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1. Introduction

A general approach to solving boundary value problems for two dimensional linear
and integrable nonlinear PDEs was announced in [2] and further developed in [3,4]. This
method can be applied to linear PDEs with constant coefficients and to integrable non-
linear PDEs. It involves (a) Formulating the given PDE as the compatibility condition
of two linear eigenvalue equations, which we refer to as a Lax pair. (b) Performing the
stmultaneous spectral analysis of these two equations.

In this paper we show that this method can be rigorously implemented for the solution
of the following class of initial-boundary value problems:

th(:v,t)-l—iZaijq(x,t):O, 0<zr<oo, 0<t<T, (1.1a)

7=0 q(x,0) =qo(z), 0<z<oo, (1.1d)

D'q(0,t) = fi(t), 0<t<T, O0<I<N-1, (1.1¢)

where a1, ...,a, (n > 2) are real numbers, D = —i0,, T is a positive number, and N is a

positive integer. The initial data go(z) and the solution ¢(z,t) (and their derivatives) are
assumed to have some decay as  — 00.
We will denote by w(k) the polynomial defined by

w(k) =Y ok’ (1.2)
j=0

Then equation (1.1a) can be written concisely as 0yq + iw(D)q = 0.



This method can be used to:
(a) Show that the above IBV problem is well posed for

( n . .

— if n is even

2

1
N =« n—2{— if nis odd and o, >0 . (1.3)
n— . .
if nis odd and a,, <0

\

(b) Derive an explicit representation of the solution ¢(x,t) of (1.1a), in the Ehrenpreis
form (cf. [1])

1 <. —w ~ T—w A
q(m,t>=2—l/ ity () di [ Gy d ] (1.4)
T oD,

[N
o
—~
By
N—
Il

/ e gy (z)de, Imk<0, (1.5)
0

n

QUk) = 3" g (Qy-1(R) + kQj (k) + -+ + K 2Qu(k) + K Qo (k) ), (1.60)

j=1

T
Q,(k) = / e“®tpig0,t)dt, j=0,1,---.n—1, keC, (1.6b)
0

and the oriented contour 9D is the boundary of the domain D, defined by
Dy ={keC: Imw(k) >0, Imk > 0}. (1.7)

The orientation of 0Dy is such that D, is on the left-hand side of the increasing
direction of 0D .

(c) Determine the global relation satisfied by the initial and boundary values of ¢(z,t) (cf.
(1.10)). These relations together with the given boundary conditions can be used to
construct Q(k) (up to terms whose integrals along 8D vanish) through the solution
of a system of linear algebraic equations and to prove existence of solution for the IBV
problem (1.1).

For later reference we define

_={keC: Imw(k) >0, Imk <0},
D=D,UD_={keC: Imw(k)>0}.

Remark 1.1. Examples of D, for several differential operators can be found in ap-
pendix A.1.



Since Imw(k) for k = kg + ik, is a harmonic function in (x,y), the set C\ 9D is the
union of disjoint unbounded simply connected open sets. Moreover, as k — oo the variety
0D approaches the variety Im (k + )™ = 0 asymptotically, where & = a,,—1/(na,). These
two observations imply the following lemma immediately.

Lemma 1.1. The components of D are simply connected and unbounded. QOutside the
curve defined by |w(k)| = R for R > 0 sufficiently large, 0D is the union of smooth disjoint
simple contours that approach the rays of the variety Im (k + «)™ = 0 asymptotically as
k — oo, where & = au—1/(naw,). Moreover, Dgr = {k € D : |w(k)| > R} hasn components,
and Dp+ ={k € D4 : |w(k)| > R} has N components, where N is given by (1.3).

We will denote the components of Dr by Drg1,...,Dgr N, in the counterclockwise
direction, and the components of Dg in the lower half-plane by Dr n41,..., Drn, also in
the counterclockwise direction.

The following results will be derived in Sections 2-5.

Proposition 1.1. (Representation of solutions of (1.1a))  Assume that q(x,t) is a suf-
ficiently smooth (up to the boundary) solution of (1.1a) that also has sufficient decay as
xr — 0o, uniformly in 0 <t <T. Then q(x,t) is given by equation (1.4). Furthermore, the
boundary values of q(x,t) satisfy the following global relation on the closure of the lower
half-plane:

Q(k) = e ® TG, (k) — Go(k), ke C_, (1.10)

where Q(k) is defined by equation (1.6), Go(k) denotes the Fourier transform (of the trivial
extension) of qo(x) = q(x,0) (c¢f. (1.5)), and §r(k) denotes the Fourier transform (of the
trivial extension) of q(x,T).

Proposition 1.2. (Representation of solutions of (1.1)) Assume that q(x,t) is a suf-
ficiently smooth (up to the boundary) solution of (1.1) that also has sufficient decay as
x — oo, uniformly in 0 < t < T. Then for (z,t) € ([0, 00) X [O,T]) \{(0,7)}, q(x,t) is
given by

— 00

1 >* . —w ~ T—w o
q(x,w:%[/ T I I (R FY
6'DR+

where R > 0 is a sufficiently large number, §o(k) is the Fourier transform (of the trivial
extension) of qo(x),

= an_j(k)éj_l(k), (1.12)

w;(k) = ank? + a1 k! 4o+ Olp—j for 0<j<n-—1, (1.13)

and Qj(k:) for 0 < j < n—1 are obtained from the initial and boundary data in the following
way. 3
For 0 < j < N —1, the function Q;(k) is given by

T
G, (k) = /0 WL (B dt for keC, (1.14)



and Qn(k),...,Qn_1(k) for k € Dr,m, 1 <m < N, are given through the unique solution
of the following (n — N) x (n — N) system of linear equations:

n

N
Z Wn—j ()\l,m(k))Qj—l(k) - _QO (Al,m(k)) - an—j ()\l,m(k))Qj—l(k) ) (1'15)
j=1

j=N+1

where N +1 <1 <n and \j,;m : Drm — Dgr, 1s the biholomorphic map defined by

w(Aym(k)) =w(k)  Vk € Dpgm. (1.16)

Remark 1.2. The explicit solution of the system of equations in (1.15) for several illus-
trative examples are discussed in appendix A.2.

Theorem 1.1. (Existence and uniqueness of solution for smooth data)
Assume that :

qo is a C™ function on [0,00) that is rapidly decreasing as x — oo, i.e. (1.17)

lim 2™D'q, (£) =0 for any nonnegative integers m and I.
r—r0o0

f1 is a C* function on [0,T] for 0 <1 < N —1. (1.18)
The functions qo, fi and (1.1a) are compatible at © =0 and t =0 to all orders. (1.19)
Then the IBV problem (1.1) has a unique solution q(z,t) such thatt — q(-,t) is a C*

map from [0,T)] into #([0,00)), the Schwartz space of smooth functions on [0,00) that
decrease rapidly as T — 0.

