this

case, for q < p, property (II) says that f ∈ V ∗
q if and only if

‖f −
∑

|βλ|>ε

βλψλ‖B0
p(Lp) ≤ Cεp−q.

That is, V ∗
q is characterized by the approximation performance of wavelet thresholding in

B0
p(Lp). If q < p, the space V ∗

q is very close to a Besov space. Recall that by (I), f ∈ V ∗
q

if and only if (βλ(f))λ∈∆ is in weak �q(µ). It is easy to see that for q < p, the space of
functions f with (βλ(f))λ∈∆ in �q(µ) is the Besov space Bs

q(Lq) with s and q related by
s = (p/q − 1)/2. Thus, V ∗

q can be viewed as a weak Besov space (V ∗
q = weakBs

q(Lq). For
further discussion of thresholding and the spaces V ∗

q , we refer the reader to [2]
Surprisingly, when 1 < p < ∞, similar results can be obtained with B0

p(Lp) replaced by
the space Lp, which is not p-sequential. We close this section by mentioning some results
on thresholding in Lp which will be useful in §6. These results are straightforward with
B0

p(Lp) in place of Lp. For p ≤ 1, similar results hold with the Hardy Hp space in place of
Lp.

The next result was given in Lemma 5.1 of [2] and generalizes a result of Temlyakov
[24].

Lemma 1 Let 1 < p < ∞ and let µ(λ) := 2(p/2−1)|λ|, λ ∈ ∆. Then, there exists constants
C1(p), and C2(p) such that, for every E ⊂ ∆ we have

C1 inf
λ∈E

|cλ|pµ(E) ≤ ‖
∑
λ∈E

cλψλ‖p
Lp

≤ C2 sup
λ∈E

|cλ|pµ(E).

.

Lemma 2 Let 2 < p < ∞ and let µ(λ) := 2(p/2−1)|λ|, λ ∈ ∆. If 0 < q < p, then
V ∗

q (µ) ⊂ Lp.

For a proof see [2].

Lemma 3 Let 1 < p < ∞, µ(λ) := 2(p/2−1)|λ|, λ ∈ ∆, and 0 < q < p . The following
properties are equivalent:

(i) f ∈ V ∗
q (µ) .

(ii) for all ε > 0, ‖f − ∑
|βλ|>ε βλψλ‖p

Lp
≤ Bεp−q,

for some constant B = B(f) > 0. Moreover, the smallest constant satisfying (ii) is equiv-
alent to the norm of f in V ∗

q (µ).

11



For a proof, see [2].
We finally recall the characterization of Lp by the square function (see e.g. [17])

Lemma 4 For 1 < p < ∞, there exists constants C1(p), and C2(p) such that we have

C1(p)‖f‖p
Lp ≤ ‖(

∑
λ∈∆

|βλ(f)ψλ|2)1/2‖Lp ≤ C2(p)‖f‖Lp.

4 Results in the case of p-sequential norms

4.1 Result in the general setting

In this section, we shall prove a theorem (Theorem 1) which analyzes the performance
of general thresholding. The ingredients of this theorem are to assume certain properties
of the thresholding procedure (these are give in assumptions (a), (b), (c) of Theorem 1)
and then to characterize the functions which are approximated with a specified rate of
decrease of error in terms of the weak spaces V ∗

q . Our point is to isolate conditions on
the thresholding which are sufficient for such a characterization. The apropriateness of our
assumptions are justified in §5 where we give several examples where these assumptions
apply.

We place ourselves under the assumptions of §2.1. Thus, we assume that V is a space
which has a p-sequential case (17) with 0 < p < ∞ and weights pi, i ∈ N. We recall the
weak spaces V ∗

q (µ) defined in §2.3, with µ(i) = pi. We shall analyze the performance of

the general estimator f̂n defined by (18).
For α ∈]0, 1[, we also define by BS = BSα a space of “basic smoothness” associated

with our procedure: f ∈ BS if and only if

∑
i/∈Λn

pi‖fi‖p
i ≤ Ac(n)αp, n = 1, 2, . . . .

We then have the following result.

Theorem 1 Let V be a space with a p-sequential norm (17. Let α ∈]0, 1[ and define q :=
(1−α)p. Further, let c(n) be a decreasing sequence tending to 0 such that lim sup c(n)/c(n+
1) < +∞. For the general thresholding estimator (18), we assume that for each n ≥ 1, the
estimator f̂n

i satisfies

(a) E‖f̂n
i − fi‖2p

i ≤ Cc(n)2p, i ∈ Λn,

(b) P (‖f̂n
i − fi‖i ≥ κc(n)/2) ≤ Kc(n)γ , i ∈ Λn \ λn, for some fixed γ ≥ αp,

(c) ∑
i∈Λn

pi ≤ Cc(n)−q−γ/2 and
∑
i∈λn

pi ≤ c(n)−q. (26)

12



Then for f ∈ V , the following conditions are equivalent

(i) E‖f̂n − f‖p ≤ Cc(n)αp, n = 1, 2, . . . ,
(ii) f ∈ V ∗

q ∩ BS.

