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Abstract

The paper deals with finding criteria for the Hausdorff convergence of sequences
of convolution operators on quasi-Banach spaces of periodic real-valued distributions
(generalized functions). In particular, the criteria for convergence on the Hardy classes,
on the class of regular Borel measures, and on the class of pseudomeasures are found.
These assertions are special cases of the general result obtained for rather wide collec-
tion of spaces. The given result relies essentially on the explicit description of the set of
bounded convolution operators, acting from the fixed space of the mentioned collection
to the space L>°. Solution to these problems became possible due to the introduction
of the notion a the canonical graph of an arbitrary distribution.

It is shown that the Hausdorff convergence on the class of distributions, containing
the space C, is equivalent to absence for this class the (generalized) Gibbs phe-
nomenon.

The obtained results are applied to the study of the Hausdorff convergence of pro-
cesses of the summation of Fourier series by the Cesaro and Vallée-Poussin methods.

AMS subject classification: 41A35, 42A24, 26E25, 42A45, 46B10, 46F20
Key Words: the Hausdorff approximation, distributions, operators of convolution,
summation of Fourier series, bounded operators, duality and reflexivity

0.1 Introduction

The concept of the Hausdorff distance between functions as the Hausdorft distance between
their (complemented) graphs was generated in the sixties mainly due to works of Bulgarian
mathematicians. The state of art of this subject in the end of the seventies is reflected in the
book by B.Sendov [1]. The Hausdorfl metrics has a number of attractive properties. In our
opinion, the main of these properties is its naturalness for human eyes. Roughly speaking,
functions are considered as close if their graphs are "visually” close (almost coincide). From
this point of view the uniform metric was the predecessor of the Hausdorft metric. However,
natural area of its usage is restricted by the space of continuous functions. The Hausdorff
distance is used for measuring deviations between arbitrary bounded functions defined on

*The results of the paper were partly published without proofs in [6].
TThis research was partially supported under Grant NSF KDI 578A045



a metric compactum. Thus, as it was mentioned in [1], in some sense the uniform distance
1s a special, or to be more exact a limit case of the Hausdorff distance. On the space
of continuous functions the Hausdorff and uniform convergence are equivalent. This is an
essential distinction of the Hausdorft convergence and, for example, the convergence in the
integral metrics. It gives one more argument that the Hausdorft metrics is the nearest relative
of the uniform metric.

At the same time, absence of linearity is essential lack of function spaces with the Haus-
dorft metrics. In such spaces, if they contain discontinuous functions, it is essentially im-
possible to introduce operations of a linear space which are continuous with respect to the
metric. Moreover, the accepted in [1] approach assumes identifying the concept of a func-
tion and its complemented graph. It makes problematic the introduction of a natural linear
structure because objects of the operations are multi-valued functions (more precisely, their
graphs). The lack of the linear structure does not create any difficulties for the problems
related to the best approximations. However, usually such approach does not allow to use
linear methods of approximations, at least for the spaces of functions which can have rather
massive sets of discontinuity points. In this connection it is necessary to mention paper [2],
where the problem of the approximation of, so-called, H-continuous functions by positive
operators in the Hausdorff metrics was considered.

In our paper [3], we used other approach. We suggested to consider approximations by
linear (integral) operators of the form

Ju(f) = / F(t) Ko, )

on the classical normed space of the functions essentially bounded on the segment [a, b].
However, we studied the convergence in the Hausdorff metrics (not in the uniform metric).
In [3], necessary and sufficient conditions for the kernels K,,, providing convergence J,,(f) to
f in the Hausdorff metric for all essentially bounded functions, were found.

To discuss the convergence in the Hausdorff metric it is necessary to introduce the concept
of a function graph properly. Such a definition of canonical graphs of the bounded function,
invariant with respect to the change of a function on a set of measure zero, was introduced in
[3]. The same definition without any change was used in [4] and [5] for integrable functions.
Canonical graphs of unbounded functions are not compact sets. Therefore, to measure
distance between unbounded functions it is necessary to compactify the axis of values by
means of contracting with a bounded strictly monotone function.

In [4] and [5], the criteria for convergence of convolution sequences

L(f) = f* pin (0.1)

on the classes of 2w-periodic functions with summable pth power (1 < p < o) and on the
class BV (functions of bounded variation) were found.

In [7], the convergence of Fourier series of functions of the Besov—Lizorkin—Triebel
classes was studied.

The goal of this work is studding the convergence of operator sequences (0.1) on quasi-
Banach spaces of periodic real-valued distributions (generalized functions). Section 1 is
devoted to the problem of a reasonable definition of the (canonical) graph of a distribution.



In particular, it is shown that the Abel — Poisson sums of any distribution converge in
the Hausdorftf metric. In Section 2, a special class of quasi-Banach spaces of distributions
is introduced. These spaces have a very important property. Their Fourier multipliers,
acting to the space of essentially bounded functions, are determined explicitly. In Sections
3, some general results for spaces of this class about the convergence of operator sequences
of the form (0.1) are obtained. In Section 3, the criteria for the convergence of sequence
(0.1) on the real Hardy spaces ®H? (0 < p < 1), on the space of regular Borel measures
and on some other classes, containing the Dirac §-function, are obtained. In Section 4, the
approximations on certain spaces which do not satisfy the requirements of Section 3 are
considered. In particular, a criterion for the convergence on the class ¥ H' is found. Finally,
in Section 6, relying on the general results, the convergence of various summation methods
of Fourier series on these spaces are studied.

We denote by T the unit circle with the natural metric. The distance between 61,6, € T
1s defined to be the length of the shortest arc connecting §; and .. We denote it by
| 61,65 |. In what follows all function spaces (spaces of distributions) are real-valued, but for
convenience sometimes we shall use the complex notation. As usual we denote by C = C(T),
C>* = C>(T) respectively the spaces of continuous and infinitely differentiable functions.
Recall that a sequence f,, € C* is called converging to f € C* in the topology of the space
C> if Hf,ﬁk) — f®|| = oo for all k = 0,1,2,..., where || - ||« is the uniform norm. The
space C™ consists of functions, whose Fourier coefficients decrease faster any power.

The space of distributions (generalized functions) D on T is defined to be the set of all
bounded linear functionals on C>*. Principal facts, concerning periodic distributions, can be
found in the book by R.Edwards ([8], Chapter 12). Here we recall some of them.

The space D can be identify with the set of formal trigonometric series ), ., e where
Z is a set of integer numbers with coefficients of temperate growth, i.e., | ¢, |= O(|n|¥)
as |n| — oo for some natural k& which can be different for different distributions. This
correspondence is set by the relations ¢, := f(n) := fle?®], where f € D. The requirement
of real-valuedness of a distribution coincides with the condition ¢_,, = ¢,. We say that a
sequence f, € D is convergent to f € Din D if f,,[¢] — f[¢] for any function ¢ € C*, or (it
is the same) if f,, converges to f coefficientwise, i.e., fn(k) — f(k) for all k € Z, and there
exists p such that lim,_, sup;,y | Fu(k)|/|kP < 0o. It means that the Fourier coefficients of
the sequence f,, are majorized by coefficients of some distribution. In view of the generalized

convergence, we put the sign ”=" in the formula
f(z) = Z cne™ = Zf(n)eim
neZ neZ

instead of 7~7, as it is accepted in the classical theory of Fourier series.

We denote by D][f] the generalized derivative of the distribution f,

Dif)(a) = 3 inf(n)e™.

nez

Indefinite integral of a distribution is a distribution only if f(()) = 0. We denote by S[f] the



primitive of such distribution,

SIf1 =Y f(n)e™.
nez
n#0

A convolution of two distributions f; and fs is defined to be the distribution

F@)=fix fa(x) = filn)fa(n)e™.
neZ
Let
P.(z):= Zr'"'emm, 0<r<1,
neZ

be the Poisson kernel, then it is natural to reserve the notation P; for the d-function (the
Dirac measure). Any distribution f(z) = > ., a,e™ can be harmonically extended into
the unit disc of the complex plane by means of the formula

F(z):= Zanrm'eim =[x P.(z) =: f"(z),

nez

where z is an arbitrary complex number of the unit disc, 7 and x are its absolute value and
argument correspondingly.

Let us recall that two distributions coincide on an open arc v C T if they coincide as
functionals on any function ¢ € C*, supp ¢ C 7.

For any ¢ € C* and f € D the operation of pointwise multiplication is defined by the

formula . ) )
(fP)(n) = d(m)f(n —m)
mEL

or by equivalent representation of f as the functional (¢f)[u] = flpu] for any u € C>.

We denote by {xs}s>0 and fix an arbitrary set of non-negative functions of C* for which
lIxs|loc =1, x5(0) = 1 when [0,0| < 4, and x5(#) = 0 when |6, 0] > 24.

Recall main definitions related to the Hausdorff distance between functions. Let A and
B be two subsets of a metric space (X, p). Then the Hausdorff' distance between these sets
1s defined to be

H(A,B)=inf{¢ | AC U.(B),B C U.(A)},

where U.(-) is an e-neighbourhood of a set with respect to the metrics p. The compact
subsets (X, p) form a metric space with the metric H.