Theorem 1.2. (Existence and uniqueness of weak solution for Sobolev data)
Assume that :

qo belongs to the Sobolev space H™(0,00), where 71 is the smallest integer > n/2. (1.20)

fi belongs to the Sobolev space H%JFW(O,T) for0<I< N —1. (1.21)
fi(0) = D'go(0) for 0<I<N—1. (1.22)

Then there is a unique function q(x,t) with the following properties:

The map t — q(-,t) is a continuous map from [0,T] into H™(0, 00). (1.23)
q(x,t) satisfies the initial and boundary conditions (1.1b)—(1.1c). (1.24)
Given any ¢ € C>(R) such that D?¢(0) = 0 for 0 < j < n —n — 1, the function
(q(-,t), gb) Lo (0,00) is differentiable on (0,T), and

d n—1

Z(660,9) 1,0y = (@60, 0(D)O) 1 )+ D [waima (D)a0,0] DIG0) (1.25)

for 0 <t <T, where w and w; are defined by (1.2) and (1.13).

j=n—m



Moreover this unique weak solution defined by (1.23)—(1.25) has the property that
x — DIq(z,-) is a continuous map from [0, 00) into H%‘F%(O,T) (1.26)

for0<ji<n-—1.

Remark 1.3. Let g(z,t) satisfy the forced version of (1.1), i.e. the right-hand side of
(1.1a) is replaced by f(z,t). It can be shown that g(z,t) admits the explicit representation
(1.4) where Q(k) contains the additional term fOT Jo etk (B g (0! ¢7) da' dt.

Given a nonlinear non-integrable PDE, the nonlinear terms can be considered as a
forcing of the associated linear system. Then, at least for sufficiently small data or for

sufficiently small time, it should be possible to prove well-posedness for the nonlinear
PDE.

Remark 1.4. It is possible to extend the above results to other types of boundary
conditions. Some examples are discussed in appendix A.3.

2. The Lax Pair Formulation

In this section we will derive Proposition 1.1 and Proposition 1.2 under the assumption
that g(x,t) is a smooth solution of (1.1a) with sufficient decay as z — oc.

First we note that equation (1.1a) is the compatibility condition of the following pair
of equations,!

Opti(z,t, k) —ikp(x,t, k) = q(x,t), (2.1a)
Owp(x, t, k) +iw(k)u(z, t, k) = —qu(x,t, k), (2.1d)

where w(k) is defined by (1.2) and

Ge(m,t, k) =) oy (D7 + kDI2 4 B2DI73 4 BT g t). (2.2)
j=1
Indeed, equation (1.1a) is the compatibility condition of equation (2.1a) and of

Op + iw(D)p = 0. (2.3)

Equation (2.1b) is obtained by using equation (2.1a) to eliminate the D’u’s in equation
(2.3). Note that g, is related to @ by

Ok) = / ' e~ Bty (0,1) dt . (2.4)

0

! In analogy with the theory of integrable nonlinear evolution equations and in honor
of P.D. Lax, we call equations (2.1) a Lax pair.



We will construct a solution g which satisfies both equations defining the Lax pair
and which is sectionally holomorphic. It has the form

2, kED+
p=1< ps, ke& ={keC,Imw(k)<0,Imk >0} (2.5)
e, Imk <O,

where the functions pe, pus and py will be defined below.
Let ¢ = (x,t). The domain 0 < z < 00, 0 <t < T is a polygon in the (-plane with
corners ¢, = (00,T), (2 = (0,T), (3 = (0,0) and (4 = (00,0) (cf. Figure 2.1).

t

g, --- G

- N —

T, 7 &
Figure 2.1
Equation (2.1) can be written in the form
(Ne—ikm—i-iw(k)t)w _ e—ikw+iw(k)tq, (2.6a)
(Me—z‘kmﬂ'w(k)t)t = —e thetiw(R)ty (2.6b)

Let (; be an arbitrary point in the polygon and let [ é denote the line integral from (; to
¢ = (z,t). Then the function

<. " /
/‘T(xata k) — / ezk(w—x )—iw(k)(t—t") [Q(.’El,tl) dr’ — s (xl,tl, k’) dtl] (2‘7)
Ct

is a particular solution of (2.6). Furthermore the definition of p is independent of the
path from (; to (. We must now choose the point (; in such a way that this function is
holomorphic in k.

It is shown in [3] that for a polygon there exists a canonical way of choosing the (;’s,
namely they are the corners of the polygon. For the polygon in Figure 2.1, we therefore
define p; by (2.7) where ¢; = ;.

In particular, we have p; = pg4 (since g, (oo, t) = 0), and

pa(z,t, k) :/ e*@=2) (2! t) da’ (2.8)

is holomorphic for Imk < 0 and bounded for Im k& < 0. Splitting the integral [ Ci, into one
along the t-axis and one parallel to the z-axis we find

t x
ps(z,t, k) = —e*® /0 e @B g (0,4, k) dt' + /0 e* =g (ol ) da’ (2.9)



which is an entire function of k£ and bounded for k € £,. Similarly

t T
pa(z, t, k) = —e*® / e @Ot g (0,¢, k) dt' + / e* @2 (o' ) da’ (2.10)
T 0

is an entire function of k and bounded for k € D .

Using the representation (2.7) the “jump” of p can be computed in terms of line
integrals along the boundary of the polygon; for example s — us = f o Hence we have,
by (1.5) and (2.4),

pg — pg = P UG (L) | kelL, (2.11a)
pp — pg = Y BUQ(R) + Go(K)), kel (2.110)
s — pg = etFe—w®t gy kels, (2.11¢)

where L = {k € C: Imw(k) = 0,Imk > 0}, [; denotes the part of the real axis that is a
part of the boundary of D, and [y denotes the part of the real axis that is a part of the
boundary of £,. Note that [; or [, can be empty.

Equations (2.5), (2.8)—(2.10) and integration by parts imply

q(z,1)
ik

plx,t k) = — +o(1/|k|), k— oo, (2.12)

which together with (2.11) define an elementary scalar Riemann-Hilbert problem (cf. [7]),
whose unique solution is given by

1 : dz , A dz
tk) = — ilzz—w(2)t] 5 / i[ze—w(2)t] . 2.13
p(z, t, k) i [/Re qo(Z)Z_k+ ame Q(z)z—k: (2.13)

Equations (2.12) and (2.13) imply equation (1.4).
It follows from (2.6) and Green’s theorem that the integral of exp(—ikx+iw(k)t)(qgdx—
g«dt) along the boundary of the polygon vanishes. This yields the important global relation

0 0 0o
/ e~ ety T) da — / e Mg, (0,1) dt + / e " q(z,0)dz =0 forkeC

and (1.10) follows in view of (2.4). The derivation of Proposition 1.1 is complete.

Next we turn to the derivation of Proposition 1.2. Recall that (cf. Lemma 1.1),
for R > 0 sufficiently large, Dg = {k € D : |w(k)] > R} has n components, N (cf.
(1.3)) of which are in C, labeled counterclockwise by Dg 1,Dg 2, ..., Dr,n, and the other
components Dr nN41,-.., DR,y are in C_.

We can rewrite (1.4) by Cauchy’s theorem as

1 > ~ T—w A
q(z,t) = o [/ e'lthe—w )t g, (k) dk +/ ke Q) dk| (2.14)
™ ODrg,+

— 00



We may also assume that

W'(k)#0 for |w(k)| > g (2.15)

It follows from (2.15) that (1.16) defines a map A;,, which is biholomorphic from a
neighborhood of Dg ,,, to a neighborhood of Dg ;. Note that (1.6) and (1.16) imply that

Q;iMm(k) =Q;(k) for 0<j<n—1,1<m,l<n. (2.16)
Moreover, it follows easily from (1.16) that
N[ Am(K)] = Xjm(k)  for k€ Dpgp,l1<m,lj<n, (2.17)

and

Am(k) =™ L1 0(1)  as k—oo in Dgyy,. (2.18)

Using (1.13) we can rewrite (1.6) as

an i an i Z wj_1( _i(k). (2.19)

Let m € {1,2,...,N}. From (1.10), (2.16) and (2.19) we find

Z wj—l ()\l,m(k))Qn—] (k) /\l m Z Wn— ] )\l m Q (k)
+ ekl (Al (k)), (2.20)
for N+1<l<nandk € Dgm.

