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Abstract

We give a new method for construction of unconditional bases for general classes of
Triebel-Lizorkin and Besov spaces. These include the L,, H,, potential, and Sobolev
spaces. The main feature of our method is that the character of the basis functions
can be prescribed in a very general way. In particular, if ® is any sufficiently smooth
and rapidly decaying function, then our method constructs a basis whose elements are
linear combinations of a fixed (small) number of shifts and dilates of the single function
®. Typical examples of such ®’s are the rational function ®(-) = (1 + |- [?*)~" and
the Gaussian function ®(-) = e ”. This paper also shows how the new bases can be
utilized in nonlinear approximation.

1 Introduction

The construction of unconditional bases for a given function space is important in many
applications. Such bases frequently lead to a simple characterization of this space in terms
of norms applied to the sequence of coefficients with respect to that basis. The sequence
norm characterization then permits the solution of extremal problems. Unconditional bases
in this context have been used in many fields such as statistics [Do], image processing [DJKP],
nonlinear approximation [De], and functional analysis (for example the characterization of
K-functionals). From many perspectives, it is of great benefit if one can prescribe the nature
of these bases. For example, wavelet bases are popular because of their time-frequency
localization. We are interested therefore in constructing bases in which the character of the
basis functions is prescribed in advance. In this paper we put forward a method which allows
this flexibility. Our main application in this paper is to the construction of bases generated
from a small number of shifts and dilates of a single function .

Our method was first introduced in [Pet] in the restricted setting of univariate functions
in L, and C. In the present paper, we will extend this construction to multivariate functions.
We will also establish our results under minimal and natural assumptions. Moreover, we will
establish that these bases are unconditional for a wide range of function spaces, namely any
spaces from the classes of Triebel-Lizorkin or Besov spaces.

We will use the remainder of this introduction to give our construction of bases and for
a more detailed outline of the contents of this paper.

Throughout this paper, we use standard multi-index notation. In particular, for every
z = (z1,...,2z4) € R and @ = (a1,...,q) € Z% (Zy = {n : n > 0}, d > 1), we
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let |z] == Jai+- 423, 2* = af"

()% = olel ()

T 0% gy 0% gy "

We denote by dS := S(R?) the Schwartz space of infinitely differentiable, rapidly decreas-
ing functions on R? and by S := S (R?) its dual, the space of tempered distributions. We
also denote by &'/P the space of equivalence classes of distributions in S' modulo polyno-
mials, i.e., §'/P is the dual of the space Sy = So(R?) of all functions € S such that
[n(z)z®dz =0 for o € Z%.

We write D for the family of all dyadic cubes in R? and D,,,,m € Z, for the collection
of all cubes I € D of side-length ¢(I) = 27"™. For any dyadic cube I € D, we use z; for its
lower-left corner and |I| for its volume. Finally, for any distribution f € S, we define

o= ()

where the dilation and translation are considered in distributional sense.

1.1. Wavelets. Wavelets will be used as a tool for our construction of new bases. We
recall, without elaboration, some of the fundamental results on wavelets. A more detailed
discussion can be found in Meyer [M] or Daubechies [Da].

Multivariate wavelet bases are typically constructed as tensor products of a univariate
scaling function 1° := ¢ and the associated wavelet ). Namely, let £ (#E = 2% — 1) denote
the set of nonzero vertices of the unit cube in R?. For each vertex e = (ey,---,eq) € E we
let

cexg? ol = o+ Fag, o) = agloag!, and

P(x) ==Y (21) .. (xq)
and define ¥ := {¢° : e € E'}. Then the collection

W:={y;: 1€ D,ec E}

forms an orthonormal basis for the space Ly(R?).
Another way of constructing tensor product wavelet bases is by starting at a certain
dyadic level, for instance Dy, and using again the dilates and shifts of ¥. Namely, let

\Ijo =0 U {wo} = {77/}8 rec EO})
where Ey := E U {0} with 0 the zero vector in R?. Now
Wo:={y7: 1 € DoyU{yj: 1€ D" e€ B} with D*:=Unz0Dn

is an orthonormal basis for Ly(R?).
Standard assumptions on the set ¥ (¥y) include
Al. ¥ C C"(R?) and

() D (2)] <CA+|z)™, Ja| <7, e€ B (e€ Ey).

A2,

/ z*YP(x)de =0, |a|<r, e€kE.
Rd



For instance, starting with Meyer’s univariate scaling function and wavelet one obtains
a basis of functions from S, which satisfy A1-2 for any selection of the parameters r and
M. Another example of a wavelet set satisfying A1-2 is provided by starting with any
univariate compactly supported wavelet and scaling function which are smooth enough. In
what follows, we will always use the tensor products of Meyer’s wavelets unless otherwise
mentioned.

By varying the smoothness and decay parameters  and M, one can prove that W forms
an unconditional basis for a host of distribution spaces such as L, := L,(R?)(1 < p < c0),
H, := H,(R")(0 < p < 1), or the more general homogeneous Triebel-Lizorkin and Besov
spaces Fpsq and qu (see the Appendix).

In particular, if r and M are sufficiently large (depending on the parameters s € R/ 0 <
p < oo, and 0 < ¢ < o0), then for every f € F;q there exist unique coefficients ¢ (f),
(I,e) € D x E, such that

F=3" e f)ws with er(f) = (f, ), (L.1)

IeD ecE

where the convergence is considered in the sense of &'/P (and in the sense of ng when
q # 00). Moreover, the following wavelet characterization holds

£ 11y, 2 1 (1 ere(HAIND Mz, (1.2)
I,e
with the usual modification when ¢ = oo, where A; := |I|71/2y; is the characteristic function

of I normalized in L,. Here we have adopted the notation A &~ B which means that there
exist constants C,Cy > 0 such that C1A < B < (C3A. The equivalence constants C and Cy
in (1.2) depend on d, p, ¢, and s. On other occasions, the reader will have to consult the text
to understand the parameters on which the equivalence constants depend on. Throughout
the paper, the constants are denoted by C, (1, ... and they may vary at every occurrence.
Similarly, (for suitable r and M) for every f € B;q, s € R0 < p,q < o0, the representa-

tion (1.1) holds with convergence considered in the sense of §’'/P (and in the sense of ng
when p, g # c0). Also

1115, = 0SS (/42 (£)])7) ) (1.3)

ecE meZ I€Dy,

with the usual modifications when ¢ = oo or p = cc.

The characterization of Besov spaces (1.3) has been proved by several authors in various
subcases (see [M], [K1], and the references therein) under different assumptions. For the
Triebel-Lizorkin spaces, we refer the reader to [FJW] and [K3]. For more details, see the
Appendix. We would like also to point out that technically speaking, our systems will be
bases for the Triebel-Lizorkin and Besov spaces provided that p,q # oo, since in that case
the convergence of the the corresponding basic series will take place in the quasi-norm of the
space into question. However, with a slight abuse of the terminology we use the word bases
even if p or ¢ = 0o, where the convergence is considered only in distributional sense.

1.2. The construction of new bases for homogeneous spaces. Wavelets are functions
of a rather particular nature. It is the goal of this paper to give a new scheme for construction



of basis consisting of functions of more general nature. The idea of our construction stems
from the well known principle of a small perturbation argument. That is, to approximate the
elements of a given good basis by the elements of the new basis. The fundamental question
is: What kind of approximation should be used for this construction? In what follows, we
present our approach to this question.