Remarks:
(R1) We see that the sequence c(n) appears in three strongly connected points: the condi-
tions (a) and (b) which describe the rate of convergence of the “individual” estimators f̂n

i

to fi, the rate of thresholding in (18), and finally the resulting rate of convergence in (i).
(R2) Condition (a) is a usual moment condition on the sequence of estimators. Note that,
by the Cauchy-Schwartz inequality, it implies E‖f̂n

i − fi‖p
i ≤ Cc(n)p. Condition (b) should

be viewed as a concentration property. As will be shown in the examples, it is often the
consequence of an exponential inequality.

4.2 Proof of Theorem 1

Here and after, C denotes a constant which may change from one line to the next. The
p-sequential assumption (17) implies that

E‖f̂n−f‖p ∼
∑
i∈λn

piE‖f̂n
i −fi‖p

i +
∑
i/∈Λn

pi‖fi‖p
i +

∑
i∈Λn\λn

piE‖f̂n
i I{‖f̂n

i ‖i ≥ κc(n)}−fi‖p
i . (27)

We shall make use of this equivalence in both directions of the proof.

4.2.1 (i)⇒(ii)

Assuming that (i) holds, we first obtain

C1

∑
i/∈Λn

pi‖fi‖p
i ≤ C1E‖f̂n − f‖p ≤ Ac(n)αp, (28)

for all n, so that f ∈ BS.
Next, we remark that ‖fi‖i ≤ κc(n)/2 implies ‖fi‖i ≤ ‖fi − f̂iI{‖f̂i‖i ≥ κc(n)}‖i. It

follows that∫ ‖fi‖p
i I{i /∈ λn, ‖fi‖i ≤ κc(n)/2}dµ =

∑
i/∈λn,‖fi‖i≤κc(n)/2 pi‖fi‖p

i

≤ ∑
i/∈Λn

pi‖fi‖p
i +

∑
i∈Λn\λn

piE‖f̂n
i I{‖f̂n

i ‖i ≥ κc(n)} − fi‖p
i

≤ CE‖f̂n − f‖p ≤ Cc(n)αp = Cc(n)p−q.

For the indices i ∈ λn, we note that∫
‖fi‖p

i I{i ∈ λn, ‖fi‖i ≤ κc(n)/2}dµ ≤ (κc(n)/2)p
∑
i∈λn

pi ≤ Cc(n)p−q, (29)

where we have used the second assumption in (26).
We thus obtain that

∫ ‖fi‖p
i I{‖fi‖i ≤ κc(n)/2}dµ ≤ Cc(n)p−q for all n > 0. Using

the condition lim sup c(n)/c(n + 1) < +∞, it is not difficult to show that this extends to∫ ‖fi‖p
i I{‖fi‖i ≤ ε}dµ ≤ Cεp−q, for all ε ≤ κc(1)/2. For ε > κc(1)/2, the same property

immediately follows from the fact that
∑

i pi‖fi‖p
i is bounded and q < p. We thus conclude

that f ∈ V ∗
q .
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4.2.2 (ii)⇒ (i)

Assuming now that (ii) is true, we first notice that since f ∈ BS, the second term∑
i/∈Λn

pi‖fi‖p
i on the right hand side of (27) is bounded by Cc(n)αp.

The first term
∑

i∈λn
piE‖f̂n

i − fi‖p
i is also bounded by Cc(n)αp using the moment as-

sumption (a) together with the second assumption in (26).
It remains to estimate the last term

∑
i∈Λn\λn

piE‖f̂n
i I{‖f̂n

i ‖i ≥ κc(n)}−fi‖p
i . This term

can be split into∑
i∈Λn\λn

pi‖fi‖p
i P{‖f̂n

i ‖i < κc(n)} +
∑

i∈Λn\λn

piE(‖f̂n
i − fi‖p

i I{‖f̂n
i ‖i ≥ κc(n)})

We further more split this sum I + II into IA + IB + IIA + IIB where these terms are
defined and estimated as follows:

IA :=
∑

i∈Λn\λn
I{‖fi‖i ≥ 2κc(n)}pi‖fi‖p

i P{‖f̂n
i ‖i < κc(n)}

≤ ∑
i∈Λn\λn

pi‖fi‖p
i P{‖f̂n

i − fi‖i ≥ κc(n)}
≤ Cc(n)γ ∑

i∈Λn\λn
pi‖fi‖p

i

≤ Cc(n)γ‖f‖p ≤ Cc(n)αp,

where we have used (b) and the assumption γ ≥ α.

IB :=
∑

i∈Λn\λn
I{‖fi‖i < 2κc(n)}pi‖fi‖p

i P{‖f̂n
i ‖i < κc(n)}

≤ ∑
i∈Λn\λn

I{‖fi‖i < 2κc(n)}pi‖fi‖p
i

≤ C(2κc(n))p−q = Cc(n)αp,

where we have used the V ∗
q assumption in the form (II).

IIA :=
∑

i∈Λn\λn
I{‖fi‖i ≥ κc(n)/2}piE(‖f̂n

i − fi‖p
i I{‖f̂n

i ‖i ≥ κc(n)})
≤ Cc(n)pµ{i : ‖fi‖i ≥ κc(n)/2} ≤ Cc(n)p−q = Cc(n)αp,

where we have used (a) and the V ∗
q assumption in the form (I).