The complemented graph F(f) of, generally speaking, a multi-valued function f : T — R*
1s the smallest closed set convex with respect to the y-axis, containing the graph of the
function y = f(z). We recall that a plane set is called convex with respect to the y-axixs if
together with any pair of points (z,y1), (%,ys) it contains whole segment connecting these
points. The Hausdorft distance between functions f and ¢ is defined to be the Hausdorft
distance between their complemented graphs: H(f,g9) = H(F(f), F(g)), where a metrics on
the set I' = T x R, inducing the metrics H depends on the task. If we deal only with the
bounded functions, the Minkowski metric

p((z1,y1), (2, y2)) = max{|z1, z2|, |y1 — ya|}

4



1s the most suitable. In this case, the set of all bounded periodic functions, whose graphs are
complemented, forms a metric space. If there is necessity to consider unbounded functions,
their complemented graphs are not compact sets. In [5] we proposed to replace the natural
metric on R! with the metric d(y1,y2) = |9(y1) — 1n(y2)|, where 5 is an arbitrary bounded
strictly increasing function. The topology of the real line R! does not depend on the choice
of the function 5. Therefore, it is possible to take, for example, n(y) = 2arctany/wx. By
adding the points +o0o to R, we get the compact set R! with the metrics d. Then we define
the metrics on I' as follows

p((x1,y1), (#2,y2)) = max{|z1, zs|, d(y1,y2)}, (0.2)

In this case, the set of all complemented graphs (or functions whose graphs are complement-
ed) forms a metric space.

In what follows we often shall use the same notation F'(f) for the graph and the multi-
valued function F(f)(x). The current sense will be clear from a context.

1 Canonical graphs of distributions

In [3] we introduced the concept of a canonical graph of an arbitrary measurable and finite
almost everywhere function. Let us recall that the canonical graph of such a function f
is defined to be the complemented graph of the restriction of f to the set of its points of
approximate continuity. The main argument for the benefit of such definition is its invariancy
with respect to the change of the function f on a set of Lebesgue measure zero. This
argument is really crucial for integrable functions because functions of LL!, differing on a
null set, coincide as distributions. At the same time, for arbitrary distributions such an
approach does not work for two reasons. At first there is no the initial concept of a graph
of an arbitrary distribution, using which it would be possible to construct a complemented
graph. Secondly, even if it 1s possible with a reasonable manner to introduce the concept of
a distribution graph, changing it on a null set we can get the graph of other distribution.
The Dirac measure and the identical zero give such an elementary example.

Despite of the mentioned above difficulties it is possible to introduce the reasonable (at
least, from the point of view of the considered tasks) definition of the canonical graph of
a distribution. The main idea of such a definition bases on the possibility of harmonic
extension of any distribution from T into the unit disc. In this case, we have the regular
graph of such extension. It remains to take its closure and to extract the trace of the closure
on T. Now we implement this reasoning accurately.

Let f € D, F(z) = f % P.(f). Let us recall that the cluster set of the function F' at
the point § € T (see, for example, [9]) is defined to be the set C(F,§), consisting of those
points a € R for which the sequence of complex numbers z,, satisfying conditions |z,| < 1,
zZn — 20 (|z0| = 1, arg zo = 0), and lim,,,_,,, F(z,) = «, exists.

Definition 1.1. The canonical graph F*(f) of a distribution f is define to be the graph of,
generally speaking, the multi-valued function C(F,8).
Naturally, we define the Hausdorff distance between distributions as the Hausdorff dis-

H*
tance between their canonical graphs, H*(f,g) = H(F*(f), F*(g)). We abbreviate f,, — f



that fact that lim, oo H*(fa, f) = 0. Obviously, the set F*(f) is closed and convex with
respect to the y-axis, i.e., it has all properties of a complemented graph. Therefore, it can be
approximated in the Hausdorft metric by graphs of continuous functions with an arbitrary
accuracy. The convergence of the Abel — Poisson sums on the class L' (see [5]) implies the
equivalence of Definition 1.1 and the corresponding definition in [3].

Despite of its attraction, the distance H* has one essential lack. This distance is not a
metric on the space of distributions. A reason is the possibility of coincidence of canonical
graphs of two different distributions. For example, all derivatives of the function P; have
identical canonical graphs. It is easy also to construct examples of bounded functions with
the same canonical graphs. Indeed, we take a set E C T such that for any arc v C T we
have meas (y () E) > 0 and meas (y\ E) > 0. Then the functions xg and x\ g have identical
canonical graphs. We note that on the set of canonical graphs the distance H* 1s a metric.

Thus, the distance H* does not "feel” the difference between some of distributions. Never-
theless, it turns out (see Theorem 5.4 below), that all assertions which are proved in Sections
3 and 4 for the distance H* remains in force for the stronger distance H= (see Section 5) of
Hausdorff’s type. The distance H" is a metric on ID. The convergence in this metric means

the Hausdorff convergence f; 7, f7 uniformly with respect to 7, 0 < r < 1. Observe that
the convergence in the metric H implies the Hausdorff convergence of a sequence of the
corresponding functions of two variables harmonic in the unit disc.

In Definition 1.1, it is unimportant that the distribution f is real-valued and belongs
to . We need only the possibility of harmonic extension into the unit disc. So, we can

consider formal trigonometric series Y . c,e™

whose coefficients satisfy the inequality
lim,, . {’/m < 1, as above f. However, in what follows, we restrict ourselves to considering
only quasi-Banach spaces with elements from D.

The values of the function C'(F,z) are segments of the extended real line R!. We denote
by esssup f(z) the maximum value of C(F,z) at the point « € T. In particular, this value
can be equal to +0o or —oo. The value essinf f(z) is introduced similarly. Thus, it is
convenient to give the definitions

esssup f(z) := supesssup f(z),
z€E z€E

essinf f(z) := supessinf f(z),
zclE z€E

for E C T and f € D. When E is an open arc and f is an essentially bounded function,
these definitions coincide with the classical definitions of essential upper and essential lower
bounds.

Theorem 1.1. For any f € D we have f" 2, fasr— 1.
Before to proceed to the proof of Theorem 1.1, we prove several elementary lemmas.

Lemma 1.2. If a distribution f vanishes on an open arc vy, then fx P. (8) — 0 uniformly
on any closed arc yo Cy asr — 1.

Proof of Lemma 1.2. Let 0 be the Hausdorfl distance between arcs v and 7,. We define the
distributions v, := xs5/4*Pr, ptr 1= (1—Xs/4) -Pr. Obviously, P, = v,+p,. For any 8 € 7o, since



f vanishes on v, and the support of x;/4 belongs to the (4/2)- nelghborhood of zero, we have
f*v,.(0) =0. As f € D, there exist k > 1 and M > 0 such that ||S*[f — f( Nh =M < oo.
At the same time, for any natural [ and # # 0 we have D'P.(f) — 0 as » — 1 uniformly
outside of any neighbourhood of zero. Besides, ((1 — xs/4) - PT)A(O) — 0. It means that for
any € > ( there exists 7o < 1 such that for any ro < r < 1 we have

ID*[(1 = xs7a) - Polllow < €/2M,  F(0) - (1= x574) - P2) " (0) < €/2.

Hence,

1f * selloe = 1F(0) - (L = xs7a) - Br)~(0) + S*F = F(0)] % D*[par ]l
<e/24 | S = F O - 1D [mellow < e/2+ M -/2M =e.

Therefore, for such r and 6 € vy we have

|f = PT(9)| = |f*:“r(9)| <ég,

As was to be shown. O
Lemma 1.3. Let f € D, then for any 8y € T and 6 > 0 we have

lim inf f7(6) < essinf f(6o). 1.1

lim inf £7(0) < essinf f(60) (1.1)
Proof of Lemma 1.3. Validity of Lemma 1.3 when essinf f(#) = +oo as well as the left-
hand part of (1.1) is equal to —oo is obvious. We conduct the proof by contradiction. Let
inequality (1.1) do not hold for some 6y € T and § > 0 . Without loss of generality we can
suppose 8y = 0, essinf f(0) < 0. We also assume that there is a sequence r,, /1 such that

A, := inf f(0)>0, A,—A>0 (n— o).
19,0]<§
The sequence f™ converges to f in D. Therefore, in view of continuity (in the topology of D)
of the operation of pointwise multiplication by a function of C*°, the sequences ¢,, = x5/2f"™"
and 1, = (1 — xs/2)f™ converge in D respectively to the distributions ¢ = xs/2f and
¥ = (1 — x5/2)f. According to a maximum principle for harmonic functions, we have
1 >

oingl Pnx Fr(0) = érel%qsn(e) 20

6T
From the generalized convergence of the sequence ¢,, to ¢ as n — oo we have the uniform
convergence of the sequence ¢, * P.(6) to ¢ x P.(f) on compact sets of the open unit disc.
Hence, ¢"(#) is a non-negative harmonic function, i.e., ¢ is a positive measure. At the same
time, according to Lemma 1.2, for any ¢ > 0 there exists 7y such that for r < r < 1 and

|6,0] < d/4 we have |[¢ (8) * P.(0)| < e. Therefore,
essinf f(0) > inf ¢"(#)+ inf "(F) >0 —e.