Let ¢ > 0 and let © := {#° : ¢ € E} be a subset of C"(R?) satisfying the following
conditions:

() (2) = (09) V(@) e+ J2)) M, ol <7, e€ B, (1.4)
/ z*0°(x)dr =0, |a|<r, e€kFE, (1.5)

where U := {¢¢ : e € E'} is a wavelet set satisfying A1-2 . We will show that the collection
of functions

B:={0#j:1€D,ec E} (1.6)

is an unconditional bases for various function spaces. We call B the new system (basis).
By scaling, using A1-2 | (1.4), and (1.5), we obtain, for I € D, e € E,
B1.

9 @) — (0 )] < el V(14 T g <

I8y
B2.
x—x|\M
69 @) ) o) < oL Es) o<
B3.

/ z*0{(z) dx :/ z*Yf(x)de =0, |of <7
Rd

Rd
These are the “small perturbation” properties of the new system that will enable us to prove
that, for the full range of the indexes s,p, and g, for sufficiently small ¢ the new system B
is an unconditional basis for £, and B, (see Theorems 3.1-3.2 below). That is, for every

f e Fpsq or B;q there exist unique coefficients d;.,I € D,e € E, such that f = ZI,E dr.0f

and
£ 11, = N dieA )
I,e
or .
71y, ~ (3 3203 o/t ryo) ™,
e€EE m€EZ I€Dy,
respectively.

We recall that, for 1 < p < oo, F192 ~ L, while, for 0 < p <1, FIE’Q ~ H, the real Hardy
spaces, where &~ means equivalent (with equivalent norms). Also, for s > 0, 1 < p < o0,
Fpsz ~ H, the potential space, and for integer values of s, FPSZ is equivalent to the usual
Sobolev space W equipped with its seminorm (see [T]). As a consequence, our construction
gives unconditional bases for the above mentioned spaces.
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1.3. The construction of new bases for inhomogeneous spaces. We now use a
wavelet set Wy = {1)¢ : e € Ey} satisfying A1-2. Let ¢ > 0 and let ©g := {6°: e € Ey} be a
subset of C"(R?) satisfying (1.4) and (1.5), and in addition to this

()@ (2) = (0°) V(@) S e+ |27, ol <.
We define the new system by
By:={6):1e€ D} u{t:1e D"t ecE}

In this paper, we treat in detail only the homogeneous spaces. Similarly as in the ho-
mogeneous case it can be proved that for a suitable choice of the parameters r and M,
and the wavelet set ¥, the new basis By is an unconditional basis for the inhomogeneous
Triebel-Lizorkin and Besov spaces F, and B, . These are essentially the same results. The
difference is that instead of using all dyadic levels D we use the levels D*. We leave the
details of the inhomogeneous case to the reader.

As we have already mentioned our basic application is to the construction of bases from
shifts and dilates of a single function ®. Armed with Theorems 3.1-3.2 it remains only to
understand for which functions ® we have properties (1.4-1.5) for some finite linear combi-
nations ¢, e € E(Ey) of shifts and dilates of ®. We prove two results which give sufficient
conditions on ® so that this is true. In Theorem 4.2 we show that any sufficiently smooth
and rapidly decaying function ® can do the job. The rational function ®(-) = (1 + |- [*)™ ¥
and the exponential function ®(-) = e~I'" are interesting examples of functions that satisfy
these conditions. Consequently, we obtain rational and exponential bases. In Theorem 4.4
we give a second (very simple) construction of new bases in the specific case when the linear
span of the shifts ®(- — j) contains the polynomials of a fixed degree. This type of functions
plays an important role in the study of the approximation properties of shift-invariant spaces
generated by piece-wise polynomial functions or radial basis functions (see [BR]). Moreover,
the original construction of wavelets is based upon a function ® whose shifts reproduce poly-
nomials. However, additional assumptions on ¢ are required such as the stability of the
shifts of ® and a refinement equation ®(-) =3, ;.a;®(2 - —j), conditions that we will not
need to assume.

1.4. Nonlinear approximation. Unconditional bases for L,, H,, Besov and other spaces
are of significant importance for nonlinear approximation. They provide a simple and pow-
erful tool for approximation. We utilize our result to the theory of n-term nonlinear ap-
proximation from shifts and dilates of a single function ® and, in particular, to multivariate
rational approximation (see Theorem 5.2 and Corollary 5.1).

1.5. Outline of the paper. The outline of the paper is as follows: In §2, we give the
necessary auxiliary results which we use to prove our basic results in §3. In §4, we apply our
main results to the construction of bases from shifts and dilates of a single function. In §5,
we utilize the new bases to n-term nonlinear approximation. §6 is an appendix, where we
give the characterization of the homogeneous Triebel-Lizorkin and Besov spaces spaces Flfq

and qu by wavelets.



2 Some auxiliary results

To prove that the new system B is a basis for the spaces F;q and B;q, we will use that Meyer’s

wavelets (or other suitable wavelets) constitute a basis for these spaces (see Appendix).
Namely, we will use that the norms in Fj and B, can be characterized by the discrete f;,

and b;q norms of the wavelet coefficients of the functions, see (1.2) and (1.3).
We now recall the definition of the sequence spaces ;q and b;q (see [FJW]):

(a) For s e R, 0 < p < 00, and 0 < ¢ < o0, ;q is defined as the family of all sequences
h = (hle)(I,e)erE such that

g = 1T b A )) Y, < oo

I,e

1

(b) For s € R, and 0 < p,q < oo, b;q is defined as the space of all sequences h :=
(hre)(1,e)epx e such that

||h||i;§q = (Z Z( Z (|]|—S/d+1/P—1/2|hle|)p)q/p)1/q < oo,

eclE meZ I1€Dy,

Since the wavelet family W = {¢§ : I € D,e € E} forms an orthonormal basis for
Ly(R?%), we have, for every (I,e) € D x E,

0 = alle, Je V5, alle, J¢) = (05.45). (2.1)

!
J,e

We will next show that the transformation matrix

A=A, = (a(le, Je’))([,e),(J,e')erE (2.2)

which maps the wavelet basis W onto the new basis B is very close to the identity matrix
and this will give us everything we need.

Theorem 2.1. (a) Let s € R, 0 < p < o0, 0 < ¢ < 00, J := d/min{l,p,q}, r >
max{J —d—s,s}, and M > max{J,d+r}. Then for sufficiently smalle >0 (0 < & < g9)
the matriz A, s invertible and the operators associated with A, and A;l are bounded on
f;q. The same holds for AT (the transpose of A.) and (AT)™' = (AT, respectively.

(b) Let s € R, 0 < p,q < 00, J = d/min{l,p}, r > max{J —d — s,s}, and M >
max{J,d +r}. Then for sufficiently small € > 0 the matriz A, is invertible, and A, and

A" are bounded on b,. The same is true for AT and (AL)™".

To avoid some long and tedious calculations, we will use for the proof of Theorem 2.1
the machinery of the almost diagonal matrices, developed in [FJ2] and [FJW].

Definition 2.1. The infinite matrix

A = (a(le, Je ))(I,e),(J,e’)erE



is said to be almost diagonal on .zfq or bzq if there exist 6 > 0 and C > 0 such that

la(Ie, Je)| < Cws(1,]), (I,e),(J,¢) € Dx E,

with
Dy s~y )7
ws(I,J) = (ﬁ) <1+max{€(1),g(€])})
(d+6)/2 (0-d)/2+7
< () G

where J = d/min{1,p, ¢} for ';q and J := d/ min{1, p} for l');f)q.
We will denote by ad,, the family of all almost diagonal matrices on ;q or b;q.