IIB :=
∑

i∈Λn\λn
I{‖fi‖i < κc(n)/2}piE(‖f̂n

i − fi‖p
i I{‖f̂n

i ‖i ≥ κc(n)})
≤ ∑

i∈Λn\λn
piE(‖f̂n

i − fi‖p
i I{‖f̂n

i − fi‖i ≥ κc(n)/2})
≤ ∑

i∈Λn\λn
pi(E‖f̂n

i − fi‖2p
i )1/2(P{‖f̂n

i − fi‖i ≥ κc(n)/2})1/2

≤ Cc(n)pc(n)γ/2 ∑
i∈Λn\λn

pi ≤ Cc(n)αp,

where we have used Schwarz inequality, (a), (b) and the first assumption in (26).
We thus concludes that the estimation rate (i) is statisfied.

4.3 When the BS condition is not necessary

Under certain conditions, we can avoid the extra BS condition in the statement (ii) of the
Theorem 1. This essentially occurs when the set Λn is related to the ordering with the
weights pi. More precisely, we suppose that there exists τ > −1 such that for all r > 0,

#{i ; pi ≤ r} ≤ Krτ . (30)
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We define Λ̃n = {i ∈ N : pi ≤ c(n)−δ} for some fixed δ > 0, and consider the following
thresholding estimator

f̂n =
∑
i∈λn

f̂n
i +

∑
i∈Λ̃n\λn

f̂n
i I(‖f̂n

i ‖i ≥ κc(n)) (31)

Theorem 2 Let α ∈]0, 1[. Assume that (30) holds and consider the modified thresholding
estimator (31). We suppose that the sequence of estimators f̂n

i satisfies the assumptions
(a) and (b) of Theorem 1 with γ ≥ αp and that c(n) is a decreasing sequence tending to
0 such that lim sup c(n)/c(n + 1) < +∞. Setting q := (1 − α)p, we assume that δ ≥ q,
that γ/2 − (τ + 1)δ + q ≥ 0, and that

∑
i∈λn

pi ≤ c(n)−q. Then, for f ∈ V , the following
conditions are equivalent

(i) E‖f̂n − f‖p ≤ Cc(n)αp, n = 1, 2, . . . ,
(ii) f ∈ V ∗

q .

Proof
The proof of (i) ⇒ (ii) is exactly the same as the proof of the L∗

q property in the first part
(i) ⇒ (ii) of Theorem 1.

For proving (ii) ⇒ (i), we again consider the equivalent expression of the loss (27) where
we replace Λn by Λ̃n. We can bound the first term

∑
i∈λn

piE‖f̂i − fi‖p
i by Cc(n)αp in the

same way as in the proof of Theorem 1.
For the second term, we remark that since f ∈ V ∗

q and δ ≥ q, there exists a constant C
such that we have ∑

‖fi‖i≥Cc(n)

pi ≤ c(n)−δ.

Therefore, if i /∈ Λ̃n, i.e. pi > c(n)−δ, we necessarily have ‖fi‖i ≤ Cc(n). In turn, we obtain

∑
i/∈Λ̃n

pi‖fi‖p
i ≤

∑
‖fi‖i≤Cc(n)

pi‖fi‖p
i ≤ Cc(n)αp, (32)

where in the last inequality we used the fact that f ∈ V ∗
q in the form of (II) of §3 with

r = p.
For the third term, the estimation of IA, IB and IIA is left unchanged. For the estimation

of IIB, starting as in the proof of Theorem 1, we obtain

IIB ≤ Cc(n)p+γ/2 ∑
i∈Λ̃n\λn

pi

≤ Cc(n)p+γ/2 ∑
pi≤c(n)−δ pi

≤ Cc(n)p+γ/2 ∑
j≥0

∑
2−j−1c(n)−δ<pi≤2−jc(n)−δ pi

≤ Cc(n)p+γ/2 ∑
j≥0[2

−jc(n)−δ]τ+1

≤ Cc(n)p+γ/2−δ(τ+1) ≤ Cc(n)p−q = Cc(n)αp,

where we have used the assumption γ/2 − (τ + 1)δ + q ≥ 0. �
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4.4 The supremum case

We now consider the case where the loss function is expressed by ‖f‖V = supi≥0 pi‖fi‖i.
For α ∈]0, 1[, we define the space V α

∞ which consists of all functions f ∈ V such that for all
ε > 0,

(I) sup
‖fi‖i|≤λ

‖fi‖ipi ≤ Cλα.

One easily checks that (I) is equivalent to

(II) sup
i

‖fi‖ip
1+ρ
i < ∞,

with 1/ρ = 1/α − 1.
Let us now suppose that condition (30) is satisfied, i.e. there exists τ > −1 such that

#{i ; pi ≤ r} ≤ Krτ . As in §4.3, we let Λ̃n = {i ∈ N : pi ≤ c(n)−δ} for some fixed δ > 0,
and we consider the modified thresholding estimator (31).