0<r«1 0<r«1
6eT |, 0|<5/4

It follows from here that in view of arbitraryness of the choice of € we obtain essinf f(0) > 0
that contradicts our initial assumption. Lemma 1.3 is proved. O

7



Proof of Theorem 1.1. We need to prove that for any ¢ > 0 there exists 0 < ro < 1 such
that for 7o <7 < 1 the inclusions

F*(f) CUAF(f = P)), (1.2)

F(f* P.) C U(F*(f)),

where U.() is the e-neighbourhood of a set with respect to metric (0.2), hold. Obviously,
validity of the last inclusion for r sufficiently close to 1 follows immediately from Definition
1.1. We show the possibility of fulfillment of inclusion (1.2).

Let us assume the contrary. Let there exist € > 0 and a sequence r; /1 such that

F(H)\U(F () # 2.

Then there exists the sequence {(z;,y;)} C TxR?! such that (z;,y:) € F*(f), (zi,v:) €
U(F(f")). In view of the fact that F* (f) is a compact set with respect to metric (0.2),
without loss of generality we suppose that this sequence converges to the point (zg,y0) €
F*(f) which locates below graphs of the functions f™. Then for sufficiently big ¢ and
|0, 20| < /2 we have f"i(0) > yo + €/2. Hence,

lim inf f7(#) > yo > essinf f()

100 |0,x0|<e/2

that contradicts Lemma 1.3. Theorem 1.1 is proved. U

2 Bounded operators of convolution and linear func-
tionals

Here we consider a class of quasi-Banach spaces for which the general approach to studding
the convergence of operators of the form (0.1) in the Hausdorfl metric is possible. The main
feature of these spaces is the simplicity of description of bounded operators of convolution
(or, in other terminology, Fourier multipliers), acting from these spaces to the space L™ (see
Lemma 2.2 below). We shall see in what follows that it is useful for our tasks.

The majority of the statements of this section is very simple. We give their full proofs,
though it is probable that all or many of them were already considered in mathematical
literature.

Let X be a quasi-Banach space, X C D. For its quasi-norm, except for norms of the
spaces C, L? (1 < p < o0) and M, we use the notation || - |X]||. If the opposite is not stipu-
lated, the symbol C, used with quasi-Banach spaces, will designate topologically continuous
embedding.

Remind that the sum of quasi-Banach spaces X; and X5 is defined to be the quasi-Banach
space

Y=X1+Xo:={f+g|feX1,9€e X5}

with the quasi-norm
1B [ Y[ = mf{|1f [ Xl +lg [ Xol[ | f € Xy, 9€ Xo, b= f 49}

8



and the intersection of them is the space
Z=XNXs:={f|feXi[€Xo}
with the quasi-norm ||f | Z|| = max{||f | Xi|. ||f | X2||}-

Definition 2.1. We denote by H a collection of quasi-Banach spaces X for which (at least,
after equivalent renormalization) the following conditions are fulfilled:

(a) C* C X CDy;

(b) For any distribution f € X

11X ZSQQHJ‘*R | XI; (2.1)

(¢) The space X is invariant with respect to the shift of the argument, and for any f € X
we have || f(t) | X|| = |F(=¢) | X]|;
(d) There are k > 0 and C > 0 such that for any distribution f € X

If - sinna | X|| < Cnf| £ | X]).

Condition (d) guarantees the continuity in X of the operator of multiplying by a function
of C>*. This is necessary in the following sections. It will be seen, if we omit condition (d)
in Definition 2.1, all results of this section stay valid.

The renormalization does not influence validness of conditions (a) and (c). We give an
elementary example when the renormalization can be necessary to satisfy property (b). Let
X be the space of essentially bounded functions. The norm of f € X in this space is set as
the sum of a regular uniform norm and exact upper bound of the values of discontinuities of
the function f. Obviously, such norm does not satisfy condition (b). However, it is equivalent
to the uniform norm.

Let’s remark, that the class ‘H contains overwhelming majority of classical quasi-Banach
real-valued spaces of periodic functions and distributions. So, for example, it contains the
Besov — Lizorkin — Triebel spaces B} , and F; (in particular, the Lebesgue spaces L?
(1 < p < o) and the Hardy spaces RH? ( 0 < p < 1)), BMO, BV (the functions of
bounded variation), M (regular Borel measures), real parts of the analytical Bergman and
Bloch classes, the classes of distributions 2 (0 < p < oo) whose Fourier coefficients satisfy

the inequality {/|c,|P, and so on.
Let X € H, then we denote by )% (or X°) the completion of the space C* in the quasi-

norm of the space X;

O
X3:{f€D|Sgll)Hf*Pr | X|| < oo}

o O
Obviously, the embeddings C* C X C X C X C D are valid. The space X is separable only

in the case when X :)%. Besides, if f E)%, then | f — f7 | X|| — 0 as » — 1 (the last is
explained in the proof of Lemma 2.3).

o O
Let X € H, then we denote by [X] or [ X, X] a collection of all spaces Y € H such that

o O
XCcYcx (2.2)



We note that embeddings (2.2) themselves do not guarantee that Y belongs to H. Actu-
ally, let Y = C + BV. Let us partition T into 2n identical arcs -;, enumerated for definiteness
clockwise. Let function f € Y be equal to the identity on the arcs with even numbers and is
equal to zero on the arcs with odd numbers. Then ||f | C+BV|| = 2n, ||f*P. | C+BV| —» 1
as 7 — 1. It means, C + BV ¢ H, though, obviously, C C C + BV C L*>.

Lemma 2.1. The operation [-] breaks up H into equivalence classes.

Proof of Lemma 2.1. Obviously, it suffices to prove that for any X, Y € H it follows from
belongness Y to [X] that

Y=X, (2.3)
O O
Y=X, (2.4)

where the equality means the coincidence of quasi-normed spaces up to equivalent renormal-
1zation.

We show that equality (2.3) holds. If f E}S', then ||f — f7 | Y|| — 0. It follows from

O
the embedding Y C X that there is a constant C; > 0 such that ||f | X|| < Ci||f | Y| and
N\f=f | X||<Ci|lf = f |Y|| = 0asr — 1. Therefore, }S'C)%

Let f € )% Then the embedding )%C Y implies the existence of a constant Cs > 0 such
that ||f | Y| < Cs||f | X||. Hence, ||[f—f" | Y| < Cs||lf - f7| X|| = 0 as r — 1. Thus,

XCY. _
Let us prove equality (2.4). Let f €Y, then

Gillf 1Yl = Cosup |7 [ Y]] = sup | [ X[ = |I£ [ X]|

O o O O
Consequently, f € X and YCX. Since f € X, in similar way, we obtain ||f | X|| > Ci]|f |
Y||. Lemma 2.1 is proved. O

In what follows, if the other is not stipulated, we consider only spaces from H.

We denote by M(X,L>) the set of bounded convolution operators (in the terms of [§],
Chapter 12, multiplier operators), acting from the quasi-Banach space X C D to L™, and
denote by X* the space of continuous linear functionals in X.

Let us prove the main statement of this section.

o

Lemma 2.2. M(X,L>) = <X> :

Remark. 1t is easy to prove that a set of compact convolution operators, acting from

X € H to L™, coincides with the space <)%> .

10



Proof of Lemma 2.2. We denote by T[] the operator T : f(t) — f(r —t). Let f € X,
g € X*, then (g, f) is defined to be the value of the linear functional g on the distribution f.

Let p € <)% > and norms of shift operators are bounded uniformly by the number C.

For any function ¢ € C*
S )| < | (%)
neZ

where the series converges absolutely. From here for any distribution f € X we have

{1, #)] =

Nl | X1I,

|1 % flloo = sup || * f * Pr||oc = supsup [(p, T5[f7])| <
r<1 r<1 7€T

XN =

supsup | | (X) || -I1ZLF7] 1 X < Csup || (X)
r<1l 7€T r<1
= [ur (x) |17 13

Conversly, let p € M(X,L>*) and ¢ € C*, then

() = | D i) d(—n)| = [ To[)(0)] < [l * o[ <

nez

<l | MOXC L) -l | X

In view of the density of C* in )% we obtain

e (%)

We note that for the validity of Lemma 2.2 properties (b) and (c) of Definition 2.1 are essential

< [l [ M(X L)

and it is impossible to omit them. Indeed, let X be a sum of the space of continuously
differentiable functions C™V) and the singular component of the space BV, i.e., those functions
of BV whose regular derivative are equal to zero almost everywhere. Obviously, such space

does not satisfy property (b). Then )% = CW and X is invariant with respect to the shift of
the argument and the operator of derivation is a bounded functional on C*) and is unbounded
as an operator acting from X in L. The weighted space with the uniform norm, whose
continuous weight vanishes at some point, gives an example of space, non-invariant with
respect to the shift, satisfying (2.1), for which the statement of Lemma 2.2 is not valid. O

Lemma 2.3. LetX:)%, e <)%> , then fxp e C.

