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Abstract

We study tight wavelet frames associated with symmetric compactly supported re-
finable functions, which are obtained with the unitary extension principle. We give
a criterion for existence of two symmetric or antisymmetric compactly supported
framelets.

All refinable masks of length up to 6, satisfying this criterion, are found.
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1 Introduction

The main goal of our paper is to present a criterion for existance of two symmetric or
antisymmetric framelets generated by a symmetric refinable function. We consider only
functions of one variable in the space L?(R) with the inner product

()= [ floratards.
As usual we denote by f(w) Fourier transform of the function f(z) € L3(R),
for= [ p@e= .

Suppose a real-valued function ¢ € L*(R) satisfies the following conditions:

(a) ¢(2w) = mo(w)p(w), where myg is an essentially bounded 2w-periodic function;

(b) litn, o pleo) = (27) %
then the function ¢ is called refinable or scaling, my is called a symbol of ¢, and the relation
in item (a) is called a refinement equation.

*This research was partially supported under Grants NSF KDI 578A045, DoD-N00014-97-1-0806,
ONR/ARO-DEPSCoR-DAAGH5-98-1-0002, and by Russian Foundation for Basic Research under Grant
#00-01-00467



Every refinable function generates multiresolution analysis (MRA) of the space L*(R),
i.e., a nested sequence

e CVreVlc Vi Cc VI C L.

of closed linear subspaces of L?(R) such that

(a) NjezV? = &;

(b) UjezVi = L*(R);

(c) f(z) € VI & f(2z) € Vitl |
To obtain the MRA we just have to take as above V7 the closure of the linear span of the
functions {¢(2/z — n)}nez. Fulfillment of item (a) and (b) for the obtained spaces V¢ was
proved in [1]. Property (c) is evident.

The most popular approach to the design of orthogonal and bi-orthogonal wavelets is
based on construction of MRA of the space L?(R), generated with a given refinable function.
S.Mallat [6] showed that if the system {p(z —n)},ecz constitutes a Riesz basis of the space V°,
then there exists a refinable function ¢ € V° with a symbol m, such that the functions {¢(z—
) }nez form an orthonormal basis of V0. If we denote by W/ the orthogonal complement of
the space V7 in the space V/*! then the function v (which is called a wavelet), defined by
the relation

P(2w) = my(w)(w),
where my(w) = €my(w + 7), generates orthonormal basis {1)(z — n)},ecz of the space W°.
Thus, the system

{2k/2¢(2kx - n)}n,kEZ (1)

constitutes an orthonormal basis of the space L*(R).

We see that if we have a refinable function, generating a Riesz basis, then we have explicit
formulae for the wavelets, associated with this functions. It gives a simple method for
constructing wavelets. Generally speaking, any orthonormal basis of L*(R) of the form (1) is
called a wavelet system. However, wavelet construction based on a multiresolution structure
has the advantage from the point of view effectiveness of computational algorithms, because
it leads to the pyramidal scheme of wavelet decomposition and reconstruction (sf. [4]).

It is well-known that the problem of finding orthonormal wavelet bases, generated by a
scaling function, can be reduced to solving the matrix equation

M(w)M™(w) = I, (2)

M(w) = ( mo(w) my(w) ) :

mo(w +7) my(w+ m)

where

mo(w), m1(w) are essentially bounded functions, and mo(—w) = mg(w), i.e., the Fourier series
of these functions have real coefficients. It is known (see [4]) that for any scaling function
@(z) and associated wavelet i (z), generating an orthogonal wavelet basis, the corresponding
symbols mg(w), m;(w) satisfy (2). Any refinable function ¢, whose symbol mg is solution
to (2), generates a tight frame (see [5] for the case when myg is polynomial, and [2] for the
general case).



Let us recall that a frame in a Hilbert space H is a family of its elements {fi }rez such
that for any f € H

AlIFIP <D IS Fo)l? < BIIFIP

kEZ
where optimal A and B are called frame constants. If A = B, the frame is called o tight
frame. In the case when a tight frame has unit frame constants (for example, if it is an
orthonormal basis) for any function f € L*(R) the expansion

F= Afasf)fn (3)

1s valid.

The frame {{Tp;,k}j,keZ}?:la where ¢;k(w) — 29/%4) (292 — k), generated by translates and
dilations of finite number of functions, is called an affine or wavelet frame.

In the case when the symbol mg of a refinable function ¢ does not satisfy the equation

[mo(w)]* + [mo(w + )| = 1,

we cannot construct an orthonormal bases of V! of the form {¢(z — k), (z — k)}. However,
we can hope that there exists a collection of several framelets 9, 4%, ..., 9™ € V!, satisfying
the following conditions:

1) the functions {{¢;,k}j,keZ}7:1 form a tight frame of the space L*(R);

2) for algorithms of decomposition and reconstruction the recurrent formulae

(k> f) = cju = Z Cj+1,k71k—2l, ( jkv f) = dg,z = Z Cj+1,k§2_zza 1<q¢<n, (4)
keZ keZ
and
CRVEDDLTURED D) P IS (5)
kEZ =1 keZ

where g{ are coefficients of the expansions

mo(w) —9-1/2 Z hke_ik‘”, mq(w) — 9-1/2 2926_““",

kEZ kEZ
take place. )
Let ¢ be a refinable function with a symbol mg, ¥*(w) = my(w/2)$(w/2) € V!, where
each symbol my, is a 27-periodic and essentially bounded function for £ = 1,2,...,n. It is

well-known that for constructing tight frames with property 2) the matrix

M(w):(mo(“’) mi(w) . ma(w) )

mo(w+7) mi(w+7) ... my(w+n)
plays an important role. It is easy to see that the equality
M(@)M () = T (6)
is equivalent to (4) and (5).