Theorem 3 Let α ∈]0, 1[. Assume that (30) holds and consider the modified thresholding
estimator (31). We suppose that the sequence of estimators f̂n

i satisfies the assumptions

(a′) E(supi∈Λ̃n
‖f̂n

i − fi‖2
i ) ≤ Cc(n)2, n = 1, 2, . . .,

(b′) P (supi∈Λ̃n
‖f̂n

i − fi‖i ≥ κc(n)/2) ≤ Kc(n)γ , n = 1, 2, . . .,

(c) ∑
i∈Λn

pi ≤ Cc(n)−q−γ/2 and
∑
i∈λn

pi ≤ c(n)−q. (33)

with γ such that α ≤ min{1 + γ/2 − δ, γ}, and with (c(n)) a decreasing sequence tending
to 0 such that lim sup c(n)/c(n + 1) < +∞. Moreover, we assume that δ ≥ 1 − α and
#(λn) ≤ Cc(n)δ+α−1. Then for f ∈ V , the following conditions are equivalent

(i) E‖f̂n − f‖ ≤ Cc(n)α, n = 1, 2, . . . ,
(ii) f ∈ V α

∞.

Proof:

4.4.1 (i)⇒ (ii)

If E‖f̂n − f‖ ≤ Cc(n)α then supi/∈Λ̃n
pi‖fi‖i ≤ Kc(n)α by defintion fo the estimator. Next,

we remark that if ‖fi‖i ≤ κc(n)/2 then ‖fi‖i ≤ ‖fi− f̂n
i I{‖f̂n

i ‖i ≥ κc(n)}‖i. It follows that

supi∈Λ̃n ‖fi‖i≤κc(n)/2 pi‖fi‖i ≤ E(supi∈Λ̃n ‖fi‖i≤κc(n)/2 pi‖fi − f̂iI{‖f̂i‖i ≥ κc(n)}‖i)

≤ Cc(n)α.

Combining these estimates, we obtain that sup‖fi‖i≤κc(n)/2 pi‖fi‖i ≤ Cc(n)α, and thus

sup
‖fi‖i≤λ

pi‖fi‖i ≤ Cλα,

for all λ ≤ κc(1)/2. For the large values of λ, the above is true since ‖f‖V = supi pi‖fi‖i <
∞. Therefore f ∈ V α

∞.
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4.4.2 (ii)⇒ (i)

Suppose now that f ∈ V α
∞. We bound the estimation error by

E‖f̂n − f‖ ≤ C[E(sup
i∈Λ̃n

pi‖f̂n
i I{‖f̂n

i ‖ ≥ κc(n)} − fi‖i) + sup
i/∈Λ̃n

pi‖fi‖i + E(sup
i∈λn

pi‖f̂n
i − fi‖i)].

¿From the equivalent form (II) of the definition of V α
∞, we have for the second term the

estimate
sup
i/∈Λ̃n

pi‖fi‖i ≤ sup
i/∈Λ̃n

p−ρ
i ≤ Cc(n)δρ ≤ Cc(n)α,

where we have used that δρ ≥ (1 − α)ρ = α.
For the third term, we have the estimate

E(sup
i∈λn

pi‖f̂n
i − fi‖i) ≤ E(

∑
i∈λn

pi‖f̂n
i − fi‖i) ≤ Cc(n)

∑
i∈λn

pi ≤ Cc(n)1−δ#(λn) ≤ Cc(n)α,

where we have used the assumtion on the cardinality of λn and the fact that if i ∈ λn ⊂ Λ̃n

we have pi ≤ c(n)−δ.
It remains to estimate the first term. As in the proof of Theorem 1, we write

E(sup
i∈Λ̃n

pi‖f̂n
i I{‖f̂n

i ‖ ≥ κc(n)} − fi‖i ≤ IA + IB + IIA + IIB,

where these four terms are defined and estimated as follows.

IA := E(supi∈Λ̃n,‖fi‖i≥2κc(n) pi‖fi‖iI{‖f̂n
i ‖i < κc(n)})

≤ E(supi∈Λ̃n,‖fi‖i≥2κc(n) pi‖fi‖iI{‖f̂n
i − fi‖i ≥ κc(n)})

≤ ‖f‖V P{sup∞∈Λ̃n
‖f̂n

i − fI‖i ≥ κc)n)}
≤ Cc(n)γ ≤ Cc(n)α,

IB := E(supi∈Λ̃n,‖fi‖i<2κc(n) pi‖fi‖iI{‖f̂n
i ‖i < κc(n)})

≤ sup‖fi‖i<2κc(n) pi‖fi‖i

≤ Cc(n)α,

directly from the V α
∞ assumption.