Proposition 2.1. Let se R, 0 < p,q < o0, and A € ad;q. Then A 1s bounded on b;q and,

if p < oo, on fi.

Given an almost diagonal matrix

A = (a(le, Je ))(I,e),(J,e')EDXE?

we define
|A|ls := sup |a(le, Je)|/ws(1,]).

Ie,Je'

Proposition 2.2. For any § > 0 there exists ¢ > 0 such that if A € ad;, (on ';q or b;q)
and ||I — Alls < e then A is invertible and A~ € ad,,.

For the proofs of Propositions 2.1-2.2 see [FJ2] and [FJW]. The only difference is that
we have a second index e € E (#E = 2% — 1) that may affect only the constants.
The following lemma is crucial for the proof of Theorem 2.1.

Lemma 2.1. Ifr > 1 and M > d +r, then we have, for (I,e) # (J,€),

: . (UI) C(T) a2 lz; — 2] M
la(Ie, Je )| §Cem1n{m,m} <1+max{€(1),€(J)}) (2.3)

and
|1 —a(le, Ie)| < Ck,

where a(le, Je') are the entries of the transformation matriz from (2.2) and C' > 0 is inde-
pendent of .

Proof. We consider three different cases:

CASE I: (I,e) # (J,€),|J| < |I|. We can assume that |I| = 1 and x; = 0. The general
case follows by change of variables. We let ¢,¢” € F, be fixed and we define ¢§ := 65 — ¢,
From the orthogonality and the moment condition (A2) of ¥ we have



atte ) = | [ aii5Td
g

= 1] st - X L ) w7 ) d (2.4
i 181<r '

IN

— Xy p ’
i) = 30 L ) O )l )]

d
R 1Bl<r

We will integrate over A := {y : |y — x;| > 1} and A° separately. For the integral over A,
we use B1-2 to obtain

€T ﬁ ’
[ i) - X E g anles wl
\ﬁ|<r '

_d v, ly—z ! ly — x5\ m
< c=100) / (= + 2y o My
= B1+B27

where | |
._ —d/2 -M Yy—xy
B, = Cet(J) / (Lt o)™ 0+ )™ ay
and

By = Cotr) [ = s o)™ (4 Lty gy,
A ()
For By, we first consider the case where |y| < |z;|/2. In this case, |y — x| > |z,|/2 and

ly—z ]| 1+|y—a | 1+|z |
hence yg()" > 2;’( )J > (; It follows that

c —d/2 -M |?J $J|
C=(J) / ()M Py My
< CEU(IY (1 4 [y )V / L+ )~ dy (2.5)

< Cel(NHM=2 (1 + |z, )™M

If ly| > |z,4]/2, then (1+ |y|)™™ < C(1 + |z,]) M and hence we have

_ _ X
ceun) [ 1+l ¥+ Ly,
Anly|>les1/2} ()

< Cel(J) (1 + |xJ|)M/ (1+ 'y[ Cly-an g, (2.6)
An{ly[>]es1/2} (/)

)W

< C’EE(J)’d/Q(l + |xJ|)M/

ly—zs|>1

< Cel(N)MY2(1 4 |ay))™



For Bs, using that |y — x| > 1, we have

BQ < C€(1+|1‘J|)M€(J)T1d/2/(1+ |y xJ|) M4r—1 dy
A J)

< Ce+ fa )Moy [ (%)W*H dy (2.7

< Ce(lfay]) Me(a)M 42,
Since ((J) <1 and M —d/2 > r +d/2, from (2.5) - (2.7), we find
B
Ty e e r -
/ 510 = 3 U @ @l )] d < CHOy L o)
\ﬁ|<r '
Next, we estimate the integral over A° = {y : |y — x| < 1}. Using B1-2, we get

_ )P ,
i) - % %( DO @IS )] d

1B <r

- / / _ IJ D (s + tly — 2)t" ™ dt][v5 (y)] dy

|Bl=r

—
< Cel(J) "% [y — x| sup(l + |2]) M (1 + |y£(J)J|) M dy (2.8)
Ac z

< Cety = [ sp+ )M+ gy,
e = ((J)
where the supremum is taken over all z lying on the line segment joining x; and y. It follows
that |z;] < |z — x| + |2] < 1+ |z| which implies

sup(1 + [z))™ < C(1 + |ay )™

Using this estimate in (2.8), we finally obtain
e (y - )ﬁ e e
[ ot = X ) @ s ) dy
’ B1<r '

.
< Cty o) [ By gy,

< Cel(J) 21 + |ay )™

CASE II: (I,e) # (J,¢),|I| < |J|. Again we may assume that |J| = 1 and 2; = 0. We
fix e,¢ € F, and define g7 := 07 — 7. From the orthogonality and the moment condition
B3, we have

la(Ie, Je')| = | g?(y)¢3'(y)dy|
( —«’L"I)
= || g5y = (09) ) ()] dy|
i 255
(y— 1)’
< |gI ||¢J (1/{1) (x1)|dy.
L. P



The result now follows as in the previous case by interchanging the roles of ¢¢ and °.
CASE III: (I,e) = (J,¢'). Using the orthonormality of ¥, we get

olte1e) =1+ [ (65() - ()70 dy

Rd
which gives

| Rdwi(y) —1(y)vi(y) dyl

and the proof follows identically as in the first case. O

la(le,Ie) — 1| =

Proof of Theorem 2.1. We will prove only part (a) of the theorem. The proof of part (b) is
the same and will be omitted.

Let se R, 0<p<o0,0<q<o0,J :=d/min{l,pq}, r>max{J —d—s,s}, and
M > max{J,d+ r}. By Lemma 2.1 , it is immediate that there exists § > 0 such that

la(Ie, Je)| < Cews(I,J), (I,e),(J,€) e D xE,
and
|1 —a(le,Ie)| < Ce, (I,e) €D x E.

Therefore, A, € ad,, and |[I — A.[[s < Ce. Applying Proposition 2.2, we obtain that for
sufficiently small & > 0 the matrix A, is invertible and A_! € ad;q. Now, Proposition 2.1

implies that A, and A_! are both bounded on flfq.
Estimate (2.3) from Lemma 2.1 is symmetric about I and .J. Therefore, the above holds
for AT and (AT)~! instead of A, and A', respectively. O

3 New bases for homogeneous Triebel-Lizorkin and Besov
spaces

Our goal in this section is to prove the following theorems:

Theorem 3.1. Let s € R, 0 < p < 00, 0 < ¢ < o0, and J = d/min{l,p,q}. If r >
max{J —d — s,s} and M > max{J,d + r}, then for sufficiently small € the new system B
s an unconditional basis for the space Fpsq. That s, for every f € Fpsq there exists a unique
sequence d := (dj ) such that f =73, di07 in '[P (and in F;q if ¢ # o0) and

s, = NI 4died ) (3.1)

I,e

1]

Theorem 3.2. Let s € R, 0 < p < 00, 0 < q < 00, and J := d/min{l,p}. Ifr >
max{J —d — s,s} and M > max{J,d +r}, then for sufficiently small € the new system B
is an unconditional basis for the space By . That is, for every f € By, there exists a unique

sequence d := (dr ) such that f =3, dibf in S'/P (and in qu if p,q # o) and

1 llss, 2 D (D (/P 2y )Py 2ie) e, (3:2)

ecE meZ I€Dy,
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For the proofs of Theorems 3.1-3.2, we will need the following two lemmas.