The system (2.20) is uniquely solvable for QN(k:), S (k). In fact, using Cramer’s
rule, (2.16) and (2.20) we have the explicit formula

Qn—j(k) - det A()\N+1,m(k)7 )‘N+2,m(k)’ " n m(k))

det CJ (>\N+1,m(k)? )\N+2 m(k) R An,m(k))
det A(An41,m (k) Ant2,m(K), - s Anm ()

detBj()\N+1,m(k),)\N+2,m(k7) . )‘n,m(k))]

+ eiw(k)T

] (2.21)

for 1 <j <n-—N and k € Dr,, where A(z1,22,...,2p—n) is the (n — N) x (n — N)
matrix defined by

w0(21) w1 (21) T wanfl(Zl)
A(21, 2, oo 2m ) = wO(:Z2) wl@ w"_Nfl(ZZ) L (2.22)
wo(2zn-nN) wi(zn-N) *+* Wn-N-1(2n-nN)



and the matrices Bj(z1,22,...,2,—n) and Cj(z1,22,...,2,_n) are obtained by replacing

the j*® column of A(z1,22,...,2, n) by the columns
qo(21) + Egzl Wn—s(21)Qs-1(21) Gr(21)
jo(22) + i Wn_s(29)Qs_1(2 Gr(22)
B Go(z2) + 22—y | (22)@s-1(22) and = (2.23)
. N ' A .
qO(Zn—N) + Zszl c"Jn—.s(Zn—N)Qs—l(Zn—N) 4r (zn_N)
respectively. Note that (1.13) and (2.22) imply
det A(z1,22,. .., 2n-n) = ()" ]  (zi—=). (2.24)

1<l<j<n—N

Therefore the denominators in (2.21) are always nonzero, since the numbers A ,,, (k) for
N +1 <[ <n are distinct when k € m, under the assumption (2.15).

It is clear from (1.6b), (2.18) and (2.22)—(2.23) that both terms on the right-hand
side of (2.21) are holomorphic in Dg.,, and have at least O(|k|~7) decay as k — oco. In
particular, we have by Jordan’s lemma (cf. [6])

/ ei[km_w(k)t]wj_l(]{;)ei“’(k)T det C] ()\m,N—i—l(k), )\m,N—i-Z(k), e ,)\m,n(k))
8DR,m det A()\m,N+1(k), >\m,N+2(k)a ey )\m,n(k))

for 1 <j <n— N and (z,t) € ([0,00) x [0,T]) \ {(0,7)}. Thus, in view of (2.19), the
contribution of the second term on the right-hand side of (2.21) to the second integral on
the right-hand side of (2.14) is 0.

We conclude that in (2.14) one can replace the functions Qn_j (k),for1<j<n-—N,
k € 0Dgrm and 1 < m < N, by the first term on the right-hand side of (2.21). In other
words, the solution ¢(z,t) of (1.1a) can be expressed in terms of the initial data ¢(z,0) and
the N boundary data ¢(0,t), Dq(0,t),...,DN¥=1q(0,t) via (1.11)—(1.16). This completes
the derivation of Proposition 1.2.

dk =0

Remark 2.1. Observe that for a given ¢, between 0 and T, the values of ¢q(x,t.) does
not depend on the boundary data beyond t,.. This of course follows by applying the
representation formula (1.4) to [0, 00) X [0, ¢,] instead of [0, 00) x [0,T]. Alternatively we
can see it from (1.4) for [0,00) x [0,7] as follows.

We have

~

ty ) T )
Q,;(k) = /0 e MtQ,(t) dt + /t e MtQ.(t) dt . (2.25)

Since the function
. T . . T .
ez[kaz—w(k)t*]/ Q. (1) dt — em/ =) Q. (1) dit
Ty Ty

is holomorphic on D and has sufficient decay at oo, the only nonzero contribution of Qj (k)
in (1.4) comes from the first term on the right-hand side of (2.25).



3. The Spectral Map

Motivated by the discussion in Section 2, we introduce in this section the spectral map
S and study some of its properties. The spectral map will be used to relate the boundary
data to the spectral data in the case where go = 0.

Definition 3.1. Let © be an open subset of C. The space ' (Q) consists of all the
functions that are holomorphic in a neighborhood of €.

Definition 3.2. Let T be a positive number and R > 0 be large enough so that (2.15)
is satisfied. The map St : [L1(0,T)]Y — [ (Dg+)]" is defined as follows. Given

(anfla"' 7fN—1) € [Ll(oaT)]Na
ST(anfl;"'va—l):(907917"'7gn—1)7 (31)

where for 0 < j < N — 1 the function g; is defined by

T
g;(k) = / ew®tf(tydt  for keC, (3.2)
0

and for 1 < j < N the function g,,—; is defined on Dg, (1 <m < N) by

det B; (An+1,m (k) Ant2,m (k) - - - s An,m (K))

" det ANy 1.m(B), AN s2.m (K)o Anm(K)) (3:3)

In—j(k)

Here A(z1,22,...,2n_n) is defined by (2.22), the matrix B;(z1, 22, ..., 2,_n) is obtained
by replacing the j*® column of A(zy,29,...,2,_n) by the column

Zivﬂ Wn—s(21)gs—1(21)
Zivzl wWn—s(22)gs—1(22)

Zi\rzl Wn—s (zn—N)gs—l (zn—N)
and the polynomials w;(k) are defined as in (1.13).

Clearly St is a linear map. We shall write (3.1) concisely as Srf = g.

Lemma 3.1. Let g = Srf. Then

an_j()\l,m(k))gj_l(k) =0 fork € Drpm,1<m <N, N+1<I<n, (3.5)
j=1

and g is invariant under the transformations A\ m, i.e.,

g\,m (k) =g(k),  kE€Dpm,1<miI<N. (3.6)

10



Proof. Note that (1.16) and (3.2) imply
9; (Am(k)) = g;(k) for keC,0<j<N-1,1<m,l<n. (3.7)
Equations (3.5) and (3.6) follow immediately from (3.3), (3.4), (3.7) and (2.17). M

Lemma 3.2. Let f = (fo, f1,...,fn-1) € [C(0,T)|]N such that f; vanishes to all
orders at 0 and T for 0 < j < N — 1, and (9go,91,---,9n_1) = Srf. Then the functions
k*(dPg;/dkP)(k) are bounded on Dg+ for0 < j<n—1and a,8=0,1,2,....

Proof. The boundedness of k*(d®g; /dkP)(k) for 0 < j < N —1 follows immediately from
(3.2) and integration by parts. The boundedness of k%(d’g;/dk")(k) for N < j <n —1
then follows from (2.18), (2.22), (2.24), (3.3) and (3.4). 0

In Section 5 we will consider boundary data in the fractional order Sobolev space
H?(0,T), which is the restriction of the Sobolev space H*(R) to the interval (0,7") and is
equipped with the standard quotient norm (cf. [5]). The space H§(0,T) is the closure of
C2°(0,T) in H*(0,T). The following lemma (cf. [5]) describes the relation between these
spaces when % <s <1

Lemma 3.3. Let u € H*(0,T) and (1/2) < s < 1. Then u € H{(0,T) if and only if
uw(0) = u(T) = 0. Moreover, if u € H§(0,T), then its trivial extension (denoted by )
belongs to H*(R), and

4] s &) < Cllwll s 0,1y -

For boundary data f; in the fractional order Sobolev spaces, it is necessary to char-
acterize Stf in terms of its integrability on 0Dg ;.