IIA := E(supi∈Λ̃n,‖fi‖i≥κc(n)/2 pi‖f̂n
i − fi‖iI{‖f̂n

i ‖i ≥ κc(n)})
≤ sup‖fi‖i≥κc(n)/2 piE(supi∈Λ̃n

‖f̂n
i − fi‖i)

≤ Cc(n)−1/(1+ρ)
E(supi∈Λ̃n

‖f̂n
i − fi‖i)

≤ Cc(n)−1/(1+ρ)
E(supi∈Λ̃n

‖f̂n
i − fi‖i)

≤ Cc(n)ρ/(1+ρ) = Cc(n)α,

where we have used that f ∈ V α
∞ in the form of (II) and then (a’).
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IIB := E(supi∈Λ̃n,‖fi‖i<κc(n)/2 pi‖f̂n
i − fi‖iI{‖f̂n

i ‖i ≥ κc(n)})
≤ E(supi∈Λ̃n,‖fi‖i<κc(n)/2 pi‖f̂n

i − fi‖iI{‖f̂n
i − fi‖i ≥ κc(n)/2})

≤ (supi∈Λ̃n
pi)(E(‖f̂n

i − fi‖2
i )

1/2(P (I{‖f̂n
i ‖i ≥ κc(n)})1/2

≤ Cc(n)−δc(n)c(n)γ/2,

where we used in the last inequality the definition of Λ̃n, and (a’) and (b’).

5 Examples

We shall now show how Theorems 1-3 can be applied to specific thresholding estimators
based on wavelet decompositions. We shall restrict our examples to the settings put forward
in §2.

5.1 Local Thresholding

We consider the setting of §2.2.1. The thresholding estimator f̂n is given by (19) with the

thresholding parameter c(n) = ( log(n)
n

)1/2 which was introduced in [7]. Thus λn = ∅ and

Λn = Λ̃n = {λ : |λ| ≤ j0(n)} with j0(n) defined by the relation 2j0(n) ≈ n
log n

. The space

V can be taken as any of the Besov spaces Bσ
p (Lp) (with p = ∞ in Theorem 3), σ ≥ 0.

The Besov norm ‖ · ‖Bσ
p (Lp) is a p-sequential measurement of the loss with the weights

pλ = 2(σp+p/2−1)|λ|, λ ∈ ∆.
We shall discuss the conditions of Theorems 1-3 for the white noise model (5). In this

case, the f̂n
i −fi form an orthonormal sequence of iid N(0, 1/n) variables. Consider first the

conditions of Theorem 1. The properties (a) and (b) are very classical. Let us only remark
that in fact for any arbitrary γ > 0, there exists κ(γ) such that (b) is fulfilled, since using
the concentration properties of the Gaussian measure, we have P (|X| > λ) ≤ 2 exp(−λ2/2).

Concerning condition (c) of Theorem 1, one has that
∑

λ∈Λn
pλ =

∑j0(n)
j=0 2j2j(σp+p/2−1) ≈

(c(n))−(2σ+1)p. Hence, the first requirement in (c) is satisfied provided that q + γ/2 ≥
(2σ + 1)p. By our remarks that γ can be chosen arbitrarily large we see that the first
condition of (c) is always satisfied. The second condition in (c) is satisfied automatically
since λn = ∅. Hence, all conditions are satisfied with no restrictions on the parameters.

We can also apply Theorem 2 with the same thresholding estimator (19). We need to
check condition (30). From the definition of the pλ, we see that this condition is satisfied
provided σp+ p− 1 > 0 and τ ≥ (σp+ p− 1)−1 (note that we need only need to check (30)
for r ≥ 1 since for r < 1 the set in (30) is empty). We shall take τ := (σp + p− 1)−1. If we
take δ := 2(σp + p/2 − 1) then the set Λ̃n = Λn and the estimator of Theorem 2 coincides
with (19). We also have the requirement in Theorem 2 that δ ≥ q = (1 − α)p. This will
be satisfied with the above choice of δ provided σ − 1/p > −α/2. The final condition
γ/2 − (τ + 2)δ + q ≥ 0 will be satisfied if γ is sufficiently large. Since, as observed earlier,
we can choose γ as large as we wish, Theorem 2 is applicable whenever σ − 1/p > −α/2
provided γ is sufficiently large.
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Regarding the application of Theorem 3 in this setting, all conditions of that theorem
are satisfied if γ is sufficiently large.

With these calculations behind us, we see that Theorem 1-3 give the following theorem.

Theorem 4 Let 0 < p < ∞, σ ≥ 0, α ∈]0, 1[ and q = (1−α)p. Let κ = κ(γ) be associated
to any sufficiently large γ (e.g. γ > (τ +2δ)+q will suffice). For the thresholding estimator
(19) we have that the maximal space G consisting of those functions f ∈ V = Bσ

p,p([0, 1])
such that

E‖f̂n − f‖p
V ≤ C(

log n

n
)αp/2,

coincides with:

1. The weak space V ∗
q , i.e. WBs

q(Lq), with s = σp/q+(p/q−1)/2, in the case σ−1/p >
−α/2 (by application of Theorem 2),

2. The intersection V ∗
q ∩ Bα/2+σ

∞ (Lp) in the case σ − 1/p ≤ −α/2 (by application of
Theorem 1).

3. In the case where p = ∞, with κ = κ(γ) associated to any sufficiently large γ, the
maximal space G consisting of those functions f ∈ V = Bσ

∞,∞([0, 1]) such that

E‖f̂n − f‖V ≤ C(
log n

n
)α/2,

coincides with the space V α
∞ = Bs

∞,∞ with α = 2(s − σ)/(1 + 2s) (by application of
Theorem 3).