Lemma 3.1. Let s € R, 0 < p < 00, 0 < ¢ < 00, and J := d/min{l,p,q}. Ifr >
max{J —d—s,s}, M > max{J,d+r}, and {0 : I € D,e € E} is a family of functions
satisfying B2-3 then for every d := (dre) € f'Ifq the series ) ; , dr0 converges in '[P (and
in Fs for ¢ # 00) and

1S dibilly, < (33)
I,e
Proof. Let n € So. Exactly as in the proof of Lemma 2.1, one can show that
0 mh < Cmin{e(D), (1) 1y 21+ — ol D xE. 3.4
|< 1777>| — IIIIII{ ( )7 ( ) } ( +max{€([),1}) ) ( 76) S X ( )
From this, we find
|Zdl€<0§7’r/>| < Z|dle||<9?7n>
178 I,e
< ON |dg|min{e(I),e(1)" 1y 42 B 1 Y
= ;| I |m1n{ ( )7 ( ) } ( +max{€([),1})
[1]>1 [1]1<1
Since d € f3,, then |d;.| < C|I|*/4+1/2=1/p (I e) € D x E, and hence
o < C Z |I|s/d+1/271/p7r/d71/2(1 + |x1|/€(1))*M
[I]>1
< O TN (1 Jay | f0(1) M
n>0 IeDy,
S 022#(5_7"_‘1/1’) < 0.
n>0
To estimate o5 we will use the maximal operator M; defined by
M) = (s Q1 [ 1t 35)

where the sup is taken over all cubes () (containing x) with sides parallel to the axes, and ¢
is selected so that 0 < ¢ < min{1,p,q}, M > d/t, and r > d/t — d — s. We now use Lemma
6.1 from Appendix to obtain, for every x in the unit cube Iy,

o0 = O [[a¥ el (L |ar) ™ < O D 270D Y T d| (1 + fer )

[1]<1 1>0 I1€Dy,
< Y o= AL (N d e x ) (o
n>0 IED#

11



We denote \; := |I|~*/%~*/2y,. Using that r > d/t — d — s, we have, for z € I,
oy < O 27 HEANL (N dp M) () < Csup My( Y [dielAr)(x)

p>0 1eDy, r20 jeD, e
< COZIMCY dielAr) ()]0
u>0 IeDy

We now take the L,(/y) norm and use the Fefferman-Stein maximal inequality (see Propo-
sition 6.3) to obtain

02 < CIQ_IM Y rel Al |0y < Clldl
u>0 1eDy
Therefore, the series f =3, djf] converges in §'/P.

It remains to prove (3.3). From the above, we find

= (f, %) = Zdh (05,05 = dyea(Je ,Ie), (I,e) €D x E.

’
J, e

s << OQ.
Jpq

Denoting ¢ := (¢j), we have
c=ATq,
where A := A, is the transformation matrix from (2.2).
By Theorem 2.1, A" is bounded on f# . Therefore, using (1.2), we have

|| che¢?
I,e

Finally, we note that once (3.3) has been established, it follows that for ¢ # oo the series
> 1. d1cb7 converges in the sense of Fpsq, since its tail Z|I|2N,e dr.05 converges strongly to 0,
as N — oo. O
Lemma 3.2. Let s € R, 0 < p < 00, 0 < ¢ < o0, and J := d/min{l,p}. If r >
max{J —d—s,s}, M > max{J,d+r}, and {07 : I € D,e € E} satisfies B2-3, then for
every d := (dp.) € by, the series }_; , dr07 converges in S8'/P (and in B;q for p,q # oo )and

13 del 5, < Clldll, - (3.6)

I,e

_ Tl .
cfﬁq—||Adf

s
pq

Proof. The proof of (3.6) is identical to the one of (3.3) since under our assumptions the
matrix A’ is bounded on bye- Therefore, we need only establish that the series »;  dr0f
converges in &’ /P. For this, we note that for every n € S

Do dielOpml < D 1l (05, m)

| 7 . —1yr+d/2 1] -M
Z dre| min{e(D), (D) 7Y 0+ )

= Z—l—Z =: 01 + 09,

[7]1>1 [I]<1
€ €

VAN
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5o then |dp.| < C|I|¥/*F1/2=1p (I e) € D x E, and the
proof of Lemma 3.1 gives us immediately that oy < oo.

For o5, we will consider two cases.
CASEI: 0 < p < 1. We have

o0 = 3 [y (1 fa )

where we used (3.4). Since d € b

l1<1

. ZZ_m(HHd_d/p) Z |I|—s/d—1/2+1/17|d[e|
mZO I1€Dm

< sup( 3 ([ d )P < Cldlfy, < oo,
m2z I1€Dm

e

where we used the inequality: Y |z;| < (3 |z;[P)¥?, 0 < p < 1.
CASE II: p > 1. We use Holder’s inequality and the obvious inequality

S (Ltl|a) ™ <CII™Y, T€Dy, m>0, M°>d,

1€D,,
to obtain
o0 = 3 [Ty ] (1 )Y
m<1
< DTN dp )Y (1 fa ) M)
m>0 IeDm IeDm
< 22 m(r+d/2—d/p") Z |dl |p 1/;0
m>0 IeDm
= 2N (T ) < Oy, < oc,
m>0 I€Dm e
where we used that 1/p' :=1—1/p. O

Corollary 3.1. Let s, p,q,r, and M be as in Lemma 3.1 in the F- space case and as in Lemma
3.2 in the B-space case. Let A := (a(le, Je')) and A~ =: (b(Ie, Je')) be the transformation
matriz (2.2) and its inverse from Theorem 2.1. Then, we have

07 => a(le, Je) Y Zble JeVoo, (I,e)e D xE,

J,e

where the convergence is considered in 8'/P as well as in szw (B,,) for p,q # oo,

Proof. For a fixed (I,e) € D x E, we define the sequence ¢'¢ := (6'¢,) by

Ie . 17 (I, e) = (J7 6,),
O = { 0. (Le)#(Je).



Then, (a(le,Je'),,) = AT and (b(Ie, Je'),,) = (AT)7'6'. By Theorem 2.1 A’ and
(AT)~! are bounded on f; (b5,) and consequently (a(le,Je ), ), (b(Ie,Je) ) € f5,(05,).
As far as the convergence of first series is concerned, the result follows immediately from
the wavelet characterization of Fy;, (B,,) and Lemma 3.1 (3.2). For the second series we note

that by Lemma 3.1 (or 3.2) the series converges in §’'/P as well as in szq(B;q) and that for
each (A,e") € D x E,

4 ! " ! ! i I - A )
(Zb([e, Je )05 i ) = Zb([e, Je)a(Je ,Ae') = { (1): EI:g # EA:Z&
Je J e