Proof of Lemma 2.3. At first, we show that ||[f — f" | X|| — 0 as r — 1. Let ¢ > 0
be an arbitrary number. Then there exists ¢ € C* such that ||f — ¢ | X|| < ¢/3. ¢"
converges to ¢ in the topology of the space C*. Therefore, for r sufficiently close to 1 we

have ||[¢" — ¢ | X|| < ¢/3. Hence,

£ = £ 1 XIS Collf =6 1 X[+ 19— ¢ | X+ 14" = £ | X]) <
Cole/3 +2/3 +sup (¢ = £) « P, | X]) = Cie.

11



where Cj is a constant, generally speaking, not equal to the identity because X is a quasi-
normed space.
Let g = f % p, then ¢" = f" x p and

lg ="l = (7 = F7) * plloe < IIf =" 1 X - llpe | M(X, L))

Since the first multiplicand goes to zero as r — 1, ¢" uniformly converges to g. Therefore,
g € C. O

Lemma 2.4. M(X,L>~) € H.

Proof of Lemma 2.4. Fulfillment of the embeddings C* C M(X,L>*) C D follows immedi-
ately from the embeddings C* C X C D, from Lemma 2.2, and from that fact D = (C*)*,
D= M(C>,L>).

We show the validity of condition (b) of Definition 2.1. On the one hand,

e | ML) = sup { s fllc | £ €X 051 X < 1) >
supsup { [l x £l | £ € X, ]1f | X] <1} =
r<
supsup {[[1 [l | £ € XN [ X[ < 1} = sup [ | M(X.L¥)]. (25)

On the other hand, for any ¢ > 0 there exists a distribution f € )%, I | X|| = 1 such that
| * flloo > ||pt | M(X,L®)|| — € and for r close enough to 1 we have

% Flloo < g oo + Mk (f = F)lloo < Ml # flloo + € <
" | M(X,L=)|| + & < sup " | M(X,L=)]| +e.

Combining the both inequalities, we obtain

[l | M(X,L=) < sup " | M(X,L=)]| + 2e.

In view of arbitraryness of ¢ > 0 it follows from here and from (2.5) that condition (b) of
Definition 2.1 holds.

Now we show that the class M(X,L>) is invariant with respect to the shift operator
T,[-]. Let p € M(X,L>), 7 € T. Then

1700 | ML) = sup { s« T fllse | £ €051 X =1} <
[l | ML) THLATTX < Ol | MOX L= -1 T X
Invariance with respect to the change of a variable ¢ — ¢ + 7 is shown similarly.

Let us show fulfillment of property (d) for g € M(X,L>). It is convenient to conduct
the proof in the complex form. We note that, in view of property (c), property (d) remains

12



in force (with the same k but other C) if, in its statement, we replace the function sin nx by
the function cos nxz. Thus, there is a constant Cy > 0 such that for any f € X we have

1f# (- sinnz)|loo < [f o (- 2o = [[2%((F - 27") ) |lo <
< -2 [ XAl | M(X), L) < CollF [ XA - i | M(X,LZ),

as was to be shown. O

m
Banach spaces for which X = X€ H have a remarkable property which is close as a
matter of fact to the reflexivity. Let us formulate this property.

Lemma 2.5. Let X € ‘H and X is a Banach space. Then

o ]
.7\4(.7\4()(7 LOO)7LO°) — M(M(X,LOO),LOO) — Y oxox —X .

Remark. Obviously, if X is a quasi-Banach (not Banach) space, the statement of Lemma
2.5 ceases to be valid. It follows from the fact that the space X°*°* is a Banach space.

Proof of Lemma 2.5. In view of Lemma 2.2 only the last equality requires the proof. Let
Y =X Z =Y, h € D. Bearing in mind that for any Banach space B and b € B we have

16| B|| = sup{{c,b) | ||lc | B|| < 1} (2.6)
(see, for instance, [10], Chapter 5) and by Lemma 2.4, we obtain a chain of the equalities

|k | Z]| = sup |R" | Z|| = sup sup{(h",g) | g €Y,|lg | Y] <1} =

sup sup{(h,g9") | g €Y, |lg | Y] <1} =

supsup{(h”,g) | g € V. [lg | Y[ < 1} = sup || [ X]|| = || | X
<

r<1

Obviously, the assertion of Lemma 2.5 follows from this. We note that we used (2.6) (which
is not valid for quasi-Banach spaces) in the penultimate equality. O

Lemma 2.6. Let XY € H. Then XNY € H and (X NY)° =X NY.
Proof of Lemma 2.6. Let z € X N'Y. Then
Iz | X Y| = max{||z | X, |[z | Y]]} = max{sgll) 12" | XHvng) 12" [ Y.
Thus, condition (b) of Definition 2.1 is fulfilled. The validity of conditions (a), (c), (d) is
obvious.

The mentioned above example (C 4+ BV) shows that the sum of two spaces from H can
do not belong any more to H.

Let he (XN Y)°. Then ||A" —h | X NY]| — 0asr— 1.
Hence, |h" — h | X|| = 0 and ||A" — h | Y|| = 0 as » — 1. Therefore, h E)% N }S'
Conversely, let g € )% N }3' Then

lg" —g | XNY| =max{|lg" —g | X|.|l¢g" —9 | Y|} = 0asr —1

because each of expressions in braces tends to zero. Hence, g € (X NY) °. O

13



In what follows we need the following modification of the Banach — Steinhaus theorem.

Lemma 2.7. Let XY € H, {pn}o2, C D and a sequence of the operators I, (f) = pin * f
s unbounded as a sequence of operators acting from X toY . Then there exists a distribution
fo € X such that

Bt [[1(fa) | Y] = ox.

Remark. If each of operators of the sequence I, (+) is bounded, or there is only a finite
number of unbounded operators, the statement of Lemma 2.7 is a special case of the Banach
— Steinhaus theorem.

The statement of Lemma 2.7 follows from the following lemma.

Lemma 2.8. Let X,Y € H, u € D and the operator I(f) = pxf is unbounded as an operator

acting from X to Y. Then a set of distributions f € X for which |p* f | Y| = oo, i.e.,
O

p* f &Y ) is complementary to a set of the first category (or in the terms of [10], Chapter

1, is a residue of X ).

Proof of Lemma 2.8. Fix an arbitrary sequence r,, — 1. We consider the sequence p,(p) :=
P,, x p of the Abel — Poisson sums of the distribution p. Each of the operators J,(f) =
Pn(f)* f is bounded as an operator acting from X to Y. On the other hand, these operators
are not bounded uniformly with respect to n, otherwise, they would converge to the bounded
operator. Therefore, by the Banach — Steinhaus theorem there exists a set E, being a residue
of X, on which the sequence of operators J,(-), acting from X to Y, is unbounded. For any
f € E C X the sequence J,(f) converges to I(f) in the topology of the space D. As
@ |Jo(f) | Y|| = oo, we have

) YN = sup |l 1(F) « P | Y[ = Tim [, (f) | Y| = oo

or }E" . As was to be shown. ]
(or I(f) €Y)

From Lemmas 2.6 and 2.7 we obtain an elementary necessary condition for the Hausdorff
convergence of operators (0.1) which gives some initial understanding about sequences of
operators which have pretension to be convergent.

Corollary 2.1. If we have p, * f 7, f for any distribution f € X € H, then
fim [l | M+ (X) | < oo

Proof of Corollary 2.1. Indeed, if X, Y are Banach spaces, according to the duality theorem
(sf.,[11], [12]), if X N'Y is dense in the both spaces X and Y, then (XY )" = X* + Y™

From here and Lemmas 2.2 and 2.6, we obtain
M(X NL* L) =(XNL>)"” =X + M.

Hence, if lim ||g,, | M + ()%)*H = 0o, then, according to Lemma 2.7, there exists f € X NL>
n—0oo

for which Lim ||f * i, || = co that contradicts the Hausdorff convergence of f * u, to f.
n—0oo

14



We note that it follows from the mentioned duality theorem that if X;, X € H and

o o
X1 =X1, Xs = X3, then X; + X, € H. Actually, from Lemma 2.4 we obtain Y7 := X* € H,
Y, := X;* € H. Then from Lemmas 2.4 - 2.6 we have X; = Y*", X, = Y;>*. Therefore,

X1+X2:<Y1QY2> eH. O

Let v be a closed arc of T, then denote by X, the set of those distributions of X whose
supports belong to 7. We note that X, with the norm of the space X itself is a Banach
space.

We denote by L2° the set of distributions bounded on the arc (—o, ). It is possible to
introduce the seminorm

If | LZ"|| = esssup [f(6)] := max {Iesssup O], | ess inf f(<9)|}

|6,0|<e |6,0|<e

3 0
in L

In what follows we need one more modification of the Banach — Steinhaus theorem.