In our recent paper the following theorems were proved
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Theorem A ([7]). If (6) holds, then the functions {¢j}§:1 generate a tight frame of L*(R).

Remark. For n = 1 this theorem was proved in [2]. For an arbitrary n it was proved in [8]
under some additional decay assumption for ¢. In [3] this and the next theorem was proved
for a special case when mg is a trigonometric polynomial. In [8] Theorem A was called the
unitary extension principle.

Theorem B ([7]). Equation (6) has a solution if and only if
[mo(w)|” + mo(w + m)* <1 (a. e.). (7)

Thus, the problem of constructing tight frames, generated by a refinable function, can
be reduced to finding my, satisfying (6). It is clear that relation (6) can be re-written in the
form

M(w) = Moy () M3y (w) = ( 1 — |mo(w)]? —1mg(w)mo(w + ) ) 7 (8)

—mo(w)mo(w + ) 1 — |mo(w + 7)|?
where

Moy = () mle) )

mi(w+7) malw+m) ... my(w+ )

Let us introduce the diagonal matrix A(w) with eigenvalues of the matrix M(w) on the
diagonal and the matrix P(w) whose columns are the corresponding eigenvectors. Then

e G
For those w for which
B(w)B(@) = mo(w)? + fmo(w + ) £ 0
we define the matrix P(w) in the form
(ewmow ETY b
P(w) = B(w) B(w)

(Spe) meletn) )

where B(w) is a m-periodic function. At points, where B(w) = 0, we define the matrix P(w)
as the identity matrix.
Thus, we have

M(w) = P(w)A(w)P"(w). (9)

Now we can discribe all possible solutions to (6).



Theorem C ([7]). Let a 2n-periodic function mo(w) satisfy (7). Then there exists a pair
of 27 -periodic measurable functions my, mo which satisfy (6) for n = 2. Any solution of (6)
can be represented in the form of the first row of the matriz

My(w) = P(w)D(w)Q(w), (10)

where D(w) is a diagonal matriz, D(w)D(w) = Aw), Q(w) is an arbitrary unitary (a.e.)
matrix with w-periodic measurable components.

Remark. To describe all possible solution to (6) for an arbitrary n we have to take an
arbitrary n x n unitary matrix () with m-periodic elements and a 2 x n matrix D’ which is
extension of the matrix D(w) by mean of filling all new columns with zeros.

Theorem D ([7]). Let a trigonometric polynomial mo(w) of degree n satisfy (7). Then
there exists a pair of trigonometric polynomials my, mo of the degree at most n satisfying

(6).

Remark. In [3] this theorem was proved without the guaranteed degree of the polynomials
nyp, M.
Let now and in what follows a function mg(w) satisfy the condition

mo(w) = e™my(w), €7, (11)
then the corresponding refinable function ¢(z) are even after appropriate whole integer (1 is
even) or half integer (I is odd) shift of an argument. We shall call such funcions and their
symbols symmetric. From here on without loss of generality we suppose [ = 0, 1.

We call antisymmetric those functions which after an appropriate whole or half shift
are odd. We are interested in framelets 1, which are either symmetric or antisymmetric.
Symbols of antisymmetric framelets satisfy the relation

my(w) = —eil‘”mk(w), l e Z. (12)

In applications such systems are of great practical importance. The numerical algorithms
for them have low computational complexity. And the problem of signal edges is solved very
easily by means of even or odd extension.

The natural question about possibility to choose (anti)symmetric framelets for a given
symmetric refinable function ¢ arises. In the recent paper [3] positive answer this question
was given.

Theorem E ([3]). For any refinable function ¢ with a polynomial symbol mq there are 3
(anti)symmetric functions my, ma, ms, providing a solution to (6).

However, many examples, when system (6) can be solved with 2 (anti)symmetric framelets,
are known. For instance this is possible for the cases of piecewise-linear ([8]) and piecewise-
quadratic ([3]) B-splines. Our goal is to present a criterion for existence of 2 (anti)symmetric
framelets.



2 Main result

First, we introduce necessary definitions and notation.

The degree of a trigonometric polynomial E?:l are®, where a; # 0 and ag, # 0, is defined
to be k — L.

We denote by L a set of all Laurent polynomials with real coefficients, and by £,, a set
of Laurent polynomials with real coefficients of degree at most n, 1.e.,

k
L, = {Zajzj l,kEZ;ajER;OSk—ZSn}-

i=l

We denote by deg(f) the degree of the Laurent polynomial f.
In what follows Laurent polynomials hy(z) are specified by the z-transform of the symbols
my(w), i.e., hp(e™) := my(w).