Definition 3.3. Let % be a piecewise smooth curve (cf. [6]) in the k-plane. The space
L5(%) consists of all the functions g(k) that satisfy

191l = Il 1+ [E1*)g (k) Lo 1) < 00 (3.8)

Lemma 3.4. Let n be the smallest integer > n/2. Suppose that £ = (fo, f1,---, fN=1),

—2j—1)

1 (2n
feHZT ™ (0,T) for 0<j<N-1,

and (9o, 92, - - - gn—1) = S7f. Then there ezists a positive constant C such that

N-1
||wn—jgj—1||Lg(aDR7+) <C ; ||fl||H%+(2ﬁ;izf1) o.1) for 1<j57<n. (3.9)

Proof. Let f] be the trivial extension of f; to R. It follows from Lemma 3.3 that fJ €
(2A—25—1)

H%+T(R) and

oo (2 —25—1)
/ A+ OFOPdr <CIAIP L enein (3.10)
H?2 2n (0,7)

— 00

11



where .#; is the Fourier transform of fj
Note that, by (3.2), g;j(k) = Z;(—w(k)) for 0 < j < N — 1. Since |w(k)| = R or
Imw(k) = 0 on 0Dp 4, it follows from (3.10) and a change of variables that, for 0 < j <

(2R—
(k) [+ 55 g (k) | (B) 2| oo 1) < CI e IE (3.11)

(,)

which implies (3.9) for 1 < j < N.
On the other hand, in view of (1.13), (2.18), (2.22), (2.24), (3.3), (3.4) and (3.7), we

have
n—N N
B g s <C YN

/=1 s=1

s (AN em (k) g5 1(K)| (3.12)
for k € ODR,m and 1 < m < N. The estimate (3.9) for N +1 < j < n follows from (3.12),
(2.18) and the estimates for 1 < j < N that have already been established. []

Since n > 1, we have immediately the following corollary to Lemma 3.4.

Corollary 3.1. Under the assumptions of Lemma 3.4, the functions w,_;(k)g;_1(k) for
1 < j <mn belong to L1(0Dg +, |dk]|).

Let Cg (cf. Figure 3.1) be the contour (in the complex 7 plane) that goes from oo
to —R along the negative real axis, then from —R to R along the upper half of the circle
|7| = R, and finally goes from R to oo along the positive real axis. Then 7 = w(k) is a
biholomorphic map between the closure of D ,, and the closure of the domain Qr above
Cgr in the upper-half 7-plane, and its inverse will be denoted by k = 9, (7).

A U

-R R
Figure 3.1

The following corollary to Lemma 3.4 follows immediately by the change of variable
T = w(k).

Corollary 3.2. Under the assumptions of Lemma 3.4, the functions

-1

B ()] '3 (I (7)) 951 (I (7)) [ (91 (7)) |

(2n 20—1)

belongs to the spaceL2 m (OQR) for0<I<n—-1,1<j<nand1<m<N.

The relevancy of Corollary 3.2 is given by the next lemma.

Lemma 3.5. Let G € L§(0Qr) N 7 (Qg). Then the function F(r faQ e "G (2) dz
in the real variable r belongs to the Sobolev space H*(R).

12



Proof. Let z = zp +1iz; and ¥(zg, z;) be a smooth function with compact support that is
identically 1 on an open set containing the circle defined by |z| = R. We can write

F(r)= / e (2p, 2,)G(2) dz + / e E 1 — h(2g, 2,)|G(2) dz . (3.13)
QR 00QR
Using integration by parts, the smoothness of ¥(zg, 2;)G(z) and its holomorphy at
—R and R, we see that the first integral on the right-hand side of (3.13) defines a function
in the space Z(R). Since the second integral on the right-hand side of (3.13) defines a
function in H*(R), the lemma follows. 0

4. The IBV Problem With Smooth Data

We consider in this section the IBV (1.1) with smooth data, where N is given by (1.3).
The precise assumptions on the initial and boundary data are given in (1.17)—(1.19).
Let the numbers a;,, = (0/"D'q)(0,0) be computed from go(z) and (1.1a). The

compatibility condition (1.19) means that a;,, = fl(m)(()) for 0 <1 < N —1 and for all
nonnegative integers m.

Let .([0,00)) be the Schwartz space of smooth functions on [0,00) that decrease
rapidly as x — oo. It is the restriction of the Schwartz space .(R) to [0,00), and is a
Fréchet space under the metric defined by

oo 0 m Nl _
d(f,g) _ Z Z 5 1 SUPze[0,00) |£L‘ D (f g)(.’E)|

m=0 1=0 ML+ sup,cpo,00) [ DHS — 9)(@)]

Let gy be a Schwartz function that is an extension of gy to the whole real line and
define, for (z,t) € [0,00) x [0,T],

1 Rl

dlat) =5 [ O de (41)
2m J_

where a(§) is the Fourier transform of go(x). It is easy to see that § is a solution of (1.1a)

and t — §(+,t) is a C* map from [0, 7] into 5/([0, oo)) Therefore, by considering the

difference ¢ — ¢q, it suffices for us to study the reduced IBV problem

gt +iw(D)g =0 0<z<oo, 0<t<T, (4.2a)
q(z,0) =0 0<z<oo, (4.20)
D'q(0,t) = fi(t) 0<t<T, 0<I<N-1, (4.2¢)
under the assumption (1.18) and that
f1(t) vanishes to all orders at ¢t =0 for 0 <! < N — 1. (4.3)

Motivated by Proposition 1.2 and the discussion in Remark 2.1, we first extend f; to
be a C* function on [0, T + 1] such that

f1(t) vanishes to all ordersat t =T + 1 for 0 <] < N — 1. (4.4)

13



Then we define, using the spectral map from Section 3,
(QN()? Q~17 cee 7Qn71) = ST—}-l(an f17 teey fol) ) (45)
and (cf. (1.11)—(1.12))

1 <& . -
oz, 1) = - / eilke w0y, (1O, (k) di. (4.6)
27r j:zl ODr + ! !

Our goal is to show that ¢(x,t) satisfies (4.2).

First we note that, by (4.3), (4.4) and Lemma 3.2, the functions (d?Q;/dk®)(k), for
0<j<n-—1and §=0,1,2,..., are O(|k|~®) for any positive integer o as k — o0 in
Dgr,+. It follows immediately that g(z,t) is a C* function on [0, 00) x [0, 7] that satisfies
(4.2a). Moreover, integration by parts implies that t — ¢(+,t) is a C* map from [0, T]
into .7 ([0, 00)).

From (4.6) we obtain easily

ol,0) = - Z/B b ()0, 1 (K)dk =0 Vo >0, (4.7)

Dr +
since w,, ;(k)Q;_1(k) is holomorphic on Dg , and O(|k|=2) as k — oo in Dg_;. So the

initial condition (4.2b) is satisfied.
From Lemma 3.1 we have

anJAlm )Qj-1(k) =0 fork€Dpm,l<m<N,N+1<Il<n, (4.8)

Qj(Al,m( ) =Q;(k) for 1<j<n-1,k€Drm,1<m,I<N. (4.9)

In fact, for 0 < j < N —1,

Q;(k) = / e £ (1) dt (4.10)
0
is defined for all k£ € C and
Qi Mm(k) =Qj(k)  for 0<j<N—-1,k€Dgpm,1<ml<n. (4.11)

The relations (2.17) and (4.9) also make it possible to extend the functions Q;, N < j <
n — 1, to the lower half-plane such that

Qi(\m(k)) =Q;(k) for N<j<n-—1,k€Dgm, l<ml<n. (4.12)

Combining (4.8), (4.11) and (4.12) we see that

anj _1(k)=0 fork€eDgr; and N+1<I<n.