From the completeness of the wavelet basis we get ¢f = >,/ b(/e, Je’)@ﬁl. O

Proof of Theorem 3.1. We will first prove that for every f € F  there exist coefficients

d := (dpe) such that f =37, dr.07 in §'/P. Since f € F,
of f, we have

pgs from the wavelet decomposition

f = chewia Cle *= Cle(f) = <f7 1/);%
I,e

in the sense of S'/P, where ¢ := (cz.) € f;, and

||f|

i, A el g, -
From Corollary 3.1, we have

= Zb(le, Je')9§,, (I,e) e D x E,

in §'/P. Therefore,

[ = ZCIJ/}[ ZcIeZbIe Je 08
= ZZ() (Ie, Je 01896 (3.7)

Je’ I,e

!
= D db5,
J,e'

where all identities above are considered in the distributional sense and d ;== Y, , b(Ie, Je')cye.
To justify the third equality, we note that the assumptions of the theorem guarantee that
the matrix A~! = (b(1e, Je')) is bounded on fy.. Since ¢ € f,,, the sequence a := (a,) =

(5. [b(Ze, Je Merel) 5o belongs in f5. At last for every 1 € Sy
Z|%a||<93,77>| <00
J,e'

as it follows from the proof of Lemma 3.1. Therefore, the order of summation can be
interchanged.
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Next, we will prove the norm equivalence (3.1) which also guarantees the uniqueness of

the coefficients. Since AT, (AT) ! are bounded on ;q, by Theorem 2.1, and

Cre = Za(Je,,Ie)dJe/, die = Zb(‘]el’je)c"e,’
J, e J, €

we have

c=A"d, d=(A")"'c

Therefore,
lell;, = A% d];, < Cilldlly,, = CillAT) " elly, < Callel,

which is the desired condition (3.1) since [|c

o A ||f||F;q- This concludes the proof of the

pq
theorem. [

Proof of Theorem 3.2. The proot follows the footsteps of the one of Theorem 3.1. It is
sufficient to prove that for every f € B, there exist coefficients d = (d;.) such that f =
> 1. dieff in 8'/P, and then to establish the norm equivalence (3.2).

Since f € B; from the wavelet decomposition of f, we have

f - chewia Cre \— Cle(f) = <f7 w?%
I,e

q’

in the sense of &'/P, where ¢ := (¢/¢) € b;q and

1]
Employing Corollary 3.1, we get that for every I € D,e € F,

i =3 b(Ie, Je)05,

/
J,e

55, 7 el (3.8)

in §'/P. It follows that
fo= ) ai=> crY blle, Je )b,
I,e I,e J,e'
— Z Z b(Ie, Je,)cfeﬁil

J,C, Iae

!
= § :dJe, 9.61 )
J,e,

where all equalities above are considered in the distributional sense and d; := >, _ b(Ie, Je ).
The third equality can be justified by the fact that the matrix (A?)~! is bounded on b;q, by
Theorem 2.1. Since ¢ € by, the sequence a := (a,;/) == (3 ; , [b(Ze, Je’)||c;e|)Jyef belongs in
b,,- At last for every 1 € Sw ,

D lage (85 m)] < oo,

!
J,e
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as it follows from the proof of Lemma 3.2. Therefore, the order of summation can be
interchanged. '
To prove (3.1) we note that A”, (A”)"! are bounded on b}, (Theorem 2.1) and that

c=A"d, d=(A")"'c

Therefore,

lelly, = IATdl;, < Cilldll, = Cill(AT)ells, < Calle

oo
qu

Using now (3.8) the result follows. O

4 Examples of new bases

In the previous sections, we proved that if a family of functions {#° : e € E'} approximates
a suitable wavelet set {¢¢ : e € E'} in the sense that, for sufficiently small ¢ > 0, (1.4) and
(1.5) hold, then

B:={0;:1e€D,ec E}

constitutes an unconditional basis for various types of spaces, depending on the size of M
and r. Our goal now is to show how this technique can be used for the construction of bases
B:={0f:1 € D,e € E} with 6° a linear combination of a “small” number of shifts and
dilates of a single function. Next, we give two constructions. The first construction is more
general but not so simple and constructive as the second one.

e General construction of bases from shifts and dilates of a single function.

Let ®,, n = 1,2,..., be a family of functions in C"**(R?) (r > 1) which satisfy the
following conditions:

C1. There exist M°® > d+r, p > 0,7 > 0, and a constant C' > 0 such that

n\a|u+d

I IO —

n

la] <r+1, n=1,2,....

C2.
/ O, (x)de =1, n=12,....
Rd

The most interesting examples of ®,’s that satisfy these conditions are the family of
exponentials @, (-) := Cinfe "I and the rational functions ®,(-) := Con®(1 + n?| - |2),
N > M¢®/2, N > d/2, where the constants C; and C5 are chosen so that C2 holds.

More general examples of ®’s can be constructed as follows: Let ®(-) := ¢(]-]|?) be a radial
function such that [ ®(z)dz = 1, where ¢ is even, ¢ € C"1, and | ()| < C(1 + |t])~M°,
teR v=0,...,7r+1, with M°® > d+ r. Evidently, ®,(-) := nép(n-) satisfy C1-2.

We denote )

Ok ={0:0(-)=> a;®,(-+1b;), pn<K}.

j=1

The next theorem will enable us to construct bases B := {67 :1 € D,e € E} with 0 € O,
K fixed.

16



In what follows, we consider Meyer’s wavelet set W := {¢¢ : e € E} of d-fold tensor
products of the scaling function and the wavelet (see [M]). Obviously, each ¢¢ € S and,
therefore, ¢ satisfies the following assumptions for any choice of the parameters:

Al'. ¢° e C"H(R?) and

(@)@ (@) <C+]z)™, |o] <r+1.

A2,

/ P (x)de =0, |of <7
Rd

Theorem 4.1. Let M° > M > d. Let the family of functions ®, € C™H(R?), n =1,2,...,
satisfy C1-2 and let ¢ € ¥ be any of Meyer’s tensor product wavelets. Then for any e > 0
there exist K > 1 and 0 € Ok such that

@ (@) = 09 ()] <e(L+[a)™™, ol <, (4.1)

and

/ ©0(z) dz =0, o] <r (4.2)
Rd
Before proving Theorem 4.1 we give our main result:

Theorem 4.2. Let the parameters s, p,q,r, and M be as in the assumptions of Theorem 3.1
or Theorem 3.2. Let ®, € C"™(R?), n =1,2,..., satisfy C1-2 with M® > M. Then there
evist K > 1 and a set of functions {0°: e € B} C Ok such that B :={0;:1 € D,e € E} is

an unconditional basis for F,, or B, , respectively.

In particular, there exist bases for F;q and B;q, Br :={RS:1€ D,e € E} and Bg :=

{GS: 1€ D,e € E}, where R is a rational function of the form

Iz

iy
R() = ] , nu< K (N>M°/2),
2. Tl o
and G° 1s of the form
I
G() =D el < K
j=1

Proof. The first part of Theorem 4.2 is immediate from Theorems 3.1, 3.2, and 4.1. For
the proof of the second part, it suffices to note that ®p,(-) := Cynde ™ and @, (-) =
Con(1+n?|-|>) N (N > M*/2) satisfy C1-2 with p = 1. O

Proof of Theorem 4.1. The first step is to show that for every function g satisfying A1’ there
exists 8 € Ok such that

9@ (2) =0 (2)| S e(L+ )M, Jal <, (4.3)
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We first approximate g by the convolution operator w, := ¢ * ®,,. Taking into account
C2, we have

9 (x) — Wi (z) = /Rd (9 (@) — g (@ —y)] Puly) dy, |af <7

We denote U := n"/?M where n := min{1, M° — M} > 0. We will consider two cases for z.
CASE I: |z| < U. By A1, it follows that

19" (2 — y) — ¢"“(x)| < Cmin{1, |y|}.