Theorem 1. Let ho(z) is a symmetric Laurent polynomial of degree n, satisfying (7). Then
two (anti)symmetric solutions to (6) exist if and only if all roots of the Laurent polynomial

h(z) :=1—ho(2)ho(1/2) — ho(—2)ho(—1/2) (13)

have even multiplicity. Moreover, in this case polynomials my, mq of degree at most n can
be chosen.

This theorem has a simple consequence for B-spline multiresolutions. Let us recall that
B-splines is defined to be

0,1 .
Bo(ZB) = { 07 . € [07 1]’ Bn_|_1 = Bn * Bo.

Corollary 1. For the refinable functions B, two (anty-)symmetric solutions exist for n =
0,1,2,6 and do not exist forn = 3,4,5,7,8,...,50.

This corollary was obtained by direct computation of roots of the corresponding polyno-
mials with Matlab.

Remark. For n = 0 we have Haar’s wavelets. The solution for n = 1 was found by A.Ron
and Z.Shen [8] and the solution for n = 2 was found by C.Chui and W.He [3]. We consider
the case n = 6 in Section 4.

A symbol ho(z) = 1/2+ N an (272 4 221, N 4, = 1/4 is called interpolatory.

n=1
Corollary 2. An interpolatory symbol hg admit (anti)symmetric solutions to (6) if and only
if ho(z) = (zl_2N + 24+ z2N—1)/4.

Remark It 1s clear that only for N = 1 we have a real interpolatory refinable function,
satisfying the condition ¢(0) =1, ¢(n) =0, n € Z, n # 0.



3 Proof of main result

3.1 Necessity

We assume that the polynomials mg, mq, ms provide a solution to (6), mg is symmetric and
my, ms are either symmetric or antisymmetric. Let us introduce a matrix N(z) which is
z-transform of the matrix M(w). Then equation (6) can be rewritten in the form

N(z)NT(1/z) = I.
Obviuously we can extend the rectangular matrix up to a 3 x 3 para-unitary matrix

ho(z)  hi(z)  ha(z) .
—z) hi(—=2z) hao(—2) |, N'(z)N" (1/z) = 1.

(
ao(2?)  ai(2?)  as(2?

The new row can be obtained as a vector product of the known rows. It guarantees that
a;(z) € L. We note that any other possible polynomial choices of the last row differ from
this one by the factor £2*, k € Z. We used the factor z so that elements of the last row
depend only on even powers. Thus, we have

ao(2%) = 2(ha(1/2)ha(—1/2) — ha(1/2)ha(—1/2)). (14)

We denote by S the set of all (anti)symmetric polynomials. We shall use the subscripts
e, 0o, w, h to denote subsets of S, consisting of respectively even, odd, whole and half
symmetric polynomials of S and integer superscripts to denote a value k in the relation
f(1/z) = z7*f(z). For instance, Si.o 15 the set of polynomial which are odd at a whole point
and for any f € S5 , we have f(1/z) = z7*f(z). Of course subscripts w and h is compatible
correspondingly only with even and odd superscripts.

Let us prove that ag € S. This 1s enough to prove the necessity. Indeed, since we have
the identity

ho(2)ho(1/2) + ho(—2)ho(—1/2) + ao(2*)ao(1/2%) = 1,

then the symmetry of ag implies that all non-zero roots of the polynomial
1 — ho(2)ho(1/2) — ho(=2)ho(—1/2) = ao(2?)ao(1/2?) = £22*a2(2?) (15)

have even multiplicity. First, we note that polynomials from S satisfy the followng obvious
properties:
(al) f,ge S = fge S,

a2) f,g € Se = fg € Se;
a3) f,g € So = fg € Se;
ad) f € S,,9 € Se = fg € So;

) .9 € Sw= fg € Su;

) f.9 € Sh= fg € Su;

)fESw,QEShijESh;

) 1) €50 & 1) 1) € 5.
f

2) f(z) € S, & f(1/x) € S,;



(b3) f(:l?) S Sh,e = f(—iB) S Sh,o;

(b4) f(z) € Swe (f(2) € Suo) & f(—2) € Sne (F(2) € Su,o);

(c) f€Sw= flz)+ f(—=x) € S.

Now we consider the case hy € S,,. Taking into account (a) — (c), and (14), we obtain
that the symmetry of ap may be violated only if hs(z)hi(—2) € Sp. In this case hy and hs
belong to different classes S, and S;,. We suppose that hy € Sy, hy € S},.

Because of the orthogonality of the 1st and the 2nd rows of the matrix N'(z), we have

ho(z)ho(—1/z) + h1(2)h1(—1/2) + h2(2)h2(—1/2) = 0. (16)

We see that, according to properties (a2), (bl), (c), the 1st and the 2nd summands in (16)
belong to S., whereas, by (a4) and (b2), the 3rd one belongs to S,. It means hy(z) = 0.
Hence, we have ap = a; = 0, as(z) = 2*. Thus, we come to the case of one framelet. Of
course this is impossible for hy € S, (sf. [4], Chapter 8), though (14) gives us a permissible
function ag(z) = 0.