14



Therefore, we can rewrite (4.6) as

q(z,t) = L > /8 _ eitbz=w®tly,  (k)Q;_1(k) dk . (4.13)

It follows from (4.13) that

1 « .
D™q(0,t) = %Z /6 _ e WMy, (k)Qj_1 (k) dk. (4.14)
j=1"97R

Let Cg be the contour depicted in Figure 3.1. For 7 € Cg the equation w(k) = 7 has
n solutions k1 (7), k2(7), ..., kn(7) such that k;(7) € 0Dg ;. Using the invariance relations
(4.11) and (4.12) we find

/ e~ WMy, (k)Q;_1(k) dk
O0DRr

= /c e T (Z ()] ony (kl(T))> Qj—1(k1(7)) dr. (4.15)

—1 w’ (kl(T))

Note that, by the residue theorem (cf. [6]), we have

n [kl(q-)]mwn_j(kl(T)) _ lim 1 2" wn—j(2) 3
> =1 /C Z R (4.16)

=1 w/(kl(T)) r—00 21 a U.)(Z) -7

where C,. is the counterclockwise oriented circle defined by |z| = r. Combining (1.2), (1.13)
and (4.16) we see that, for 0 <m <n—1and 1 <j < n,

Zn:[kl(T)]mwn—j(k‘l(T)) _ {1 ifm=j—1 (4.17)
o w’(kl(T)) 0 itm#j-1" '
It then follows from (4.14), (4.15) and (4.17) that
1 s
D™q(0,t) = — / e_ZtTQm(kl(T)) dr 0<m<n-1.
2 Cr
In particular, in view of (4.10) and the relation w(k1(7)) = 7, we have
1 oA
D™q(0,t) = —/ e fn(r)dr for 0<m<N-1, (4.18)
2T Cr
where
~ T+1 .
fonlr) = / €Tt fon(t) . (4.19)
0
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The Fourier inversion formula and (4.18)—(4.19) imply that g(z,t) satisfies the boundary
conditions in (4.2¢).

We have thus established the existence part of Theorem 1.1. It remains only to
establish the uniqueness part. Let ¢; and g be two such solutions and v = ¢; —g2. Then u
is a solution of (1.1a) with homogeneous initial and boundary conditions. It follows from
(1.1a), the homogeneous boundary conditions and integration by parts that, in the case of
an even n, or an odd n with o, >0 (so N = (n +1)/2), we have

d (o)

G e ora=o,

whereas in the case of an odd n with o, <0 (so N = (n — 1)/2), we have

d oo

— |u(a;,t)|2dac—ozn|DNq(0,t)|2 =0.
dt J,

Therefore, in general we have

d o0

o lu(z,t)*de <0 for 0<t<T, (4.20)
0

which together with the homogeneous initial condition imply v = 0.

5. The IBV Problem With Sobolev Data

We consider in this section again the IBV problem (1.1) but with the assumptions on
the initial and boundary data given by (1.20)—(1.22). Note that the pointwise evaluations
in (1.22) make sense because N < .. More precisely, we are looking for a weak solution of
(1.1) with the properties stated in (1.23)—(1.26).

Let o € H™(R) be an extension of gy and define §(x,t) by (4.1), where a(£) is the
Fourier transform of go(z).

Lemma 5.1. The function q has the following properties:

(i) The map t — G(-,t) is continuous from R into H™(R).

(ii) Given any ¢ € C°(R) such that D?¢(0) = 0 for 0 < j < n —n — 1, the function
(d(-,t),gb) L (0,00) is differentiable on (0,T), and

forO<t<T. o
(iii) The map * — D?q(x,-) is continuous from R into H%‘FW(O,T) for0 <j <
n — 1.

Proof. Properties (i) and (i¢) follow easily from (4.1).
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To prove (iii) we break (4.1) up into two integrals:

da,t) = = / Oy (¢)a(€) de + /_ w1 _y(e)]a(6) de,  (5.1)

2 J_ o 2T
where ¢ € C°(R) is a smooth cut-off function that is identically 1 on the interval [—L, L]
and |w(—L)| = |w(L)| = R. Note that outside the interval [—L, L] the function w’(&) does
not vanish (cf. (2.15)).
The first integral on the right-hand side of (5.1) defines a C*° function on R? which
clearly satisfies property (ii7). We can rewrite the second integral as

1 a(§)

il ilz€—w(E)tlf] _ "&d
e O o) S
1“8 e - a(&1(n))
- ilz&1(n)—ntlr] _ d
2 Juoo) © GG ey ™
L a(é2(n))
— ilz&2(n)—ntl[] _ d 5.9
+ o w(L) € [ Qp(fz(n))]w,(&(n)) m, ( )
where &1 (n) and &2(n) are the inverses of 7 = w(&) on the intervals (—oo, —L] and [L, 00)
respectively.
We have
w(—L) . 2
14 ER251) 25 | a(&1(n)) d

L —L
_ 14 2R=2i-1) 2J| a(§)| 27 2
/mwwn € |@”%sc/MM|mw|%<m,

and similarly,

dn| < oc0.

w(oo0)
14 ER251) 2j (52( ))
L, P | SR

Therefore the functions defined by the integrals on the right-hand side of (5.2) also satisty
property (ii). ]

By considering the difference between ¢ and ¢, it suffices to solve the reduced IBV
problem (4.2) for a weak solution ¢ that satisfies (1.23)—(1.26), under the assumption (1.21)
and that

fi(0)=0 for 0<I<N-1. (5.3)

Let f;, 0 <1 < N —1, be extended to (0,7 + 1) such that

fie H¥ 20,7 + 1) (5.4)

and
fit)=0 for t>T+(1/2). (5.5)
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It follows from Lemma 3.3, (5.4)—(5.5) that, for 0 <1 < N — 1, the extended function f;

satisfies 2

fre H¥ 220,17 +1). (5.6)

The construction of the weak solution for the reduced IBV problem is now identical
with the construction in Section 4: We first define Qq, ..., Qn_1 by (4.5) and then define
q(z,t) by (4.6).

From (5.6) and Corollary 3.1 we see that the integrals in (4.6) are well-defined, and
property (1.26) follows from Corollary 3.2, Lemma 3.5 and a change of variables.

Next we consider the property (1.23). Let ¢(kg, k;) be a smooth cut-off function in the
real variables kr and k; such that 1 (kg, k;) = 1 when |w(kr +ik;)| < 2R and ¢ (kg, k;) =0
when |w(kr + ik;)| > 3R. From (4.6) we have

m t 27‘_2/8 ik — w(k)t]w(kRakl)wn—j(k)éj_l(k) dk

Dr. 4

= e = _ (k. kYo ()0, ‘ |
WJZ . 1l ko Qs 2 () k. (5.7

Since 9(kg, k;)wn_; (k)Q;_1(k) is holomorphic at the corners of dDg_, it follows from
integration by parts that

1 . N
t— — Y / ettbr=w Oty (ke ke )wn_j(k)Q;_1(k) dk  defines a

21 — 8DR,+
C* map from R into .Z ([0, 00)). (5.8)

The second sum on the right-hand side of (5.7) can be written as

1 N
=20 / ilka=w (W1 — )k, kp)|wn—y (k) Q;—1 (k) dE,
71=11=1

where the disjoint smooth contours ¢; for 1 <1 < 2N come from the part of 0Dg 4 that
is in the domain defined by |w(k)| > 2R.