From this and C1, we find, by simple calculation,

(@) (1) — (@) < min{1, [y|}n? y < _Mod
9 (@) —w,M (@) < C u+nuﬂpd Cn'+n )

Cn~/? Cn~"/?
<
oM = (1+ [z))M
CASE II: |z| > U. We will integrate over Q := {y : |y| < |z|/2} and Q°. If y € €, then
|z —y| > |#|/2 and we find, by A1,

< Cn"=

C

19 (@ — y) — g"(2)] < g (& y)|+|g(“)(x)lém

Therefore,

[ 16 =) = ¢ @l0nwldy < e [0l

C Cn~"/2M
< < <
(1+ IrrI)M° (UL )M T (1 A+ [2[)M

We now integrate over Q° := {y : |y| > |z|/2}. We use A1', C1, and that |z| > U to find

19 (@ —y) — g'9(2)||@nly)| dy

(914

6@ = plieldy+ | 19 @)1l dy

Cnd C
< ! _dy + / Buy)|d
/Qc T+ e =g )L™ @ T a2 S 122N
C

s dy +

< Cnt / 1
— ()M Jea (L4 |z —y[)M (14 fa )™
C Cn/2M

ST )™ = Tt ™

Putting together the above estimates, we obtain, for sufficiently large n,

Cp~m/2M £
@ () — W@ ()| < < . 4.4
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Now, we fix n and truncate the integral for w,. We denote @ := [—27, 29 where ¢ € Z
will be specified later on. We define

Evidently, we have

Using A1' and C1, we get

nru—l—d

() ()
wn X)) — )\ X S C/ ° ©
R Sl G ) L F i e

To estimate the latter integral we consider different cases for z.
CASE L: |z] < 24/2. For y € R\ Q, we have |z — y| > 29/2 > |z| and |y| > 27 > 2|z
and hence

dy =: L.

Cn" nd
L < 7M/ e 4y
L+ [z Jrarg (1 + njz —yl)
Cnrt / nt C’nTH*MO‘*'dz*MO‘*’d
S TN s du < 5
(L4 [z Jis20-0 (1 + nful)M (L4 [z))™

CASE II: |z] > 29/2. We will integrate over Q := (R* \ Q) N {y: |y| < |z|/2} (Q can be
empty) and over ' := (R4 \ Q) \ Q. If y € Q, then |z — y| > |z|/2 and hence

nr;H—d Cnru+d 1
/ M<> M<> dy S MO / M<> dy
o (L+|y)"* (1 +nlz —yl) (1 +nfz)M* Jra (1+]yl)
Cpru=Mo+d - Cprag=an
(L4 [z = (14 [a)

If y € , then |y| > |z|/2 and hence

nr;H—d Cnrt nd
/ MQ MO dy S MO / MQ dy
o (L+ [y (L + nlz —yl) (L + 2™ Jge (1 + nlz —yl)
Cnru—M°+d Cnr+o—an
< _ < .
T ()M T (L =)

Therefore, we have in both cases

C'nrto—am
L —n—.
- (L fe™
Selecting ¢ € Z sufficiently large, we obtain
(o) (o) i
w(x) = NY(2)) < ——+) |a| <7 4.5
jwn () q()l_(1+|x|)M jaf < (4.5)
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We fix g¢.

Next, we will discretize the integral for A,, in order for our approximant to be in Ok
for some K > 1. We let Q,, denote the set of all dyadic subcubes of () of side-length 27,
where m € Z, will be selected later on. We define

gm() = Z |I|g(m1)<1>n(- _551)-

IeQ.n,

Note that 6, € ©,,9a+m+1).
We have, for |a| <,

NO@) = 0D() = 3 / (¢ — ) — 9(21)8 (& — 1)) dy

1€eQm

S / F(y) - Flar)] dy,

1€eQm

where F'(+) 1= g(-)®' (x — -). It follows that

CROEGIENDS / > [ POty - ) v

1€9, 71 |51=1
< C
< € UD | max [FO()]dy
1€Qm 811
< 02 ™max |FP(2)],
P

where [x7,y] is the line-segment joining x; with y. By the product rule, we have

chﬂ 7 a+7)(x—z).

<8

If || < 2v/d29 and z € @, then

Cn(r-l—l);ﬁ—quM
|F(5)(z)| <C |‘1’§f"+7) (x _ Z)| < Cp(r+Dutd <
; (L+[a]) "

If |2 > 2v/d2? and z € Q, then |z — 2| > |2|/2 and hence

Cn(r+1)u+d Cn(r-}—l);ﬁ—dfM

£ < At (p — < <
PO < OX ol —a) < o < S

v<p

In both cases by selecting m large enough (n and ¢ are fixed), we obtain

€

105 () = A ()] < e

(4.6)
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From (4.4) - (4.6), we conclude that for any ¢ > 0 there exist K > 1 and ) e Ok (K :=
n24atm+l) g .— ¢, ) such that

3e
(1 + |z)™’

19 (2) = 0 ()| < o] <7 (4.7)

The second step is to show that, using the result of the first step, there exists f € Ok
which satisfies both (4.1) and (4.2). To make it easier, we shall use some of the specific

properties of Meyer’s wavelets. As usual, we denote by fthe Fourier transform of f (]?(f) =
[ f(z)e ™4dxz). We let ¢ denote Meyer’s univariate wavelet and let and ¢ be the associated
scahng function (see [M]). We recall that 12, a e O™, 1/#\ is supported on [—87/3, =27 /3] U
[27/3, 87 /3] and ¢ is supported on [—47 /3, 47 /3].

Let now e be a nonzero vertex of the unit cube E in R? and let 1¢ be the corresponding
tensor product wavelet (see §1.1), i.e

V() = (@) .. % (xa), @ ERY,

where
ei __ ¢> € = 07
w N { 1/}; € = 1.

be(€) = g (&) .. gea(Eq),

where at least one of the components of e is 1. Suppose e¢; = 1 for some 1 < 5 < d. We let v;
denote the unit vector in the direction of the z;th axis. We shall next utilize the following
two simple facts:

(a) &y, F(€) = (M5 — 1) F(€), where

It follows that

T

(@ P)(a) = D01 ()t )

k=0
is the r-th difference of f with step A € R in the direction of v;.
(b) If |f(x)] < C(1 + |2])™°, M® > d + r, then

[ o@Dy = [ (a7, @) (@) de =0, o] <.
Rd Rd
We define a function g by the identity

PN i (O B~ e o
9(&) = &2 1)y = 1(51)"'m"'¢ *(a)-
Clearly (etv/? — 1) vanishes only at the integer multiples of 47 which are not in the support

of ¢ and hence % € S(R). Therefore, g € S and hence g € S. By the above definition,

Ye() = (€672 — 1)7G(€) and hence ¢ = A; ;129"
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Now, using the result from the first step of the proof (see (4.7)), there exists # € O such
that

~ 3e
(@ () — g < - < 4.
90) = 80| < e ol <7 (4.5)
and o
O(z)] < ————c, M°>d+r. 4,
Pl < Gy M > d+ (4.9
We define 0 := Azj/QHN. Evidently, 6 € O, 41)x. We have ¢° — 0 = Azj/Q(g - 9~) and, using
(4.8),
@ (5) — 0@ () < O— <
(6)a) = 0@ < O g, ol <7

where C' is independent of €. On the other hand, from 6 := Azj/QGN and (4.9), it follows that

/ r%0(x)de =0, |of <7
Rd

This completes the proof of the theorem. O

e Construction of bases from shifts and dilates of a single function satisfying
the Strang-Fix conditions.