We note that by the same reasons hy, hy € S,,. Actually, if hy, hy € S}, then the 1st term
in (16) is even whereas the 2nd the 3rd ones are odd. It means that ho(z)ho(1/z) = 0.

Moreover, it is easy to prove that hy € S., hs € S, or vise versa. The point is that for
the functions hq, hy with the same evenness, by (14), we get an even polynomial ag. Thus,
the polynomial ag(2?)ag(1/2?) has positive coeffitients of the lowest and the highest powers,
whereas the corresponding coefficients of the left-hand part of (15) are negative.

Now if we suppose hy € S, in analogous way we obtain that the both functions h; and
hs belong to Sp,. Indeed, since the 1st term in (16) is odd then two other terms are odd.
Hence, hy, hy € Si. Easily to see that the case hy, hy € Sp. is not valid. It contradicts to
the equality

ho(2)ho(1/2) + hi(2)h1(1/2) 4+ ha(2)h2(1/2) =1

due to the positivity of coeflicients of the lowest and the highest powers of all terms. From(14)
and (b3) we have ag € S, for hy, hy € S, and ag € S, for hy € Se, hs € S,.

Thus, we have 3 permissible cases:

1) ho € Su, h1 € Sy, ha € Sy

2) hy € Sh, hi € Shp, hs € Shp;

2) hy € Sh, hi € Sh,m hs € Shp.

Examples for all of them will be given in Section 4.

3.2 Sufficiency

We assume that mg(w) is a trigonometric polynomial, then B(w) = |mg(w)|* + |mo(w + 7)|?
and A(w) = 1 — |mo(w)|? — |mo(w + 7)|? are also non-negative trigonometric polynomials
So according to Riesz lemma, we can take m-periodic polynimials A(w) and B(w) such that
|A(w)|* = A(w), |B(w)|* = B(w). Since h(z) is a symmetric polynomial of even power and its
roots have even multiplicity, we can take an (anti)symmetric polynomial A(w). The choice of
ap is not unique, in what follows we suppose for definiteness that either ag € S or ag € Sj.
We assume that the choice of matrices P(w) and D(w) in Theorem C corresponds the last
assumptions.
Our further proof repeats for the most part reasoning from [7].
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In fact, we cannot control the choice of the matrices P(w) and D(w) in (10). So we need to
choose a unitary rational m-periodic matrix Q(w) such that My (w) consists of trigonometric
polynomials.

Let us apply z-transform to (10). In what follows we consider the Laurent polynomials
b(e*) = B(w), ag(e*™) = A(w). After the same change of variable the matrix P(w) becomes

We put the last representation of the matrix H(z) through procedure of reduction. If poly-
nomials ho(z), ho(—2), b(2?) are divisible by z — zp, that in view of the symmetry of h(z)
they are also divisible by z + zo. Obviously, since ho(1) # 0, then z; # +1. We cancel the
fractions of H(z) by (1/2* — 22)(2* — 2%). After all possible cancellations we obtain the same
matrix H'(z) = H(z) but its elements are expressed in terms of new functions h{(z) and
V(z). It is clear that &' (%) (1/2%) = h(2)hiy(1/z) + hi(—2z)hi(—1/z) and numerators of the
matrix H'(z) do not vanish simultaneously. Indeed, since the determinant of H(z) is equal
to 1/z, if for some zo we have ho(zg) = ho(—20) = ho(1/20) = ho(—1/zy) = 0, then either
b(z3) = 0 or b(1/2%) = 0. It means that the reduction of H(z) can be continued. We note
that because the coefficients of ho(z) and b(z) are real, the polynomials hy(z) and ¥'(z) also
have real coefficients. Moreover, hy(z) is symmetric.

After taking z-transform the elements q11(2%), q12(2?), g21(2?), ga2(2?) of the matrix Q(w)
satisfy the relations

22(z) = Q11(1/Z)ZN7 qi2(2) = —Q21(1/Z)ZN, N e Z.

Here, without loss of generality, we may suppose N = 0, because any other choice leads to
the integer shift of one of the basic framelets.
To reduce poles of the matrix H'(z) after multiplication by Q(w) we suppose that

- 91(%) _ 92(#)
q1(z) = b (z) ) @21(z) = b’(l/z)’

where g1, g» are Laurent polynomials.

Let R = {£zF, 425 ... £25) be a set of all different roots of the polynomial b'(22)¥(1/2?).
We denote by k; the multiplicity of the root z;. It is clear that all four roots :I:z;—Ll have the
same multiplicity. So the degree of polynomial &'(2%)0'(1/2?) is equal to 43 k; = 4k, where
k is the degree of polynomial b'.