Lemma 2.9. Let X € H, v C T is a closed arc, 0 > 0, {p,}22, C D, and a sequence
of the operators I,(f) = pn * f is unbounded as a sequence of operators acting from X, to
semi-normed spaces L. Then there exists a distribution fo € X, such that

T |1.(fo) | L] — oo.

Proof of Lemma 2.9. It is unessential for the Banach — Steinhaus theorem that the space
L> is seminormed. Therefore, in the case when all (for the exception of a finite number)
operators I,,(f) are bounded the statement of the lemma follows directly from the Banach
— Steinhaus theorem.

Let infinitely many operators in the sequence I,,(+) be unbounded. We obtain an analogue
of Lemma 2.8. Let the operator I(f) = p * f be unbounded as an operator acting from X,
to L. We show that in this case for all f of some residue X, we have

IH(f) | Lo || = oo

Fix an arbitrary sequence 7, /* 1. We consider the sequence p,,(p) := P,, * p of the Abel —
Poisson sums of the distribution g. Then each of the operators J,(f) = P.(f)* f is bounded
as an operator acting from X to L., the more so as operator acting from X, to L°. On the
other hand, these operators are unbounded in totality. The last follows, for example, from
Lemma 1.3. Therefore, by the Banach — Steinhaus theorem, there is a set E being a residue
of X, on which a sequence of the operators J,,(+), acting from X, to L2°, is unbounded. On
the other hand, the sequence J,(f) converges to I(f) in the topology of the space D. Thus,
we have

esssup |1()(6)] = esssup [I(f)(8)] > T csssup [1.(£)(8)] = oo.

18,0|< 20 18,0|<o N0 19.0[<20

for any f € E.
The assertion of Lemma 2.9 follows from this. O
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Now we give one more statement about operators acting from X, to L°.

Lemma 2.10. Let Y C D be the space of distributions specifying the bounded operators of
convolution acting from X, to L>° with the norm

[ 1Y = [lp | M(Xy, L)
Then functions from C* are pointwise multipliers in Y.

Proof of Lemma 2.10. Let ¢ € C*. It is convenient to carry out the proof in the complex
form. Obviously,

(™ ) = F(8) | L = H.e_""e (o (€™ F))(0) | LY =
% (™ F)O) [LEN < Nl [ Y] - ™ F | X5 <
Cofllu YNNI 12X

where C' and k are constants from condition (d) of Definition 2.1. From here in view of the
fact that ¢(n) decrease faster than any power, we have

(- 1) * (8) | L7 < (Zlé(n)l-an) e [Y AN T

nez

Thus, the norm of the operator of multiplication by the function of C* is bounded by the
number C' Y, |$(n)|n*, as was to be shown. O

3 Convergence on classes of distributions, containing
the Dirac J-measure

Definition 3.1. Let say that a sequence of operators of the form (0.1) converges:
. H*
(a) on g € D if I(g) — g:
(b) on the two distributions if it converges on the identity and on Py (the Dirac measure);
(c) on the set X C D if it converges for any f € X.

Theorem 3.1. The sequence of operators (0.1) converges on the class X =X C C (or on
the class X = C*) if and only if the sequence p,, converges to Py in the topology of the space
X*.

Theorem 3.2. The sequence of operators (0.1) converges on the class M if and only if it
converges on the two distributions.

Remark. The assertion of Theorem 3.2 almost literally repeats the criterion for conver-
gence of sequence (0.1) on the class BV (see [4], [5]). The difference is that instead of the
convergence on P; the convergence on the function S[P; — 1] or, easier speaking, on the
step-functions was required.
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Theorem 3.3. Sequence (0.1) converges on the space of distributions X, P, € X, if and
only if the following two conditions hold simultaneously:
(a) Sequence (0.1) converges on the two distributions;

(b) For any d >0 and f € X

T (1~ xs)pia) * fll = 0.

Theorem 3.4. Sequence (0.1) converges on the space of distributions X :)%, Pe X, i
and only if the following two conditions hold simultaneously :
(a) Sequence (0.1) converges on the two distributions;

(b) For any é >0

T [[((1— s )pen) | X7]| < o0,

The following statement follows immediately from Theorem 3.4 and from the fact that (
RH?)* = BY2! (sf., [18], Chapter 2).

Corollary 3.1. Sequence (0.1) converges on the space RH? (0 < p < 1) if and only if the
following two conditions hold simultaneously:
(a) Sequence (0.1) converges on the two distributions;

(b) For any é >0

B (1 — xs)na) | B < oc.
The next statement is a little bit less obvious.

Corollary 3.2. Sequence (0.1) converges on the space of pseudomeasures £ if and only if
the following two conditions hold simultaneously:
(a) The sequence (0.1) converges on the two distributions;

(b) For anyone § > 0
T (L= xs)pa) | 8 = 0.

The sufficiency of the conditions of Corollary 3.2 is obvious because condition (b) implies
condition (b) of Theorem 3.3. The necessity of condition (a) is obvious, and the necessity of
condition (b) is a consequence of the Schur theorem (sf, [10], Chapter 8), according to which,
in /', the convergence in norm is equivalent to the weak convergence. Indeed, we initially
can suppose that for any é > 0

T [((1— xs)paa) | €] < o0,

Otherwise, we would come to the contradiction with condition (b) of Theorem 3.4. Therefore,
at least for big n, (1 — xs)pn € £*. But then, if there is no convergence of this sequence to
zero in the norm of £!, i.e., condition (b) is not fulfilled, there exists a continuous functional
on /' (pseudomeasure f) whose values on the given sequence do not tend to zero. In the
language of convolutions it means that

((1 — xs)pn) * f(0) 4 0. It contradicts condition (b) of Theorem 3.3.
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Theorem 3.5. Sequence (0.1) converges on the class D if and only if the following two
conditions hold simultaneously:
(a) Sequence (0.1) converges on the two distributions;

(b) For any & > 0 the sequence (1 — xs)pn converges to zero in the topology of the space
C>.

Validity of Theorem 3.1 is obvious and we shall not conduct its proof here. The proofs
of Theorems 3.2 — 3.2 are based on the following auxiliary statements.

Lemma 3.6. Let p,, converge in D to Py. Then for any e > 0 and f € D and sufficiently
large n we have

F(f) CULEF(f * pn))-

Lemma 3.7. Let sequence (0.1) converge on the two distributions and supp pn, C [an, by],
an, — 0, b, = 0 as n — oo, then it converges on D.

We remind the definition of the Steklov functions of a distribution f. Let

_ [ 1/(2R), 6,0] <A,
Vi(0) = { 0 16,0] > h.

Then the distribution
sin nh »

Snalf1(8) i=vnx £(8) = 3 = f(m)e™

nez

is called the Steklov function of the first order of the distribution f. The Steklov functions
of the kth order are defined as follows:

Snalf1(8) = SualSnacalFN6) = 3 (Si“ "h> ).

nh
neZ
From Lemma 3.7, we have an obvious corollary.
Corollary 3.3. The Steklov functions of any order converge on D as h — 0.

Remark. For any distribution f and sufficiently large k its Steklov functions are contin-
uous. The given corollary means that the Steklov functions could be used for an equivalent
definition of canonical graphs.

Lemma 3.8. Let f €D, 6, € T, § > 0. Then
liminf{esssup £ # u(6) | 1> 0. |l = Lisupp  C (—z.)} > esssup F(%)
e—

Lemma 3.9. Let sequence (0.1) converge on the class X. Then for any 6 > 0 and f € X
we have

Jim [|(1 = Xs)ptn * Flloo = 0.
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Lemma 3.10. Let 3¢, € D and X :)%. Then ||f * »al|cc — 0 for any f € X if and only if
the following two conditions hold:

(a) || P * 5¢,||c — O for any trigonometric polynomial P;

() Tt e | X < .

Proof of Lemma 3.6. We assume the contrary. Let the statement of Lemma 3.6 be not valid
for some f € . Then, it is easy to see, there exist § > 0 and 6y € T such that either

(a) im esssup g4 <5 f * pan(f) < esssup f(6o)
nN—>00
or

(b) lim ess inf |9 6)j<s f * pn(f) > essinf f(6o)
n—0oo
holds. For definiteness we suppose that condition (a) holds.
Obviously, without loss of generality it is possible to assume that 8, = 0 and for all »

esssup f * p,(0) <0, (3.1)
16,0/<8
esssup f(0) >0 (3.2)

Otherwise, we extract an appropriate subsequence, subtract the constant from f, and trans-
late the argument.