Lemma 5.2. Let u € Ly(0,00) and v(k) = [ e*®u(z) dx. Then v(k) € Ly(6,|dk|) for
1 <I<2N, and
] 2o, k) < Cllullz,0,00) - (5.9)

Proof. If ¢ is part of the real axis, then (5.9) follows from Plancherel’s theorem.

Let %] be a contour strictly inside the upper half k-plane. Without lost of generality
we can take «,, (the leading coefficient of w(k)) to be positive, since the treatment for the
case where «,, is negative is completely analogous. Furthermore we may suppose that %
is defined by k = g(7) for 7 € R and 7 > 2R, where g(7) is one of the branches of the
inverse of 7 = w(k) such that

k=™ (1 /o)™ — an_q1/(nom) + O(77Y™) as T — o0, (5.10)
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and j is an integer satisfying 0 < (j/n) < 1.
By a classical result (cf. [8], §11.7) the function w(r) = v(re’/™™) belongs to
Ly (a, 00), where a = (2R/a,)'/™. Moreover, we have
[l (a,00) < Clltsll Ly (0,00) - (5.11)
From (5.10) we see that the contour %; can be parameterized by

k= h(r) = glanr™) = re!9/™™ —q,_1/(noy) + 0@~ for a<r < oo. (5.12)

Using (5.12) and the definition of v(k) we find

eimh(r) _ eixrei(j/")" |u(x)| dr

(b)) — )] < [ N

0
< C||u||L2(0,oo)r_(3/2) for a<r<oo. (5.13)
The estimate (5.9) follows from (5.11) and (5.13). O

By Lemma 5.2 and duality we immediately obtain the following corollary.

Corollary 5.1. The map

n—> eikwn(k) dk
)

is a bounded linear map from Ly (€1, |dk|) into La(0,00).

Combining (5.6), Lemma 3.4 and Corollary 5.1 we see that

PN elke =] — o (kp, k) |wn_;(k)Q;j_1(k) dk  defines a continuous
K4

map from R into H"(0, 00). (5.14)

Property (1.23) follows from (5.7), (5.8) and (5.14).
Let ¢ € C°(R) satisfy the assumptions in (1.25) and n € C2°(0,T). Since the space

1, (2A—2j-1)

C°(0,T + 1) is dense in the space H05+ » (0,7 4+ 1), Theorem 1.1 and a density
argument imply that g(x,t) satisfies (4.2b)—(4.2¢), and

= / [#(t) (468), 8() 1, (0.00) + 1) (a5 1), 0(D)B()) o )
+ n(t) z_: [wn—j—1(D)q(0,t)] Dig(0) | dt. (5.15)

j=n—n

Property (1.25) follows immediately from (5.15).
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We have thus proved the existence part of Theorem 1.2. It only remains to prove the
uniqueness of the weak solution satisfying (1.23)—(1.25). Let g1 and g2 be two such weak
solutions. Then we have

u=gq, —qs € C(O,T;Hév_l(o, oo)) N C(O,T; H™(0, oo)) , (5.16)
u(z,0) =0. (5.17)

Moreover, given ¢ € C°(R) such that D7¢(0) =0 for 0 < j <n —n — 1, we have

%(u(, t), gb) La(0.00) = (u(, t), iw(D)gb) L2(0,00) (5.18a)

forO<t<Tif n= N, and

%(u(-,t),gf)) La(000) = (u(-,t),iw(D)gb)LQ(O,oo) + an DN u(0,t) DN $(0) (5.18b)

for 0 <t <Tif n =N+ 1. We can then deduce (4.20) from (5.16) and (5.18) through
mollification. Combining (4.20) and (5.17) we have v = 0.

Alternatively, we can prove the uniqueness of the weak solution using the existence of
solution for the adjoint problem. Let 0 < ¢t < T'. It follows easily from (1.25) and (5.17)
that given any C* map X : [0,t] — .%([0,00)) such that DIX(0,¢') = 0 for 0 < ¢/ <t
and 0 < j <n—n—1, we have

(wC A 0) 1, (0.00) :/0 {(u(.,t'),At(.,t’)+z‘w(D)>\(.,t’))L2(0m)

+ nZ [wn—j—1(D)u(0,¢)]DIX0,¢)|dt . (5.19)

j=n—n

When n is even or when n is odd and «,, > 0 (hence 7 = N in both cases), Theorem 1.1
applied to the backward problem shows that given any ¢ € .% ([0, oo)), there exists a C*
map A: [0,t] — 5’([0, oo)) such that A\; + iw(D)X = 0 on [0,00) x [0,t], A(:,t) = ¢, and
DINO,t')=0for0<j<m—n—1and 0 <t <t When n is odd and a,, < 0 (hence
7 = N + 1), we can further require D"~"\(0,#') = 0 for 0 < ¢’ < t. Since D/u(0,t) = 0
for0<j< N—-1and0<t¢<T,in all the cases we obtain from (5.19)

(u(- 1), ¢)L2(O,OO) =0 V¢e.7(0,00)).

It follows that u(-,t) =0 for 0 <t < T.
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Appendix
A.1. Illustration of D, and D_

The domains D, and D_ for some simple examples are illustrated below. We will
denote by [z] (resp. |z]|) the smallest (resp. largest) integer greater (resp. less) than or
equal to the real number x.

Example A.1.1. For w(D) = D", the domains D4 are defined by

D,={keC:Imk" >0, Imk > 0}

[n/2] : .
- 27 — 2 27 —1
:U{k:k:rew,(‘? >7r<9<<J >7r,0<r<oo},
n n

j=1

D_={keC:Imk" >0, Imk <0}

" : 2§ — 2 2j — 1
= U {k’:k:re’a,(j >7r<9<<‘7 >7r,0<r<oo}.
n n

j=Tn/2]+1

The cases for n = 2,3 and 4 are depicted in Figure A.1.1.

D D
+ +

D D

+ + D,
D
D D
b

Figure A.1.1

Example A.1.2. For w(D) = —D", the domains Dy are defined by

Dy ={keC: —Imk™ >0, Imk > 0}

[n/2] . )

) 27—1 2
:U{k:k:rew,(J >7T<0<<—J>7T,0<’I“<OO},

n n

i=1

D_={keC: —Imk™ >0, Imk > 0}

n ] 2._1 2.
= U {Ii’:l@’:re’(’,(‘7 >7T<(9<(—J>7T,0<7’<OO}.
n n

j=In/2]+1

The cases for n = 2,3 and 4 are depicted in Figure A.1.2.
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Figure A.1.2

Example A.1.3. For w(D) = 2D? + D, the domains D+ (cf. Figure A.1.3) are defined
by

D, ={kecC: Im(2k*>+ k) >0, Imk > 0}
={k=(zx+iy): y>0, 622 —2y*> +1>0},

D ={keC:Im(2k*+k) >0, Imk < 0}
={k=(z+iy): y<0, 62> — 2> +1<0}.