To prove the theorem we need to find polynomials g1, g» which satisfy equations

1 (<3) )+ A Jn(2) = WL L) (17)

z



Ly (_1) 0 (i) + an()h(2)gn (i) — WA (1)) fo(2) (18)

z 22

_lhg (%) g1(2%) + ao(22)h(—2)g2(2%) = V(22 (1/2%) f3(2); (19)

z

2 (1) e () + o am=21an (55) =B/, (20)

z z

where f1, f2, fs, f4 € L. Moreover, we need to satisfy the condition of the unitarity of the
matrix @(w). Hence,

91(2)91(1/2) + g2(2)g2(1/2) = V' (2)b'(1/ ). (21)

Now we leave aside equation (21) and prove the existence of polynomials g1,¢» € Ly,
satisfying (17) — (20). First we choose templates for the polynomials ¢g; and gs. There are 12
different cases which depend on type of symmetry of the polynomials hg, ag, and on evenness
of the number k. They can be classified into three groups with 4 cases in every group.

1) hg € Sw, ag is odd.

(a) ag € S;lw, kis odd, g; € S;lw, gs € S};i, deg(g1) = deg(g2) = k;

(b) ag € Sy, kis odd, g1 € S}, ,, g2 € Sy, deg(gr) = k — 1, deg(gs) = k;

(c) ap € S}lw, k is even, g; € 5'5}78, gs € Swo, deg(g1) = deg(gs) = k;

(d) ap € 5'2}70, kis even, g; € S}lw, g € Swe, deg(g1) = deg(g2) = k;

2) hg € Sh, ag is odd.
(a) ag € S}lw, kis odd, g; € 5'5,78, g € S};i, deg(g1) = k — 1, deg(g2) = k;
(b) ao € Sy, , b is odd, g1 € 5}, g2 € Spp, dog(gy) = dog(ge) = &
(c) ao € Si,, kis even, g» € S}, g2 € 8,2, deg(gr) = k — 1, deg(gs) = F;
(d) ap € S, k is even, g1 € S, g2 € SS}e? deg(g1) = deg(gs) = k;
3) hg € Sh, ag is even.
(a) ag € S}lw, kis odd, g; € 5'5,78, g € S}Zi, deg(g1) =k — 1, deg(g2) = k;
(b) a0 € Sg},e? ks odd, g1 € S;lL,ea g2 € S;: deg(g1) = deg(g2) = k;
(c) ao € Si ., kis even, g» € S}, g2 € S;%, deg(gr) = k — 1, deg(gs) = F;

(d) ap € S, .. kis even, g1 € S, ., g2 € Sy, deg(g1) = deg(g2) = k;

For the cases 2d) and 3b) we have k 4+ 2 unknown parameters and for others cases
we have k + 1 parameters. Obviously for all cases the left-hand parts of (17) — (20) are
(anti)symmetric.

First we show that there exist polynomials g; and g, satisfying equations (17) — (20) at
points of the set R. As it usually is in the case of a root # of multiplicity %, we require that
the left-hand parts of (17) — (20) are divisible by (z — 2°)*.

Equations (17) — (20) give us 16k homogeneous linear equations for k+1 or k+2 unknown
coeffitients of polynomials ¢g; and g,. We shall prove that at most k of them are linearly
independent. The proof of this fact we conduct in 4 steps. Three of these steps are based
on the following lemma.

10



Lemma 1. Let a1(2), as(z), as(z), as(z), bi(2), ba(2) c1(2), ca(z) be Laurent polynomials,
lai(z0)|* + |aa(20)|? # 0, 1 is a positive integer. If

a1(2)b1(2) + as(2)bs(2) = (2 — 20)'ea(2), (22)

a1(z)as(z) — as(2)as(z) = (2 — z0)'ea(2), (23)
then we have

as(2)bi(z) + as(2)ba(2) = (2 — z0)'c(2), (24)

where ¢(z) € L.

Proof. Let us assume for definiteness that a;(zo) # 0. We express b; from (22) and a4 from
(23). Using the obtained representations, we have

a3(2)b1(z) + aa(2)ba(z) =
(z — ZO)lcl(z) — az(2)bs(2) (z — ZO)lcz(z) + as(z)as(z) _
w(?) + ) w(z) -
(Z . ZO)lGS(Z)Cl(Z) + b2(Z)C2(Z) _. (Z . zo)lc(z).

a1(2)

as(z)

O

In the first step we prove that for every Z € R ounly one equation of the pairs {(17), (19)}
and {(18), (20)} should be retained. Indeed, on the one hand

o (-1) weme | ~
det 1 1 = ;ao(z2)b'(z2)b'(1/z2) =(z— E)kcl(z), al(z) € L,
20 (2) alm-2

on the other hand, since ag(z)ag(1/z) = 1—0b(2)b(1/z), ag(z*) # 0 for any z € R. Hence, the
last matrix at point Z has at least one non-zero element. We assume for definiteness that the
first row contains non-zero element. Then by Lemma 1, if ¢; and g, at the point Z satisfy
(17) with multiplicity k, then they also satisfy (19) at least with the same multiplicity. So
at the point Z we can exclude equation (19) from consideration. In the same manner we
eliminate one of equations (18) and (20).