The sequences xs/2(f * pn) and (1 — xs/2)(f * ) converge in D respectively to xs/2f
and (1 — x5/2)f. In view of (3.1) and the uniform convergence on compact sets of the open
unit disc we obtain that (xs/2f) * P.(f) < 0 for any 0 < < 1, § € T. Therefore, xs/2f
is a negative measure. At the same time, the distribution (1 — xs/2)f vanishes on (d/2)-
neighborhood of zero. Consequently, from Lemma 1.2, we obtain esssup f(0) < 0 that
contradicts (3.2). Lemma 3.6 is proved. O

Proof of Lemma 3.7. Let f € D and ¢ is an arbitrary positive number. We need to show
that for sufficiently large n the inclusions

F7(f) CU(F"(1.(1))); (3.3)

F*(L(£)) C U:(F7(§)) (3.4)

hold. The fulfillment of inclusion (3.3) follows from Lemma 3.6. Let us show validity of
(3.4). We assume the contrary. Let there be ¢ > 0 and somehow large n for which inclusion
(3.4) is not valid. Then it is easy to see that there are a point §; and a sequence 6,, for which
either

(a) lim esssup (f * p,)(6n) > esssup f(6o),
n—0oo
or

(b) lim essinf (f * p,)(8,) < essinf f(6o)
n—0oo
is valid. For definiteness we assume that condition (a) is fulfilled. Then, naturally,

esssup f(0) < oo.
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We also suppose that 8, = 0 and esssup f(0) > 0. In view of the fact that the set F*(f) is
closed and convex with respect to the y-axis, for any o > 0 there exists § > 0 such that for
the case |6,0] < § we have

esssup f(6) < esssup f(0) + o.

We assume that

lim esssup (f * p,)(0n) > esssup f(0) + 20. (3.5)

n— oo

Obviously, u,, can be represented in the form pu,, = &, + (., where {{,,} are positive measures,
satisfying the conditions Lemma 3.7, and {(,} C C* is a sequence of negative functions,
converging to zero in the topology of the space C*. Therefore, there are N; such that for
n > N; we have

1f # Calloe < o, (3.6)
and N, such that for n > Ny we have supp ¢, C (—§/8,4/8) and
[€nlls <14 0/(2(esssup f(0) + o). (3.7)

We represent f as the sum f = xs/2f + (1 — xs/2)f =: f1 + fo. It turns out that f; € M
because this distribution is bounded from above. Consequently, the measure f; can be
represented as a sum of positive and negative components ¢ and ¥, ¢ > 0, b < 0, and

|¢|lc < esssup f(0) + o. From here and from (3.6) — (3.7) for n > max{N;, N>} we obtain

esssup f* p,(0) < f* &+ || f * (alloo <
|6,0|<5/8
P &+ xlnt foxlnto=9¢xl+bxl+0 <
[lloc - [[€nlls + 0 + 0/2 < (esssup f(0) +o)(1+ o /(2(esssup f(0) +0))) =
esssup f(0) + 20.

Thus, for sufficiently large n inequality (3.5) does not hold. The obtained contradiction
completes the proof of Lemma 3.7. O

Proof of Lemma 3.8. Obviously, the expression under the sign of a limit is a monotonically
decreasing function of €. Therefore, the limit in the assertion of Lemma 3.8 exists. In the
case of the opposite inequality, there exists a sequence p,,, satisfying conditions of Lemma
3.7 and not converging on f. It contradicts Lemma 3.7. Moreover, it is easy to see that it
contradicts Lemma 3.6 simultaneously. O

Proof of Lemma 3.9. Let us assume the contrary. We assume that there are § > 0 and
f € X, for which

im |z, * fllo > 0.
n—oo0

where v, = (1 — xs)ftn. Obviously, by shifting the argument of f if it is necessary, without
loss of generality we can initially consider that for an arbitrary beforehand given o > 0 we
have

lim esssup |v, * f(#)| > 0.

n— oo |970|<0_
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We shall assume also that o < §/32. Obviously, taking an arbitrary infinitely differentiable
resolution of the identity {¢;} on T whose supports supp ¢; belong to arcs of length not
exceeding §/16, we obtain that at least for one of the functions g = f - ¢;, as well as for f,
the inequality

lim esssup |v, * g(8)| > 0. (3.8)
n— oo |970|<0_
holds.
If
supp g N [—24,20] = @, (3.9)
H*

then g is the required function on which the contradictory is achieved, ie., p, * g 4 g¢.
It follows directly from the fact that supp xspn N suppg = @ and, hence, xspu, * g(6) =
0 for sufficiently small 6. Therefore, (3.9) is not valid. Obviously, in this case suppg N
[—150/16,156/16] = @. Let v is an arc, length of which does not exceed 4/16, which
contains the support of g.

Let 5¢, = (1 — Xs/4) * pn- In view of the fact that supp (g, — 24,) Ny = @ we obtain
that if lim esssup 0.0]<o |7 * g(#)] > 0, then by analogy with the previous reasoning g is

n—0oo
the required function, leading us to the contradiction. Therefore,

lim esssup |, * g(#)] = 0. (3.10)

nN—>00 |970|<0_

According to Lemma 2.9 the sequences of operators J,(f) = 3¢, * g is bounded as a sequence
acting from X, to L because otherwise there is a distribution h € X, for which

lim esssup |, * h(f)| = oo,
N0 19.0[<20

that leads to contradiction.
At last, recalling that (1 — xs) - 56, = vy, from (3.10) and from Lemma 2.10 we obtain

lim esssup |v, * g(8)| =0

n— oo |970|<0_
that contradicts (3.8). The proof of Lemma 3.9 is completed. O

Proof of Lemma 3.10. The proof of the sufficiency of conditions (a) and (b) is standard.
We omit it. The necessity of condition (a) is obvious. The necessity of condition (b) is
consequence of Lemmas 2.2 and 2.7. U

Proof of Theorem 3.2. The necessity of the convergence on the two distributions is obvious.
We show the sufficiency. From the convergence on the d-function we obtain that p, can
be represent in the form of the sum w,, = 3¢, + v, where ||,]lc — 0. It follows from the
convergence on the identity that the sequence ¢, can be chosen satisfying the conditions of

Lemma 3.7. Therefore, for any measure f we have f * 3¢, R f as n — oo. Since
1f # i — f 5 sl = | # Valloo < [ £l - [[7n]loc — 0

as n — oo, then f * u, R f- Theorem 3.2 is proved. O
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Proof of Theorem 3.3. We show the sufficiency. Let f € X. Fix an arbitrary sequence of
numbers ¢; \, 0. We choose a sequence §,, by induction. We suppose dp = 9. If we already
chose the numbers {d;}7_, and 8, = ¢, we set 8,41 = ¢ if

sup H((l - X€l+1 ):u’m) * fHoo 2 2_l

m>n

or
inf [[Xepp pimlls <1275

and we set 0,11 = ;11 otherwise.
Let p, = v, + 3¢,, where v, = xs,pn. Then the sequence v, satisfies the conditions of

Lemma 3.6 and, consequently, v, * f 7, f. At the same time, according to the choice of 4,
we have

2 5 Flle = (1 = x5,) - i) * Fllow = 0.

Therefore, u, * f RE f- As was to be shown.

The necessity of condition (a) is obvious, and the necessity of condition (b) was proved
in Lemma 3.9. U

Proof of Theorem 3.4. Let conditions (a) and (b) of Theorem 3.4 hold. From condition
(a) we have fulfillment of condition (a) of Lemma 3.10. This lemma implies fulfillment of
condition (b) of Theorem 3.3. Thus, the sufficiency of the conditions of Theorem 3.4 is
proved.

The necessity of condition (b) is obvious. The necessity of condition (b) follows from

Lemma 3.10 and Theorem 3.3. O

Proof of Theorem 3.5. We show the sufficiency. For positive integers  we denote by D*M
the space of distributions for which S*[f — f(())] € M, and we denote by S*¥L> the space
of functions for which D¥[f] € L* (i.e., in other notations this is the Sobolev space W* ).
Then (D*M)°>* = S*L*>.

Let fy be an arbitrary distribution. Then thereis k such that f; € D*M. The convergence
of the sequence 3, = (1—x5)pn to zero in the topology of the space C* means, in particular,
that the norms ||, | S*L*°|| tend to zero for any k. It follows from this that condition (b)
of Theorem 3.3 for X = D*M holds. It means the sequence (0.1) converges on f.

The proof of the necessity we conduct by contradiction. If for some § > 0 the sequence
s, = (1 — xs)pn does not converge to zero in the topology of the space C* it means, that
there exists a positive integer ky such that a sequence of the norms |5, | S¥L>°|| does not
converge to zero. We take the minimum possible k. Then taking the distribution D*[P]
as f, we obtain ||f * 5¢,||oc 7 0. That contradicts condition (b) of Theorem 3.3. Thus, the
sequence can not be converging on the class D¥M and, especially, on D. O

4 Convergence on classes RH! and c

The spaces RH' and ¢ := (£*)° (besides, obviously, 20: (=, ¢ = £') do not contain 4-
function and, consequently, do not satisfy the conditions of Theorems 3.3 and 3.4. Therefore,
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they require separate consideration. We explain the reasons why we consider here these
spaces.