N NS

Figure A.1.3 Figure A.1.4

Example A.1.4. For w(D) = D*+ D? + 1, the domains D1 (cf. Figure A.1.4) are
defined by

Dy ={k:Im(k*+Ek* +1)>0, Imk > 0}
—{k=xz+iy:y>0,z>0,22%—2y°+1>0}
U{k=xz+4idy: y>0,2<0,22® —2y° +1 <0},

D_={k:Im(k*+k +1)>0, Imk < 0}

—{k=xz+iy: y<0,z>0,22% —2y°> +1 < 0}
U{k=xz+iy: y<0,2<0,22> —2y* +1>0}.
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A.2. Illustration of Q(k)

We now give the explicit form of the system of equations in (1.15) for 2 < n < 5.

n=—=2

In this case
wk)=ask®+ak+ay, N=1, =2, m=1.
Thus the system (1.15) is the single equation

w1 (Ag,l(k))Qo(k) + WOQN]_(k) = —(jo ()\le(k)), ke D371 y (A21)

where
Wwp = Gag, wl(k) = Oégk + aq, (A22)

and A2 1 (k) is the solution of the equation w(Ag 1(k)) = w(k) satisfying
Aoi(k) ~e™k, k—o0 in Dgy. (A.2.3)

Given Qo(k), equation (A.2.1) yields Q; (k) for k € D;.

n=3

In this case
w(k) = ask® 4+ ask?® + a1k + og .

There exist two subcases.
(1) az >0
Then
N=2, [=3 m=1,2.

Thus the system (1.15) becomes a single equation

w2 (A3.m (k) Qo (k) + w1 (As,m (k) Q1 (k) +woQ2(k) = —do(A3.m(k)) s &k € Drom, (A.2.4)

where
wo = a3, wl(k:) = ask + asz, W2(l€) = Oé3k2 + ask + aq , (A25)

and A3 ., (k) is the solution of the equation w(As3 ., (k)) = w(k) satisfying

4im 247

Ag,l(k) ~ e 3 k, ke DR,l; Ag,z(k) ~ e 3 k, k e DR,Q . (A26)

Given Qo and Q1, equation (A.2.4) yields Q4 (k) for k € Dy, m = 1,2.
(11) agz <0
Then

23



Thus the system (1.15) becomes
wo ()\2,1(147))@0(16) +wi (Az,l(k))él(k) +woQ2(k) = —do (A2,1(K)) ,
(095 (Ag,l(k))éo(k) —+ w1 (Ag,l(k))él(k) + w()Qz(k) = —Cj() ()\3,1(]{3)) s k S DR,I s (A27)

where wy, wi, wy are given by the equations in (A.2.5) and X; (k) are the solutions of

w(A,1(k)) = w(k) satisfying
/\2,1(16) ~ eTk, /\3,1(16) ~ eTk, ke Dy. (A28)
Given Qo, the system (A.2.7) yields Q1 (k) and Q4 (k) for k € D;. In this respect we note

)
that since wy and w; are defined by (A.2.5), the matrix that needs to be inverted admits
the following LU decomposition

as sz (k) +a2] _ [1 0] {043 sz, (k) + oo (A.2.9)

a3 043>\3,1(k) -+ (6%} 1 1 0 (0% (Ag,l(k) - )\2,1(1{3))

n=4

In this case
wk) = ask* + azk® + aok® + bk +ag, N=2, 1=3,4, m=1,2.

Thus the system (1.15) becomes

w3 (Ag,m (k) Qo (k) + w2 (As,m (k) Q1(K) + w1 (Agm (k) Q2(k) + woQs(k) = —do (As,m (k) ,
Wi (Aa;m (k) Qo (k) + wa (Ag,m (k) Q1 (k) + w1 (Aa,m (k) Q2(k) + woQ3(k) = —do (Aa,m (K))
for k€ Drm, (A.2.10)

where
Wo = Q4 , wl(k) = Oé4k? + a3 s (A.2.11)

U.)Q(k) = a4k2 + agk + o y wg(k’) = 044]{23 + 043]{22 + Odgk + oy y

and A\; (k) are the solutions of the equation w(A;m (k)) = w(k) satisfying

3im

A31(k) ~ ek, Mi(k)~ezk, k€Dgri;
Asa(k) ~eTk,  Aga(k)~e™k, keDrs. (A.2.12)

Given Q and Q1, the equations of (4.2.10) yield Q2(k) and Qs(k) for k € D,,, m = 1,2.
Since wp and w; are defined by (A.2.11), the relevant matrix admits the following LU
decomposition

(a7} 044)\3,m(k) —I— 043:| _ |:1 0:| |:Od4 044)\3,m(k) —I— (0% (A 2 13)
(7] 064)\4,m(k) + (0% 1 1 0 (7] ()\4,m(k) - Ag,m(k)) ) -
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n==>5

In this case
w(k) = ask® + agk* + ask® + axk® + a1k + ag .

There exist two subcases.
(1) as >0

Then
N=3, =45, m=1,23.

Thus the system (1.15) becomes

Wy ()\4,m(k))Q0(k) + ws ()\4,m(k))Ql(k) + -+ woQa(k) = —do (Aa,m(K)) ,
Q Q

w1 (A5,m (k) Qo(k) + w3 (Asm (k) Q1(k) + -+ + woQa(k) = —do (As,m (k) ,
k€Drm, (A2.14)

where

wo =05, wi(k)=oask+as, wik)=ask®+ask+as,
wg(k’) = 045]{23 —I— 044]{22 + Ozgk —f— a9, w4(k') = 045]{24 + 044]{23 + a3k2 + Oégk + a1, (A215)

and A, (k) are the solutions of the equation w(A;.,(k)) = w(k) satisfying

)\471(]{7)“/6 5 k’, /\5,1(]6)’\46 5 k, kGDRyl;
Ma(k) ~ e Tk, XAsa(k) ~ ek,  k€Dgy; (A.2.16)
Mis(k) ~e 5k, Asa(k)~e Tk, keDgs.

Given Qo(k), Q1(k), Qa(k) the system (A.2.14) yields Q3(k) and Q4(k) for k € Dy,
m = 1,2,3. Since wy and w; are defined by (A.2.15), the relevant LU decomposition is

as  o5Aam (k) +a4} _ {1 0] |:Oé5 asAam (k) + oy (A.2.17)
Qs Oé5)\5,m(k‘) + gy 1 1 0 a; (/\5,m(l€) — )\4’m(k)) ) -
(11) as <0
Then

N=2, 1=345, m=12.
Thus the system (1.15) becomes
wi (Az,m (k) Qo(k) + -+ + woQa(k) = —do(As,m (k)
w1 (M,m (k) Qo(k) + -+ - + woQa(k) = —do (Aa,m (k) ,
W4(As,m(k)) o(k) + -+ +woQa(k) = —do(Ns.m(k)), k€EDgm, (A2.18)
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Given Qo(k) and Q1 (k) the system (A.2.18) yields Q2 (k), Qs(k), and Q4 (k) for k € D,p,,
m = 1,2. Since wg, wi, wy are defined by (A.2.15), the matrix that needs to be inverted

(071 045)\4,m(k) —f— (a7} a5Aﬁ,m(k) —f— 044)\47m(k) —f— a3

(071 045)\3,m(k) —f— (a7} 045)\§,m(k) —f— 044)\37m(k) —f— a3
a5 asdsm(k) + s asA?,, (k) + asdsm (k) + o3

admits the LU decomposition where

[ 1 0 0
L=|1 1 0],
1 AS,m(k)*>\3,m(k) 1
L Aa,m (k) =Az,m (k)