Remarks
(R1) Note that the rate of convergence obtained here is minimax since it is known to be
minimax for Bs

q,q which is a subspace of WBs
q,q.

(R2) We discussed the case of a white noise model. Of course, the same result holds for
the regression case at least with Gaussian errors. In the density estimation, the result is
still true if the maximal space includes L∞ since in this case it seems necessary to assume
f bounded in order to obtain the concentration property (b) (see [7]).
-This result can easily be extended to the estimation of multivariate functions, using
isotropic tensor product type wavelets which characterize Besov spaces in several dimen-
sions.

5.2 Global thresholding

This technique was described in §2.2.2, with the Besov norm ‖ · ‖Bσ
2 (L2) as a p-sequential

measurement of the loss (with p = 2), and weights pj := 2(2σ+1)j . The threshold estimator
fn is given by (21) with the thresholding parameter c(n) = n−1/2 and with j0(n) and j1(n)
chosen so that 2j0(n) ∼ n and 2j1(n) ∼ nε .
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We wish to apply Theorem 2, and therefore, we check that the conditions of this theorem
are satisfied. Note that δ = 2. ¿From the definition of the pj, we have that

#{j ; pj ≤ r} ≤ log r

2σ
.

Therefore, condition (30) is satisfied for any τ > 0 (note that we need only check this
condition for r ≥ 1 since the set in (30) is empty if r ≤ 1). Condition (a) is immediate to
prove. We also easily obtain that for any arbitrary γ, there exists κ(γ) such that (b) is true,
since P{2−jn

∑
|λ|=j |β̂λ − βλ|2 ≥ C} = P{∑

i Y
2
i ≥ 2jC} where the Yi are C2j independent

N(0, 1) random variables. Hence P{∑
i Y

2
i ≥ 2jC} ≤ exp {−2jh(C)} ≤ exp{−nεh(C)}

where h is the Cramer transform of Y 2
i and ε the parameter such that 2j1(n) ∼ nε. Since we

are working on a finite interval, e.g. [0, 1], we can also write
∑

j∈λn
pi = 1+

∑j1(n)
j=0 2j(2σ+1) ≤

Cc(n)−2(2σ+1)ε. So the condition on λn in Theorem 2 is satisfied if 2(2σ + 1)ε ≥ q. The
condition δ ≥ q is automatically satisfied since δ = 2 and q = (1 − α)2.

Application of Theorem 2 then gives the following

Theorem 5 Let α ∈]0, 1[, q = 2(1−α) ≤ 2(2σ+1)ε and assume that κ = κ(γ) is associated
to any sufficiently large γ (e.g. γ > 4α will do). Then the maximal space G consisting of
those functions f ∈ V = Bσ

2 (L2[0, 1]) such that

E‖f̂n − f‖2
V ≤ Cn−α,

coincides with V ∗
q .

Remarks
(R1) The space V ∗

q is turns out to be a weak space for Bs
2(Lq), s = σ + t where t > 0 is

such that α = 4t/(1 + 2t). Again the rate of convergence is minimax since it is for Bs
2(Lq).

(R2) If we want to compare global thresholding with local thresholding, we find that the
rate of convergence is better (since c(n) does not contain any additional logarithmic term)
but the space Bs

2(Lq) is smaller than Bs
q(Lq) (and the the same is true for their associated

the weak spaces).

5.3 Block thresholding using kernel

In this case, described in §2.2.3, we give without details the application of Theorem 1.
Here we only consider the L2-loss. It is not surprizing that we obtain intermediate results
between local and global thresholdings in terms of the magnitude of the maximal space, for
projection kernels associated to a multiresolution analysis. Let us mention however that
the maximal spaces obtained with other kernels are much more difficult to identify.

We define B̄
α/2
2,∞ the space of functions f such that ‖Djf‖2

2 ≤ C(j2j)−α. We then have
the following.
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Theorem 6 The maximal space G consisting of those functions f ∈ V = L2([0, 1]) such
that

E‖f̂n − f‖2
V ≤ Cn−α,

coincides with the intersection of L∗
q(µ) and B̄

α/2
2,∞.

6 Lp-loss in the local thresholding framework

The key-point of t§4 was the sequential form of the norm and all the calculations highly rely
on this fact. A natural question arises: what happens if one uses the Lp-loss which is not
p-sequential when p �= 2 ? We shall answer this question in the case of local thresholding
and show that, when 1 < p < ∞, the saturation results are the same for Lp as for B0

p(Lp).

6.1 Statement of the result

For simplicity, we consider the setting of wavelet decompositions on the interval [0, 1] and

we shall take the thresholding parameter c(n) = ( log(n)
n

)1/2 which was introduced in [7]. We
define

Λn = {λ ∈ ∆ ; 2−|λ| ≤ c(n)2},
and the corresponding thresholding estimator

f̂n =
∑

λ∈Λn

β̂λI{|β̂λ| ≥ κc(n)}ψλ.