The cases of the spaces RH? = L? (1 < p < oo) were considered in [4] and [5] (see
Theorem C below), and the case 0 < p < 1 we considered in Section 3. The space RRH!
remains the only blank in the scale of the spaces RH? (0 < p < oo) and we, naturally, would
like to fill in this blank.

As to the space cp, it has the same meaning for the space £ as the space L! for the
space M or C for L.*°.

Besides, the assertions of criteria for the convergence on these spaces have more complex
form than assertions for the spaces containing P, and, it seems, they could serve as a sample
for obtaining general results for quasi-Banach spaces which were not under consideration in
Section 3.

We recall that Llog L C L is the space of (real-valued) functions on T for which the
function |f|-max{0,log |f|} is integrable. We denote by exp L the space of continuous linear
functionals on Llog .. More detail information about these spaces can be found, for example,
in [14] and [15].

Let ¥ is a 2m-periodic function, ¥(z) = # — z, @ € [0,27). Obviously, ¥ = S[P, — 1].
The sequence (0.1) is called converging on the two functions if it converges in the Hausdorff
metric on the identity and on the function ¥ (see [4] and [5]).

Let 4 be a regular Borel measure on T. Then we denote by ut and p~ respectively the
positive and and negative components in the Jordan decomposition p = pt + p~;

W(B) = pt(E\ [-6,8)) — n(E),
where £ C T.

Theorem A ([5]). The sequence of operators (0.1) converges on the class BV if and only
if it converges on the two functions.

Theorem B ([5]). The sequence of operators (0.1) converges on the class L™ if and only
if the following two conditions hold:
(a) The sequence (0.1) converges on the two functions;
: é _
(b) For any 6 > 0 we have Jim w(E) =0.
meas E—0
Theorem C ([5]). The sequence of operators (0.1) converges on the class LP (1 <p < oo)
if and only if the following two conditions hold:
(a) The sequence (0.1) converges on the two functions;
(b) For any § > 0 we have lim ||pd||, < oo, where g =p/(p — 1) (@ =00 forp=1).
n—0oo

Theorem 4.1. The sequence of operators (0.1) converges on the class RH' if and only if
the following three conditions hold:

(a) The sequence (0.1) converges on the two functions;

(b) For any 6 > 0 we have 111_>—H;OH(1 — xs)pbn | BMO|| < 00;

(¢) T iz | expL| < oo.
n—>00
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Theorem 4.2. The sequence of operators (0.1) converges on the class o if and only if the
following three conditions hold:

(a) Sequence (0.1) converges on the two functions;

(b) For any 6 > 0 we have EO]\(I — X6)pn | L] < 00

(¢) || lm g flo < o0

The appearance of condition (c) selects these two assertions from all considered above
and in [5]. As we shall see in proofs, the reason of the appearance of condition (c¢) is that,
in these spaces, there are elements which cannot be represented as the sum of positive and
negative distributions, belonging to the same space.

At the same time, maximum of spaces embedded in RH!, possessing this property, is
the space Llog L (sf., [16], Chapter 5). Thus, there is an understandable reason for the
appearance of the space exp L = M(Llog L, L) in the statement of Theorem 4.1. Similarly,
such the space for cg is the space of continuous measures My, i.e., measures without a discrete
component. Then L' C My C M. Consequently, L™ = M(M,, L*>).

We note that the condition such as conditions (c¢) of Theorems 4.1 and 4.2 could appear
in the assertions of Section 3. However, in Theorems 3.3 — 3.5 it, actually, appeared "hidden”
in condition (a).

Proof of Theorem 4.1. The generalized convergence of the sequence p,, to P; follows from
a condition a). Hence, according to Lemma 3.6, for any fixed ¢ > 0 when n is sufficiently
large, we have

F*(f) C U(F"(L(f)))-

We show that for sufficiently large n the converse inclusion

F*(I.(f)) C U(F"(f))

takes place. Let us partition the circle T into k equal arcs 4; of length g = 27 /k < /3. We
denote by m; and M; the essential upper and lower bounds of f on the union of the ¢th and
adjacent with it arcs, and f; is the restriction of f to this set; M := max{| m; |, | M; |},
where the last maximum is taken only over finite values. Let d is a number such that the
inequalities

m; —d < g(z) < M; +d
on all the arcs «; implies the inclusion
F*(g) C U(F(f))

We choose numbers &y and Ny so that for n > No, 0 < § < dpand z € v; (¢ = 1,2,... k)
we have

M; —d/3 < (xs - pn)* * f(z) < M; + d/3. (4.1)

For those ¢ for which at least one of the numbers m; and M; is finite, f; belongs to the space
Llog .. The norm of this space is absolutely continuous with respect to Lebesgue measure,
ie., if f € LlogL, then for any ¢ > 0 there is § > 0 such that the inequality meas £ < §
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(E C T)implies ||xz- f | Llog L|| < €. Therefore, there exist §; and N; such that for any f;
the inequality meas E < ; implies

Ixz - fi | Llog L|| < d/3K, (4.2)

where K = sup,, ||¢t;, | expL|| < co. At the same time, it is easy to show from conditions
(a) and (b) that for any § > 0 and f € RH" the sequence |[(1 — xs)n * f|loo converges to
zero. Consequently, there is Ny such that for n > N, we have

(1 = X5,) i flloo < df3, (4.3)

where 05 = min{do, §;,¢/6}.
Thus, if ¢ is such that at least one of the numbers m; and M; is finite, according to (4.1)
— (4.8), for all N > max{Ny, N1, No} and z € v; we have

pi % F(2)) = (Xoy + )T F(2) + (X5 pn) ™ * fl2) + (L= Xaz) - o * f(2) <
Mi+d/3 +[[(xs, - pa)” | exp Ll - [|fi | Llog L|| 4+ [[(1 — Xs,) « o * flloo <
M; +d/3+ (d/3K)-K +d/3 = M; + d.

Similarly, we obtain g, * f(z) > m;—d. It completes the proof of the sufficiency of conditions
(2) - (c).

The necessity of condition (a) is obvious, and the necessity of condition (b) follows from
Lemma 3.10. Let us show the necessity of condition (c).

We assume the contrary. Let condition (c) of Theorem 4.1 does not hold. Then, obviously,
for any 6 > 0 we have

Jim [[(xs - n) ™ [ expLL|| = oo. (4.4)

Indeed, if it is not so, condition (b), the necessity of which is already proved, would be not
valid.

Let Q = sup ||pn]|1. Obviously, it is possible without loss of generality to assume that
2 < 00. We construct the required function f which leads to contradiction in the form of a

sum of series f =Y > g,. We introduce the notation f, := > " Gn, Am := Y . gn. Let
M be an arbitrary positive number, 6, = 2771, We construct a sequence of the functions

gn and a sequence of natural numbers l, /oo, proceeding from the following conditions:
1) g, is a continuous non-positive function supported on the interval (a,, b,), where
Uy = Cp — O, by =y + 0y, €y —2zz_é5n,n:0,1,2,...; co = 0;
2) gn * i, (cn) > 2M, n=0,1,2,...;
3) maxyeia,pn] | fro1 * pu,(z)) [< M/4, 2 =0,1,2,...;
4) |lgn | Llog L|| <27"°' »n =0,1,2,...;
O'kM 2k "
) 160 QC’

Ay = {z € [ar, b] | gr * pu, (2)) M},

o, >0, k=0,1,... . n—1;n=12,...; Cis a constant of embedding of the space Llog L
in LY.

We need the following assertion.

5) llgn | Llog L] <

where o, 1s Lebesgue measure of the set
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Lemma 4.3. Let p be a regular Borel measure on T and ||x(_ss) - p~ | expL|| > K. Then
there exists a continuous non-positive function 9, equal to zero outside the interval (—4,4),

for which || | Llog L|| <1, 9% u(0) > K.

We omit the proof of this lemma because it repeats the proof of Lemma 5 of [5] almost
literally.

We construct the functions g, and the numbers [,, by induction. We choose the number
lp satisfying the condition ||x(_s,s, - #4;, | expL| >4M. Then, according to Lemma 4.3, there
exists a continuous function gy, satisfying conditions 1), 2) and 4). As go*pyy,, is a continuous
function, we have aq > 0,

Let’s assume we have conducted constructing for n = 0,1,... ;m — 1. Then the function
gm and the number [,,, are chosen as follows.

In view of continuity of the function f,,_1, the sequence of operators (0.1) converges on it
uniformly and, therefore, for sufficiently large [,,, condition 3) holds. By (4.4), for sufficiently
large [,,, the inequality

16w  QC

X (=80 50m] "My, |expL|| > 2M - max{2m+1; M—ak : 2m—_k7k =0,1,... ,m— 1} .

holds too. Then, according to Lemma 4.3, there is a continuous non-positive function g/,
which is equal to zero outside the interval (—d,,, d,,) and satisfies the inequalities g/ *uy,, (0) >

2M and .
oM 28™
—k=0,1,... —1;.

16 QC T o™ }
We take the function ¢/ (z — ¢,,) as above g, (2). Thus, the possibility of construction of the
sequences of the functions g, and the numbers [,,, satisfying conditions 1) — 5), is proved.