Let ® be a function in C™(R¢) (r > 1) which satisfies the following conditions:

D1. There exists M° > d 4+ r + 1 such that

@ (@) <CU+]a)) ™, 0<]a] <

D2. The shifts of ® reproduce the polynomials of degree < r, i.e.,

S —j)=a°, Jal<r

JEZd

We note that functions that satisfy D1-2 play an important role in the study of the ap-
proximation properties of shift-invariant spaces generated by piece-wise polynomial functions
or radial basis functions (see [BR]). Moreover, the original construction of wavelets is based
upon a function ® that satisfies D1-2. However, additional assumptions on ® are required
such as the stability of the shifts of ¢ and a refinement equation ®(-) = ;4 a;®(2 - —j).
Our goal in this part is to to construct a basis for the Triebel-Lizorkin and Besov spaces from
the shifts and dilates of a function ® without any recourse to either the refinement equation
or the stability of its shifts. Moreover, the present construction will be considerably simpler
than the one from Theorem 4.1.

Let 0 < h < 1. Similarly as in Theorem 4.1, we define

Oni={0:0() =) a;®(-/h—j), #L < Ch™%,

JjeL

where L C Z%, #L is the number of its elements, and the constant C is independent of h.
In what follows, we assume that ¢ (¢ being any ¢ € W¥) is a compactly supported
function in C?(R?), with p > max{r,d} which satisfies:
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A2
/ z*P(x)de =0, |a| <.
Rd

Theorem 4.3. Let M° > M +r+1, M > d, and ® € C"(R?) satisfy D1-2. Let also 9
be a compactly supported function in CP(RY) satisfying A2'. Then for any € > 0 there exist
0<h<1and0O e O, such that

[ (x) = 0D (@) < e(L+[a))™, o <, (4.10)

and

/ ©0(z) dr =0, |a] <r (4.11)
Rd
As a consequence of Theorem 4.3 we immediately get

Theorem 4.4. Let the parameters s,p,q,r, and M be as in the assumptions of Theorem
3.1 or Theorem 3.2. Let ® € C"(R?), satisfy D1-2 with M® > M +r + 1. Then there exist
h > 0 and a set of functions {0° : e € E} C ©y such that B := {07 : I € D,e € E} is an

unconditional basis for F, or B, , respectively.

In the proof of Theorem 4.3, we will use the well known fact (see, e.g, [K2]) that if
®(0) =1 and
()< CA+[-)M, M >d+r+1,

then D2 is equivalent to

d(0)=1, d@0)=0, 1<]|al<r (4.12)
and

@ (2jm) =0, jez'\{0}, |a<r (4.13)
Conditions (4.13) are called the Strang-Fix conditions.

Proof of Theorem 4.3. Let v be any compactly supported function in C?(R?) satisfying
(4.12) and (4.13). Without loss of generality we will assume that both ) and ~ are supported
on the unit cube [0,1]¢. We define

Pyp(a) =Y en(j)®(x/h —j) with ¢(j) :=h™" y b(y)y(y/h — k) dy.

JEZ

Since 7 and ¢ are supported on [0, 1]¢, the above sum involves < Ch~? terms. To simplify
our notation we write

Pubta) =170 [ G)RG/h/0) dy, Rlew) = 3 3= )0 =)

Our goal is to prove that, for A > 0 sufficiently small, P, satisfies all the desired
properties of #. Then we will define 6 := P,1). We start by proving that if h > 0 is small
enough then

[ (@) = ()@ ()| < e(L+ [z))7™,  Jal < (4.14)
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The assumptions on ® guarantee that h=¢ [ R(xz/h,y/h) dy = 1 for every x € R? (see [K2]),
and that (see [M])
P(r) = ’llir% Ppp(x)  for almost all x.
—

It follows that

Y(x) = Pap(x) = D [Pra-ith(x) — Pro-i11)(x)]

1=0

= ) Th-(x),
i=0
where
Thip(z) = hd/ Y(y)K (x/h,y/h)dy with K(z,y) := R(z,y) — 2°R(2x, 2y).

Rd
By the assumptions on @, it is easily seen that

KO (2,y)| SO+ o —y))™™, 0<al <,
where Kg(go‘) is the partial derivative in . Moreover,

Pp(z®)=2% 0<|a|<r,h>0,

which implies that 7}, (z*) = 0,0 < |o| < r (see [K2]).
We claim that for every 0 < |a| <rand 0 < h <1

(Th9) @ ()] < CATHI(L + [a] )7, (4.15)

where the constant is independent of A.

We consider two cases for x:

CASE I: |2| > 2V/d. Then for every y € [0,1]¢ we have |y| < |z|/2 and therefore
(14 |z —y|/h) > C(1+ |z|)/h. Since v is supported on the unit cube it follows that

(1)@ ()] < h‘d"”/ B (2 /hyy /)| ()] dy

[0,1]¢

—daf 1
sont el | Wl

< CRM=d=lal (1 4 |g])—M°
< Chr%—lﬂa\(l + |l‘|)7M,

because M° >d+r + 1.
CASE 1II: |z| < 2v/d. Then

(@)@ )| = W) [ Ky yoto) d

Rd
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w(ﬁ) (x)
sl

(y — x)”) dy|

_ pd-lal) / K/ by /@)~ Y

0<|B<r+1

— pilel) / K (x/h,y/h) Y D00 iy — )i dedy

|
PEATLI
1
< Chda|+r+1/ (8) d
. o (L Jafh =gyt S, 1N
=r—+1
< Chr+1—|a\'
Therefore, for 0 < h <1,
@ « - (07 - h/ r — |l —
W@ (@) — (B) ()] < Y TP W) <C (5 Hlal(g 4 (g))=M
i=0 i=0

< Ch(1+ |z)) ™.

Thus by choosing 0 < h < ¢/C (4.14) holds.
Next, we will prove the moment conditions. We have

/ (@) de = (=) FDO0) = 0, o] <r. (4.16)
Rd
We also note that

/"””aPhw(:v) — 0= P (0) =0, 0<a]<rh>0,
However, since (see [JM, Theorem 3.2])

Pup(&) = > (& + 2jm/h)F(hE + 2jm)B(he)

JEZL

for p > d the decay of 1; and 7 allows to differentiate term by term and using the Strang-Fix
conditions (4.13), (4.16), and Leibnitz’s formula the result follows. O

5 Application of the new bases to nonlinear approxi-
mation

In this section, we consider nonlinear n-term approximation by shifts and dilates of a single
function ®. We define

D :=D(®) := {®(a-+b): a € R bR}

and

Dy :=Dy(®) :={S: S =) a;®;, ®; €D}

Jj=1
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We now consider the best n-term approximation of f from D in the norm || - ||, in L, if
l<p<ooor H,it 0 <p <1, defined by

on(f, D)y == Sienign 1f = Sllp-

We are particularly interested in the n-term approximation from D(®), where ® is the
rational function ®(-) := R(:) := (1 + |- [*)~" with N big enough but fixed, or ®(-) :=
G(:) := e”I'". Thus D, (R) is the set of all rational functions R, on R? of the form

Rl =2 (1 + |a; 'j+bj|2)N

J=1

and D, (G) is the set of all functions G, of the form

n

GTL(') = Z Cje_‘aj'+bj|2.