In the second step we reject equations, corresponding to the roots Z and 1/2. Now for
two roots Z and 1/Z we have 4k equations. It turns out that at most 2k of them are linearly
independent. We show that we can keep only equations of the form (17) and (19). Indeed,
let us assume that in the previous step we kept equation (17) for 2 € R and equation (18)
for 1/2. Now we prove that linear equations generated by (18) for 1/Z can be omitted. We
apply the change of variable z — 1/z to (18). Then the left-hand part of (18) becomes

ao(1/2*)ho(1/2)g1(%") — zho(—2)g2(27). (25)

11



Since

U (ZL)  a@we)

z

det
1 ! 1 !
(273} (;) hO (;) —Zho(—Z)

where b"(z) = b(2)/V/(z), is divisible by (z — Z)¥, expression (25) is also divisible by (z — 2)*
and the left-hand part of (18) is divisible by (z — 1/z)F.

Dependence of the equations, generated by (20), is obtained by the same reasons. Indeed,
after transform z — 1/z the left-hand part of (20) is equal to

ao(1/2%)ho(—1/2)g(2") + zho(2)g2(27).

(<2) k)

z z

a| 7 BB (—1),
a ( )h’(—l/z) zhy(2)

I

= V() (1/2°) (0" ()" (1) 2% ho () Mg (1] 2) — 1),

Since

then the left-hand part of (20) is divisible by (z — 1/2)*.
In the third step we prove that equations, corresponding Z and —Z, are linear dependent.
Let us assume that we have chosen equation (17) for the both roots +£2. After substitution
z — —z the right-hand part of (17) is transformed to

_lhg (%) 91(2%) + ao(2°)hi(—2)g2(2%).

z
Since
1/ 1 2 /
;ho S ao(z”)ho(z) 1
det | © 1 = —ao(2)V' (2 (1/2%)
0 (2) wlma) |
z z

is divisible by (z — Z)*, then the equations for —Z are linear dependent of the equations for
z.

In the case, when we take equation (17) for Z and equation (19) for —Z, the corresponding
linear equations coincide.

Finally, we note that because the left-hand parts of (17) — (20) belong to S, the linear
equations for Z,1/Z € R coincide.

Thus, we have proved the existence of a pair of polynomials ¢;,92 € L,, satisfying
equations (17) — (20) on all of R. Although the polynomial ¥ (2?)d'(1/2?) can have complex
roots, it is easy to check that we can choose polynomials g;, g» with real coefficients. Indeed, if
2o 1s a root of b'(2?)b/(1/2%), then %, is also a root. Coefficients of the equations, corresponding
these roots, differ in complex conjugation. So instead of them we can consider real equations,
corresponding to real and imagine parts of the initial equations.

12



Thus, we have k homogeneous linear equation for k 4+ 1 or k£ + 2 unknown values. Let us
take any non-degenerate solution of the system. Now we prove that the corresponding pair
of polynomials ¢g; and g» of degree at most k, satisfying (17) — (20) and the relation

g (1) + g3(1) = (1), (26)

satisfies also the equation

91(2)91(1/2) + 92(2)g2(1/2) = V' (2)b'(1/2). (27)

Indeed, let us assume for definiteness that z € R and |W/(=1/2)|* + |a(z*)R/(2)|> # 0. By
(18), we have

b (<1) e | Ny
det (L) w() = (<2) o () i () -
V() ),

Thus, by Lemma 1 and from (17), the expression ¢1(2)g1(1/z) + g2(2)g2(1/z) is divisible by
(z — z)*. Tt means that polynomials in the left-hand and right-hand parts of (27) have 2k
common zeros. It remains to normalize the left-hand polynomial according to (26). The
normalization is impossible only in the case when g1(1) = g¢2(1) = 0. However, it implies
that the left-hand part of (27) has 2k + 1 zeros. It follows from this that g1(z)g1(1/z) +
92(2)g2(1/z) = 0. Hence, g1(z) = g2(2) = 0. It contradicts to the assumption that at least
one of the polynomials ¢; and g, is non-degenerate.

3.3 Proof of Corollary 2

Indeed, for interpolatory symbols we have
N ~
ho(2) = 1/24 ) an (272" 4 27%71) =1 1/2 + ho(2),
n=1

ao(2)ao(1/2) = 1—(1/2Hro(2))P— (12 ho(2))* = 2(1/2+ho(2))(1/2—ho(2)) = 2ho(= hof—2).
The functions ho(z) and ho(—z) have distinct roots. Hence, by Theorem 1, we have to find
those interpolatory symbols which have roots of even multiplicity. Such polynomials have to
be non-negative. Otherwise, they have roots of odd multiplicity on the circle |z| = 1. Thus,
by Riesz lemma, ho(z) = p(2)p(1/z), where p € S. On the other hand, ho(z) + ho(—2) = 1.
It implies the equality p(z)p(1/z) + p(—z)p(—1/z) = 1, which is valid (see [4], Chapter 8)
only for p(z) = z2M(1+ 2*V-1)/2, M, N € Z.

4 Examples

In this section we discribe all possible refinable functions of the class S with degrees of their
symbols up to 5, satisfying criterion for the existence of 2 (anti)symmetric framelets and
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give examples of their symbols and graphs. Besides, we construct 2 framelets corresponding
to the B-spline Bg. The degree of its symbol is equal to 7.

The case deg(hg) = 1 corresponds to the Haar wavelets. It gives an example of an
orthonormal basis with symmetry.