For p fixed in ]1,∞[, we set µ(λ) = 2(p/2−1)|λ| and define L∗
q(µ) the corresponding weak

space.
Let us make some observations which show that the estimators f̂n satisfy the conditions

of §4.1 for the space B0
p(Lp). Note that λn = ∅. Let N := N(n) be defined by 2N = n

log n
=

c(n)−2. This means that Λn = {λ : |λ| ≤ N} and therefore

µ(Λn) =
∑

|λ|≤N

2(p/2−1)|λ| =
N∑

j=0

2jp/2 ≤ C2Np/2 = Cc(n)−p. (34)

Also, for the p-sequential space B0
p(Lp), we have pλ = µ(λ) and therefore

∑
λ∈Λn

pλ = µ(Λn) ≤ Cc(n)−p (35)

This means that condition (c) of Theorem 1 applies for the space V = B0
p(Lp) provided

γ ≥ αp. We now show that we can replace B0
p(Lp) by Lp in that theorem.

Theorem 7 Let 0 < q < p and α > 0 such that q = (1 − α)p. We assume that the
estimators β̂n

λ satisfy
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(a) E|β̂n
λ − βλ|2p ≤ Cc(n)2p, λ ∈ Λn

(b) P (|β̂n
λ − βλ| ≥ κc(n)/2) ≤ Kc(n)γ, λ ∈ Λn

with γ ≥ 2αp. Then the following are equivalent

(i) E‖f̂n − f‖p
Lp

≤ Cc(n)αp

(ii) f ∈ V ∗
q (µ) ∩ Bα/2

∞ (Lp).

6.2 Proof of Theorem 7

6.2.1 (i) ⇒ (ii)

We assume E‖f̂n − f‖p
Lp

≤ Cc(n)αp, n = 1, 2, . . .. Since (ψλ)λ∈∆ is an unconditional basis
of Lp, we first obtain as an immediate consequence

‖
∑

λ/∈Λn

βλψλ‖p
Lp

≤ CE‖f̂n − f‖p
Lp

≤ Cc(n)αp, (36)

and
E‖

∑
λ∈Λn

(βλ − β̂λI{|β̂λ| ≥ κc(n)})ψλ‖p
Lp

≤ CE‖f̂n − f‖p
Lp

≤ Cc(n)αp. (37)

The estimate (36) is equivalent to

‖
∑
|λ|≥j

βλψλ‖p
Lp

≤ C2jαp/2,

for all j ≥ 0, i.e. f ∈ Bα/2
∞ (Lp).

Next, observe that |βλ| ≤ κc(n)/2 implies |βλ| ≤ |βλ − β̂λI{|β̂λ| ≥ κc(n)}|. Since
(ψλ)λ∈∆ is an unconditional basis of Lp, we have

‖f − ∑
|βλ|≥κc(n)/2 βλψλ‖p

Lp
= ‖∑

|βλ|≤κc(n)/2 βλψλ‖p
Lp

≤ C[‖∑
λ/∈Λn

βλψλ‖p
Lp

+ ‖∑
λ∈Λn,|βλ| leqκc(n)/2 βλψλ‖p

Lp
]

≤ C[c(n)αp + ‖∑
λ∈Λn,|βλ|≤κc(n)/2 βλψλ‖p

Lp
]

≤ C[c(n)αp + E‖∑
λ∈Λn

(βλ − β̂λI{|β̂λ| ≥ κc(n)})ψλ‖p
Lp

],

Combining with (37), we obtain the estimate

‖f −
∑

|βλ|≥κc(n)/2

βλψλ‖p
Lp

≤ Cc(n)αp, n = 1, 2, . . . .

By Lemma 3, we conclude that f ∈ V ∗
q (µ).
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6.2.2 (ii) ⇒ (i)

We first remark that for each n = 1, 2, . . .,

E‖f̂n − f‖p
Lp

≤ C[E‖
∑

λ∈Λn

(βλ − β̂λI{|β̂λ| ≥ κc(n)})ψλ‖p
Lp

+ ‖
∑

λ/∈Λn

βλψλ‖p
Lp

]

The second term is bounded by Cc(n)αp since f ∈ Bα/2
∞ (Lp). For the first term, in the case

1 < p ≤ 2, we use our remarks from the begining of this section that Theorem 1 holds for
B0

p(Lp). Since ‖ · ‖Lp ≤ C‖ · ‖B0
p(Lp), we immediately obtain

E‖∑
λ∈Λn

(βλ − β̂λI{|β̂λ| ≥ κc(n)})ψλ‖p
Lp

≤ CE‖∑
λ∈Λn

(βλ − β̂λI{|β̂λ| ≥ κc(n)})ψλ‖p
B0

p,p
≤ Cc(n)αp,

where we have used Theorem 1.
When p > 2, we first use the square function characterization of Lemma 4 to obtain

E‖∑
λ∈Λn

(βλ − β̂λI{|β̂λ| ≥ κc(n)})ψλ‖p
Lp

≤ E
∫

(
∑

λ∈Λn
|(βλ − β̂λI{|β̂λ| ≥ κc(n)})ψλ|2)p/2

≤ ∫ [ ∑
λ∈Λn, |βλψλ|2(Pn(|β̂λ| ≤ κc(n)))2/p

]p/2

+
∫ [ ∑

λ∈Λn, |ψλ|2(E(I{|β̂λ| > κc(n)}|(β̂λ − βλ)|p))2/p
]p/2

=: I + II.