J=1

We denote by R, (f), and G,(f), the best approximation of f € H, (0 < p < 00) from
D, (R) and D, (G), respectively.
We let A} := A} (D) denote the approximation space of all functions f such that

o0

1
[ Flag, = Q_( ol D)y)! =) < o0

n=1

with the /;-norm replaced by the sup-norm if ¢ = 0o as usual.

A basic problem is to characterize the approximation spaces A} for a given function .
We refer the reader to [De| as a general reference for nonlinear approximation.

We now assume that the family {®,, : n =1,2,...} C D satisfies C1-2 (§4) and Theorem
4.2 applies with the parameters selected so that the resulting basis B ={#¢:1 € D,e € E}
is an unconditional basis for FI?Q, 0<p<oo and BS , s> 0and 1/7 := s5/d+ 1/p. Note
that F% ~ H, ~ L, if 1 <p < oo and F ~ H, if 0 <p < 1.

We also remark that there exist bases B = {0 : I € D,e € E} like this with §¢ € Dy (R)
or ¢ € Dg(G) (see Theorem 4.2).

We first consider n-term approximation from a basis B.

Theorem 5.1. Let B be one of the above bases for Hy, 0 < p < oo, and B; ., s > 0,
1/7:=s/d+ 1/p. Then the following inequalities hold:

(Jackson inequality) o,(f,B), < C’n’s/d||f||375_7, fen:

TT?

(Bernstein inequality) ||S|| 5 < Cn®Y|S|l,, S € B,
where By, := {5 : S =377_, ajt;, t; € B}.

Proof. This theorem follows by Theorem 4.2. The proof can be carried out similarly as the
proofs of Theorem 5, Corollary 1, and Theorem 6 from [De]. We leave the details to the
reader. O
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From Theorem 5.1 and standard arguments (see, e.g, [DL] or [PP]), we obtain the fol-
lowing characterization of the approximation spaces A} (B):

Theorem 5.2. We have, for 0 < a <s,0<p<oo, and 0 < g < o0,
qu/d(B) = (Hp= Bir)a/s,q

with equivalent norms, where (X,Y )y, is the real interpolation space between X and Y. In
particular, A%)4(B) = B, when 1/q=1/p+ «a/d.

We now return the original problem for n-term approximation from D. Since 6° € Dy
(K fixed) for e € E/, Theorem 5.1 yields the following

Corollary 5.1. If f€ B*_, s> 0, 1/7:=s/d+1/p, 0 < p < 00, then
on(f, D)y < Cn_s/dHﬂ

Bs,
and, in particular,

Ru(f)p < Cn M| fllgs,, Gulf)p < On /|| £l

A natural problem arises: Whether for a given function ® the following Bernstein type
inequality holds:
5]

with p, s,d, and 7 as above.

Clearly, if (5.1) holds for some function ®, then the corresponding approximation spaces
qu(D) can be characterized by interpolation spaces as in Theorem 5.2.

Note that, if d = 1 and ®(z) = (1 + 2%)~", the needed characterization of A} (D)
(1 < p < o0) follows by Theorem 5.1 and the inverse estimate of Pekarskii (see [Pek] and
the references therein).

e, < On*YS|l,, S € Dy(@), (5.1)

6 Appendix

e Wavelet characterizations of Triebel-Lizorkin and Besov spaces. We begin with
the definition of these spaces (see [Pee], [T], and [FJW]). Let ¢ € S be such that supp ¢ C
{e:271 < |¢] < 2V and [§(€)| = ¢ > 0if 3/5 < |¢] < 5/3. We denote ¢, (-) := 2/4p(2"-),

For s e R, 0 < p < 00, 0 < ¢ < oo, the homogeneous Triebel- Lizorkin space Fpsq is
defined to be the set of all f € §'/P such that

U2l A, a s,
17, = { [upe 27100+ Il 4= oo, (61)

is finite.
In a similar vein, for s € R, 0 < p,q < oo, the homogeneous Besov space B;q is defined
to be the set of all f € §'/P such that

1£ 11, = (Zyez[?’slld)u*fIILp]q)l/q, q # o, (6.2)

sub,ez 2”6, % I, q=oc,
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is finite.

Let now ¥ := {¢)¢: e € F'} be a set of orthogonal wavelets for Lo(R?) which satisfy the
following two conditions:

Al. ¥ C C" and

(W)@ <CA+el) M, Jal <7, e€E,

A2.

/ z*Y(x)de =0, |a|<r, e€kE.
Rd
Then the following two statements hold (see [K3]):

Propositi0n61 Let s e R, 0 <p<o0,0<q<o00,J —d/min{l p,q}, > max{J —
— 5,8}, and M > max{J,d+r}. Then, for every f € F?  there exist unique coefficients
cIe(f) (I,e) € D x E, such that

f = chle(f)w; with Cle(f) = <f7 1/);3>7

IeD ecE

P‘I’

where the convergence is considered in the sense of S8'/P (and in F¥ if ¢ # 00). Moreover,

i, 2 QU ere( £,

I,e

Pq

/]

Proposition 6.2. Let s € R, 0 < p,q < o0, J :=d/min{l,p}, r > max{J —d — s, s} and
M > max{J,d+r}. For every f € B}, there exist unique coefficients cr.(f), (I,e) € DX E,
such that

PQ’

F=Ycre( )5 with cro(f) = (f,45),
I€D e€E
where the convergence is considered in the sense of 8'/P (and in B;q if p,q # 00). Moreover,

gy, & OO0 D (S ([ 12 (1)),

ecEE meZ I€Dy,

1]

e Two maximal inequalities. In the proof of Lemma 3.1, we use the Fefferman -Stein
maximal inequality [F'S]. We consider the maximal operator (see (3.5))

M(f)(e) 1= (sup Q] / @) dy) .

Proposition 6.3. Let 0 < p < 00, 0 < ¢ < o0, and 0 < t < min{p,q}. Then for any
sequence of functions (f;);eczd

1O M), < IO 11D,

jeLe A
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For the proof of Lemma 3.1, we also need the following lemma.

Lemma 6.1. Let 0 <t < 1, M > d/t, and p € Z. Then, for any sequence of complex
numbers (hie)(1,eep,xe and x in the unit cube Iy, we have

D el (L Ja )™ < O MY [hrelxn) ().

1€Dy 1€Dy
ecE ecE
Proof. We denote Q; := [—27,2)% Qy := Qp, and ; := Q; \ Qj_1, j = 1,2,.... Let

d:=M/d—1/t > 0. We have, for x € I,

> Jhrel (L |zg])” Z D hael (1 + Ja)”

IeDy j=0 1CQ;
ecE 6€E‘
SO T I -T2 M S
j=0 ICQ; 1co;
e€E‘ eEE
99D i S )
< Csup2- hre <C’<sup2 hre )
320 1cQ; 1CQ;
EEE ecE
. YL
< C’(sup 2—Jd2ud/(z \hrelxi) )
320 1cq,

eck

1/t
<2t (sup 2 [ (3 huelvi)')
Jj20 |QJ| Qi 1cQ,
ec K

< O Y |hrel) (),

I1eDy
eck

O
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