4.1 The case deg(hy) =2

This case is also trivial. A.Ron and Z.Shen [8] presented the construction of 2 framelets
associated with the piecewise linear B-spline B; with the symbol ho(z) = 271 /4 +1/2 + 2/4
(see Fig. 1). The symbols of framelets can be represented in the form hi(z) = —2z71/4 +
1/2 — 2z/4 and hy(z) = (27! — 2)/2v/2. Easily to see that this is a unique example of
a refinable function for which the unitary extension principle is applicable. Indeed, let
ho(2) = az™' 4+ B+ az. On the one hand, 2a + 3 = 1. On the other hand, by Theorem B,
we have h3(1) + h2(—1) < 1. Hence, ho(—1) = 0 that implies 3 — 2a = 0. Hence, § = 1/2,
a=1/4.

15 15 1
1 05
05 0
0 05}
05 s s s £ s s s -1
2 -1 0 1 2 K -1 0 1 2 2 1 0 1 2

Fig. 1. deg(ho) = 2

4.2 The case deg(hy) =3

As we know at the moment only one example of a refinable function, admiting 2 framelets
is known for this case. C.Chui and W.He [3] have done it for the B-spline B, ho(z) =
271 /8+43(142)/8+2%/8. Then the framelets are defined by the symbols hy(z) = v/3(1—2)/4,
hao(2) = (271 4+ 3 — 32 — 2%)/8 (see Fig.3).

An arbitrary symbol ho(z) € S of degree 3, satisfying the condition ho(1l) = 1, can be
represented in the form

ho(z):az_l—l—ﬁ—l—ﬁz—l—az2, a+p=1/2. (28)
We prove that such symbols, admit constructing 2 antisymmetric framelets if and only if

a>0,6>0.
It follows from (28) that

h(z) =1 — ho(2)ho(1/2) — ho(—2)ho(—1/2) = —4aB27% + (1 — 4(a® + B?) — 4apB2* =
—4aB27% + 8af — 4apB2 = —daPBz (2 — 1) = 4aB(z — 1/2)(1/z — 2).

14



Hence, h(z) is positive for |z| = 1, if and and only if ab > 0. If « = 0, 8 = 1/2 we the Haar
wavelets. If @« = 1/2, 8 = 0 we have a tight frame with a unique framelet. All other choice
of positive parameters leads to a framelet system with two antisymmetric framelets with

hi(2) = —az™' — B+ Bz + a2’ ha(z) = 2\/@(—1 + 2)

Several examples of graphs of such refinable functions and framelets are illustrated by Figures

2-6.

1.2 1 1

)
08 05}
06
0
04
02 05|
0
02 - - - : - - : - : -
2 - 0 1 2 3 2 0 1 2 3 -2 1 0 1 2 3
Fig. 2. deg(ho) =3,5="7/16
15 ; . . ; 1 . . : ; 1
1 05 05}
05 0 0
0 -05 05}
-05 - - - - - - - - - -1 - - - -
2 0 1 2 3 2 0 1 2 3 2 0 1 2 3
Fig. 3. deg(ho) = 3, B = 3/8 (plecewise quadratic splines)
15 ; . . ; 1 . . : ; 1
1 05 05}
05 0 0
0 -05 05}
-05 - - - - - - - - - -1 - - - -
2 0 1 2 3 2 0 1 2 3 2 0 1 2 3

Fig. 4. deg(ho) =3, 5 =5/16
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1.5

05

-05

2 1 0 1 2 3
Fig. 5. deg(ho) = 3, 5 = 1/4 (piecewise linear splines)

15 ; . . ; 1 1

1 05 05}
05 0 0

0 -05 05}
-05 - - - - - -1

2 0 1 2 3 : .

Fig. 6. deg(ho) = 3, # = 3/16
4.3 The case deg(hy) =4
For this case an arbitrary admissible symbol Ay has the form
ho(z) = —az™? 4+ 0.2527" + (0.5 + 2a) + 0.2527" — az®, a #0.
Thus,
h(z) =

—2a%27 4 (8a® + 2a — 1/8)27% — (12a° + 4 — 1/4) + (8a® + 2a — 1/8)2% — 2a°2* =
(z—1/2)(1/z — 2)(2a%27% — (4a® + 2a — 1/8) + 2a%2%) (29)

On the one hand, the last factor in (29) has to have roots of even degree. On the other
hand, if zg is its root, then —zp and £27! are also its roots. It means that only 1, £ are
permissible roots. It follows from this that 4a® 4+ 2a — 1/8 = +4a?. However, the positive
sign in this relatoin leads to the negative function h(z). So we have just two solutions

142
4

x19 =

with the correspondig framelet symbols
hi(z) = —0.2527" + 0.5 — 0.252, ha(2) = ;272 — 0.2527" + 0.252 — a; 27>

Figures 7 and 8 show plots of basic framelets.
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1.5 1.5 1

1
1 0.5
0.5
0.5 0
0
0 05
05
0.5 -1 -
-2 1 0 1 2 -2 1 0 1 2 2 1 0 1 2
Fig. 7. deg(ho) =4, & = 0.0517767
1.5 1 1.5
1
1 0.5
0.5
0.5 0 0
05
0 05
1
05 -4 15
-2 1 0 1 2 -2 1 0 1 2 2 1 0 1 2