where we have used the generalized Minkowski inequality in the second inequality.
Up to a multiplicative constant, we can bound I +II by IA+IB +IIA+IIB where these

terms (similar to those in the proof of Theorem 1) are defined and estimated as follows:

IA :=
∫ [ ∑

λ∈Λn, |βλ|>2κc(n) |βλψλ|2(P (|β̂λ| ≤ κc(n)))2/p
]p/2

≤ ∫ [ ∑
λ∈Λn, |βλ|>2κc(n) |βλψλ|2(P (|βλ − β̂λ| ≥ κc(n)))2/p

]p/2

≤ Cc(n)γ‖∑
λ∈Λn

βλψλ‖p
Lp

≤ Cc(n)γ‖f‖p
Lp

≤ Cc(n)αp‖f‖p
Lp

,

where we have used the concentration property (b) and the fact that γ ≥ 2αp ≥ αp.

IB :=
∫ [ ∑

λ∈Λn, |βλ|≤2κc(n) |βλψλ|2(P (|β̂λ| ≤ κc(n)))2/p
]p/2

≤ ∫ [ ∑
|βλ|≤2κc(n) |βλψλ|2

]p/2

≤ C‖∑
|βλ|≤2κc(n) βλψλ‖p

Lp

≤ Cc(n)αp,

where the last inequality stems from Lemma 3.

IIA :=
∫ [ ∑

λ∈Λn,|βλ|>κc(n)/2 |ψλ|2(E(I{|β̂λ| > κc(n)}|(β̂λ − βλ)|p))2/p
]p/2

≤ Cc(n)p
∫ [ ∑

λ∈Λn,|βλ|>κc(n)/2 |ψλ|2
]p/2

≤ Cc(n)p‖∑
λ∈Λn,|βλ|>κc(n)/2 ψλ‖p

Lp

≤ Cc(n)pµ({λ ∈ Λn, |βλ| > κc(n)/2})
≤ Cc(n)p−q = Cc(n)αp.
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where we have used assumption (a), Lemma 1, and in the last inequality the assumption
that f ∈ V ∗

q (µ).

IIB :=
∫ [ ∑

λ∈Λn,|βλ|≤κc(n)/2 |ψλ|2(E(I{|β̂λ| > κc(n)}|(β̂λ − βλ)|p))2/p
]p/2

≤ ∫ [ ∑
λ∈Λn,|βλ|≤κc(n)/2 |ψλ|2(P (|βλ − β̂λ| > κc(n)/2))1/p(E|(β̂λ − βλ)|2p)1/p

]p/2

≤ Cc(n)p+γ/2
∫ [ ∑

λ∈Λn,|βλ|≤κc(n)/2 |ψλ|2
]p/2

≤ Cc(n)p+γ/2‖∑
λ∈Λn

ψλ‖p
Lp

≤ Cc(n)p+γ/2µ(Λn) ≤ Cc(n)γ/2 ≤ Cc(n)αp,

where we have used Schwarz inequality, Lemma 1, assumptions (a) and (b), the property
µ(Λn) ≤ Cc(n)−p, and the fact that γ ≥ αp.

This concludes the proof of the theorem.

Remark
In Theorem 7, Bα/2

∞ (Lp) plays the same role as BS in Theorem 1. When p ≥ q + 2, it is
easy to check that for f ∈ Lp, the property f ∈ V ∗

q (µ) implies f ∈ Bα/2
∞ (Lp), so that the

“basic smoothness” assumption is redundant in (ii).

7 Concluding remarks

Throughout this paper, we have proved in various settings results of the type

f ∈ Vα iff E(‖f̂n − f‖p
V ) ≤ Cc(n)αp, (38)

where Vα is a subspace of V with an intrinsic definition in terms of the atomic decomposition
involved in the thresholding procedure.

Although it does not appears explicitly in our computations, there is a more precise
dependence between the constant C in the above estimation rate and the norm (or quasi-
norm) ‖f‖Vα: we could actually prove the equivalence

‖f‖p
Vα

∼ ‖f‖p
V + sup

n≥0
c(n)−αp

E(‖f̂n − f‖p
V ). (39)

It is also interesting to note that, by a discrete Hardy inequality, we can obtain an
equivalent statement to (38) of the form

f ∈ Vα iff E(‖f̂ 2n − f̂n‖p
V ) ≤ Cc(n)−αp. (40)

(provided that the estimator f̂n is known to converge to f). In this alternate statement,
the rate of decay of E(‖f̂ 2n − f̂n‖p

V ) - which can be empirically estimated in contrast to
E(‖f̂n − f‖p

V ) - provides a way to estimate the smoothness of the unknown function f .
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probabilité par méthode d’ondelettes. Comptes Rendus Acad. Sciences Paris (A) 315
211-216.

[13] Kerkyacharian, G. and Picard, D. (1992) Density estimation in Besov Spaces. Statistics
and Probability Letters 13 15-24

[14] Kerkyacharian, G. and Picard, D. (1992) Density Estimation by Kernel and Wavelets
methods - optimality of Besov spaces. Submitted. Technical Report, Université de Paris
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