[ s asA3m (k) + ays 53, (k) 4+ asdg m (k) + as
U= 0 (673 (/\4,m(k’) — Agjm(k)) (673 ()\Z’m(k) — /\g,m(k)) + oy ()\4,m(k) — Agym(k)) ]
| 0 0 s (As,m (k) — A3,m (k) (As,m (k) — Ag,m (K))

We now give the explicit form of Q(k)jor Examples A.1.3 and A.1.4.
For Example A.1.3, given Qo(k) and Q1(k), equation (A.2.4) yields

1

Orlh) =

5 {@o (Aa,m(K)) + (243 1 (K) + 1)Qo(k) + 2>\3,m(k)Q1(k)} : (A.2.20)

for k € Dr,m, and m = 1,2, where

—k —ivV3k%2 +2 As o (k) —k +iv3k2 +2
) 3,2 - .
2 ’ 2

A3,1(k) = (A.2.21)

Note that A3 1(k) ~ e’ k and Asz,2(k) ~ e“5k, as k — oo.
For Example A.1.4, given Q(k) and Q1(k), using equation (A.2.13), the equations of
(4.2.10) yield

~ _ Aa,m (k) do ()\3,m) A3,m (K)o ()\4 m(k)) )

Qs(k) Mo (F) = e () + A3,m (k) Aa,m (k) (A3,m (k) + Aa,m (k) Qo (K
+ (A3 (k) Agm (k) — 1) Q1
Galk) = %(A;jnf’(“,i)) = i(j}g’)‘(’“ D (080 B) £ (k) + X (W) s (k) + 1) Qo)
— (Aam(E) + Am (k) Qi(k), k€ Dryn,m =1,2, (A.2.22)
where

A31(k) = Aa2(k) = €™k, Az e TVE2+1, Ao TVEZ+1.  (A223)
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A.3. Other Types of Boundary Conditions

It is possible to extend the results of Theorems 1.1 and 1.2 to the case where the
equations of (1.1b) are replaced by

FZ(Q(Oat)aamq(Oat)a"'7ag_1Q(0at)):fl(t)a 0<t<T, OSZSN_la

where Fj are linear functions of {87¢(0,t)}f . If these functions have constant coefficients,
Q(k) can be obtained through the solution of a system of algebraic equations. For brevity
of presentation we discuss in detail only a simple example.

Consider the following equation on the half-line:

with initial condition
q(z,0) = qo(x), 0<z<o0. (A.3.2)

In this case
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w(k) = —k° ) )\Z,I(k) = Ck, )‘3,1(k) = C2k7 (=es .

(A.3.3)
Using wo = —1, wy (k) = —k, wa(k) = —k?2, the equations of (2.20) become
Qa(k) + CkQ1(k) + C*k*Qo(k) = do(Ck) — e ™ T4 (Ck), (A.3.4a)
Qa(k) + K2 Qu(k) + Ck*Qo(k) = Go(C?k) — e * T4, (CPk), ke Dy. (A3.4D)
Also, the definition of Q(k) (equation (1.6a)) implies
Q2 (k) + kQ1 (k) + k2 Qo (k) = —Q(k) . (A.3.4¢)

Using
1+¢+¢*=0,

equations (A.3.4a)+(A.3.4.b)+ (A.3.4c), (3(A.3.4.a)+((A.3.4b) +(A.3.4c) and ((A.3.4a)+
(%(A.3.4b) + (A.3.4c) become
3Q2(k) = —Q(k) + do(Ck) + do(¢°k) — e T (4 (Ck) + 42 (C°k))
8kQ1(k) = —Q(k) + Co(C*k) + C2do(Ck) — ™ *' T (Cr(Ch) + CPar(CR))
3k2Qo(k) = —Q(k) + C2do (¢*k) + ¢do(CK)
— e T4 (CR) + Can(CR), k€D,  (A35)
These equations motivate the following result.

Proposition A.3.1. Let q(x,t) satisfy equations (A.3.1)—(A.3.2), where qo € H*(0,00),
and any one of the following boundary conditions

q(0,t) = fo(t), 0<t<T, (A.3.6a)
2:(0,t) = f1(t), 0<t<T, (A.3.6b)
G22(0,8) = fo(t), 0<t<T, (A.3.6¢)
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where f; € H'=U/3)(0,T) for 0 < j < 2. Furthermore suppose that if (A.3.6a) or (A.3.6b)
are valid then the following compatibility conditions are satisfied

fo(0)
f1(0)

respectively. The unique solution of this initial-boundary value problem is given by equation

N

(1.4), where for the cases (A.3.6a) or (A.3.6b) or (A.3.6¢), Q(k) is given by

(A.3.7a)

qo )
4(0) , (A.3.70)

T
O(k) = —3k2 /0 R fo (1) dt + Co(CPR) + Cao(CR) (4.3.80)
T
(k) = 3ik / e £ () db + Co(CPR) + Cao(Ch) (A.3.80)
0
T
Qk) =3 /0 e ikt fa2(t) dt + Go(Ck) + Go(C2k). (A.3.8¢)

If a linear combination with constant coefficients of {92¢(0,t)}2 is given, it is also
possible to obtain (k) explicitly. Consider for example the case

—ig,(0,t) = aq(0,t) + f(t), 0<t<T, (A.3.9)

where « is a constant and f(t) € H*/3(0,T). Equation (A.3.9) implies

A A ~

() = aQo(®) + f(B), f0) = [ e r)ar, (4.3.10)

0

Eliminating the combination Q1 (k) — aQo (k) using (A.3.5) we find

3k f(k) = (o — k)Q(k) + (k¢ — a¢?)do(¢%k) + (k¢? — al)do(CK)
+ e T (¢ — kQ)dr (CPR) + (aC — kC?)an(CR)} . (A3.11)

If o is not in Dy, equation (A.3.11) yields Q(k) in terms of f(k) and §o, since the term
involving e~ i*"T /(a—k) is holomorphic and bounded in Dy and hence does not contribute
to q(x,t) given by (1.4). If o € D, we can rewrite equation (A.3.11) in such a way that
the term involving e~ ik°T /(o — k) again gives a zero contribution: Evaluating equation

(A.3.11) at k = «, we find
3af(a) = (¢ —¢?) [@0@204) — qo(Ca) + e T (= G, (CPa) + ch(Ca))] : (A.3.12)

In order to make the term involving e "7 /(e — k) holomorphic and bounded in D, we
subtract the pole contribution, whose residue is given in terms of f(a), do(¢?a) and o ().
This motivates the following result.
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Proposition A.3.2. Let q(x,t) satisfy equations (A.3.1)—(A.3.2), where qo € H?(0, ),
and equation (A.3.9). Furthermore, suppose that

—iq,(0) = aqe(0) + f(0). (A.3.13)
The unique solution of this IBV problem is given by equation (1.4), where Q(k’) is computed

as follows:
If a is not in D,

Qk) = ﬁ {=3K2F (k) + (B¢ — aC)ao(CR) + (K — aQdo(Ck) b s (43.14)

ifa€ Dy,
Q) = |~ 3K (k) + 302 F(@) + (K — a®)io(¢H) — (o€ — aC®)io(a)
+ (k¢? = aQ)do(Ck) — (a¢? = aQ)do(Ca) | ; (4:3.15)
where

fk) = /T e F (L) dt (A.3.16)

0
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