Fig. 8. deg(ho) = 4, o = —0.3017767

4.4 The case deg(hy) =5
Here we consider symbols, satisfying the relation
ho(z) = az 2+ Bz 4y vz 4 B+ ad,

where a+ 8+ =1/2, a #0.
We have

h(z) =
—4dapt —da+ By + (L -4’ + 57+ 77)) — Ha + B)y2” — 4oz’ =
(z—1/2)(1/z — 2)(4aB27% + 4(2a8 + ay + By) + 4aB2%). (30)

Thus, the parameters have to satisfy either
Saff + 4y(a + §) = Saf (31)
or
8af + 4y(a + B) = —8ap. (32)
First consider equation (31). It is reduced to the relation y(a + 3) = 0 that implies two

possibilities: (a) a + 8 =0, v =1/2; (b) a+ 3 = 1/2, v = 0. Solution (a) is not valid

because in this case a and ( have different signs that leads to the negative polinomial h(z)
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(for |z| = 1). Solution (b) is valid when a > 0, # > 0. Every such a pair of the parameters
gives two odd framelets. Their symbols can be written in the form

hi(z) = 2¢/aB(1 — 2), ha(z) = a(z7% — 2*) + B(z72 + 2°).

Figures 9-11 shows several examples of their plots.

15 15 15
1 1
1
05 05
05 0 0
0.5 05
0
1 1
05 1.5 1.5
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4
Fig. 9. deg(ho) =5,8=10.2
15 15 15
1 1
1
05 05
05 0 0
05 05
0
1 1
05 1.5 1.5
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4
Fig. 10. deg(ho) =5, 8=10.25
15 1 1
1 05 05
05 0 0
0 05 05
05 -1 -1
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

Fig. 11. deg(ho) =5, 8=10.3
Now we consider equation (32). Let fix v, then # = 1/2 — a —v. We substitute 3 to (32)

and solve it with respect to a. Then

1 =2y+£41-27

x1 2

’ 4
1-2yvF /1 —-24
Bia2 = 1 .

18



Hence, v < 1/2. We consider four cases (a) vy =1/2; (b) 0 <y <1/2; (¢) vy=0; (d) v < 0.
The case (a) corresponds to the Haar wavelets. In the case (b) we have two framelets of

different evenness. The case (¢) is well-known. It gives one framelet. The case (d) is invalid,
because it leads to the negative h.

We give examples for 3 sets of parameters.

1) a = 0.011680, 3 = —0.010680, v = 0.499, (see Fig. 12).
hi(z) = —0.260919(27% + 2°) + 0.238581(2 7" + 2?) + 0.022338(1 + 2);

ha(z) = 0.261180(2 7% — 2%) — 0.238819(2"! — 2%);

1.5 1 1
1 0.5 0.5
0.5 0 0
0 0.5 0.5
0.5 - <1
-4 -2 0 2 4 -4 D 0 2 4 -4 5 0 5 4

Fig. 12. deg(ho) =5, & = 0.011680, 8 = —0.010680, v = 0.499
2) o = —0.043402, B = 0.068402, v = 0.475, (see Fig. 13).

hi(z) = —0.189184(z72 + 2°) + 0.298156(2 " + 2%) — 0.108972(1 + z);

ha(z) = 0.194098(272 — 2°) — 0.305901(z 7" — 2?);

15 0.5 1
1 0.5
0
0.5 0
0.5
0 0.5
0.5 -1 -1
-4 2 0 2 4 -4 2 0 2 4 -4 2 0 2 4

Fig. 13. deg(ho) =5, o = —0.043402, 8 = 0.068402, v = 0.475
3) a = —0.051777, 8 = 0.301777, v = 0.25, (see Fig. 14).

hi(z) = 0.051777(27% + 2%) — 0.301777(27" + 2%) — 0.25(1 + z);

ha(z) = 0.073223(272 — 2°) — 0.426776(2~" — 2?);
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1.5 1 1

0.5

1 0.5
0

0.5 0
0.5

0 0.5
-1

0.5 1.5 -1

-4 2 0 2 4 -4 2 0 2 4 -4 2 0 2 4

Fig. 14. deg(ho) =5, o = —0.051777, 8 = 0.301777, v = 0.25

4.5 B-spline By

We give here symbols of framelets generated by the B-spline Bg with the symbol

ho(z):z_3(1;z>7.

Symbols of framelets are defined by the relations

hi(z) = —0.007813(2 7> — 2*) — 0.054687(2 7% + 27" + 2° — 2°) + 0.492187(1 — 2);

ha(z) = 0.041340(—2"2 + 2°) + 0.289379(—2"" + 2%) + 0.248039(—1 + z).
Their plots are presented by Figure 15.

1.5 1 1

1 0.5 0.5
0.5 0 0
0 05 0.5
0.5 -1 -1
-4 2 0 2 4 -4 2 0 2 4 -4 2 0 2 4

Fig. 15. deg(ho) = 7, The framelets associated with the spline Bg
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