According to condition 4), the function f belongs to the space Llog L, ||f | Llog L|| <1
and f < 0. We study behavior of the function f * y;, on the set A,.

According to condition 5),

Hg;|qugLHf;nnn{z—m—%

o, M 1

sl < Cllhas | Llog L < 22 =

Therefore, from the Chebyshev inequality we obtain

27 || * a1 _
Mz =
< 87 | Angalls - e, |l /M < o0 f2.

meas {@ € T | |hus1  , (2))] > M/4} <

It follows from here and from 3) and 5) that there is a set of the Lebesgue measure o,,/2 on
the interval (ay,, b,) such that we have

o, (@) = faor i, (€) + go * pu, (8) + Por 5, (2)) = —M/4+ M — M/4 = M/2

at any point x of this set. Therefore, H*(f+*u,, f) > M/2. That contradicts the convergence
of sequence (0.1) on the class RH'. Theorem 4.1 is proved. O

Similarly it 1s possible to obtain the following statement which we give without the proof.
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Theorem 4.4. The sequence of operators (0.1) converges on the class Llog L if and only if
the following two conditions hold:

(a) Sequence (0.1) converges on the two functions;

(b) For any 6 > 0 we have 1}Li—>—I%oHM’; + (1 —xs)pt | expL|| < oo.

Remark. Obviously, in the assertion of condition (b) of Theorem 4.4 the function x5 € C>
can be replaced with the characteristic function of the interval x(_ss).

Proof of Theorem 4.2. Validity of the inclusion F*(f) C U.(F*(f)) for large n can be proved

in the same manner as the proof of the previous theorem. We show the converse inclusion

F(In(f)) C U(F7(f))- (4.5)

According to condition (c), there are a positive number K and a positive integer ng such
that for n > ng we have

i (2)) > ~ K. (4.6)

As usually, we partition T into k arcs 4; of length g < £/3. We denote by M; and m;
the essential upper and lower bounds of the function f on the union of +; with the adjacent
arcs. We choose d > 0 such that fulfillment of the inequalities m; —d < I(f)(z) < M;+d on
all the arcs 5; implies (4.5). It follows from conditions (a) and (b) that for sufficiently large
n, p, are measures and there exist the numbers dg and Ny such that for n > Ng, 0 < d < o,
€y (1=1,2,... k) we have

m; —d/3 < (xs-pn)t * f(z) < M; +d/3. (4.7)

Distributions of ¢y bounded from above or from below are continuous measures. There-
fore, for those ¢ for which either m; or M; are finite the restriction of f to the union ~; with
adjacent arcs is a continuous measure. Consequently, according to (4.6), there is d; such
that for all 4, 0 < § < 41, and = € v; we have

|f o (xopn) ™ (2))] < d/3 (4.8)

for n bigger certain Nj.
From conditions (a) and (b), according to Lemma 2.10 we obtain that by fixing §, =
min{do, d; }, for n greater certain N, and when 0 < § < é5 we have

(1 = xs)pn * flloo < d/3. (4.9)

Collecting (4.7) — (4.9), we obtain (4.5). The sufficiency is proved.

The necessity of condition (a) is obvious and the necessity of condition (b) follows from
Lemmas 3.9 and 3.10. In the case of invalidity of condition (c) there exists a function
f € L' C ¢ on which sequence (0.1) diverges. This fact is an immediate consequence of the
criterion for the convergence on the class L' (see [4], [5]). O
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5 The Gibbs phenomenon and convergence

As it was already mentioned above, in [5] we obtained results for the spaces BV and L?
which were similar to the results of Sections 3 — 4. Besides, for these spaces two other
kinds of results were obtained. At first, it was shown that the convergence takes place
if and only if the generalized Gibbs phenomenon does not occur. The definition of the
generalized Gibbs phenomenon will be given below. Secondly, it turns out that not only
the sequence of the convoluting kernels is "suitable” for the given spaces (if they satisfy
the appropriate conditions) but the converse fact also takes place. If we fix a set of the
kernel sequences, satisfying conditions of the criterion, then the spaces, on which the given
sequences of operators converge, are determined, in fact, uniquely. Here we show that the
given assertions are, somewhat, universal even in a little bit strengthened form.

Definition 5.1. A distribution f is called essentially unbounded everywhere, if
esssup f(z) = +oo, essinf f(z)) = —oo,
i.e., the distribution f is essentially unbounded both from above and from below on any arc.

We note that the similar concept was introduced in [5] only for summable functions.

o O
Theorem 5.1. Let X € ‘H be a Banach space and either X =X or X = X. A distribution
f is not essentially unbounded everywhere and f & X. Then there exists a sequence of
operators (0.1), converging on X and not converging on f.

Remark. Generally speaking, Theorem 5.1 ceases to be valid for quasi-Banach spaces. It
is caused by the fact that Lemma 2.5 is not valid for them.

This theorem strengthens the statements from [5] because in that paper we imposed
the initial limitations on f. So, for example, in the assertion for X = BV we assumed that
f € L>, and in the case X = L (1 < p < oo) we assumed that f is a summable function.

Proof of Theorem 5.1. Let f ¢ X and be not essentially unbounded everywhere. Then it
is easy to see that there is a point 6y € T at which either co < esssup f(6y) < oo or
—oo < essinf f(fy) < oo. For determinancy we assume 6y = 0 and the former holds.

If f Q)D( (in particular, it happens if X :)D(), according to Lemmas 2.2 and 2.5, f ¢
M(X°*,L>). Hence, there exists a sequence of distributions s«,, |54, | X°*|| = 1, such that
[, € Cand f*32,(0) = 400 as n — co. We take an arbitrary sequence ¢, — 0 such that
en(f *5¢,(0)) — +oo. Then the sequence of operators (0.1) with the kernels p,, = Py + e3¢,
converges on the class X because for any distribution A € X, according to Lemma 2.2, we
have

1B (ensen)lloo < nllh | XI| - [l | X7 = enllh | X[[ = 0.
At the same time, obviously, there is no convergence on f.

O o
Let f € X and f ¢ X. In view of the fact that the distribution f cannot be approximated
with an arbitrary accuracy in the norm of the space X by functions of C*, there is C' > 0
such that

If=rr 1 Xl >C (5.1)
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Let 1, =1—1/k, k=1,2,... Then in view of (5.1) and Lemma 2.5, for any k there exists
a distribution s,

[l | M(X, L) = 1, (5.2)

such that |[(f — ™) % 5t ||oc = || f * (P1 — P,) * 5t||c > C. By (5.2), we obtain that there is
a distribution 3¢ such that |3g,(n)| < |5¢(n)|. Hence, the sequence (P — P, ) % 3, converges
in D to zero, and in particular, it converges to zero coefficientwise.

On the other hand, according to the definition of spaces of H and by Lemma 2.4, we
have

1Py = Pr) s | MO L) < e | MOGLS)| 4[| Pry %o | MOXLL¥) < 2. (5.3)

Thus, denoting by &, the sequence (P — P,, ) * 5¢;, we obtain ||f * ||« > C. For every k we
can choose an appropriate 7, 0 < r < 1, so that for the function (; = &, * P,, the inequality
IIf * (kllo > C holds. In this case the function f*(; becomes continuous. We denote by
v, the functions obtained of (; by the shift of an argument and, may be, by the change of
a sign. We choose the distributions vy so that the inequality f * 14(0) > C holds. Then,
obviously, ur = P1 + v, is the required sequence of kernels of the operators (0.1). Indeed,

the divergence on f is obvious. The convergence on X (=X) follows from the convergence
of a sequence of the operators J,(g) = ¢ * v, to zero on polynomials and from boundedness

(according to (5.3)) of the norms ||y, | M(X,L>)||. Theorem 5.1 is proved. O

The comprehensive answer to a question what happens if a distribution f is essentially
unbounded everywhere gives the following assertion.

Theorem 5.2. Let a sequence p,, converge to Py in D and f is a distribution essentially
unbounded everywhere. Then

F o i 25 f.

Remark. Theorem 5.2 contains a certain paradox, consisting in the fact that the gener-
alized convergence to P; guarantees the Hausdorft convergence on "very good” distributions
of C* (see Theorem 3.1) and on "very bad” functions essentially unbounded everywhere.
There 1s no guarantee for all remaining distributions because always there exists a space

X =X # C>®, X € H, which does not contain the given distribution. For example, we can
take as above X the space of k times continuously differentiable functions for sufficiently
large k.

Corollary 5.1. For any essentially unbounded everywhere distribution the conclusion of
Theorem 5.1 ceases to be valid.

Indeed, if sequence (0.1) converges on the class X € H, it converges on the class C*.
Hence, by Theorem 3.1, it converges to P; in D. Therefore, it follows from Theorem 5.2 that
it converges on any distribution essentially unbounded everywhere.

Theorem 5.2 follows immediately from Lemma 3.6.

We proceed now to considering the Gibbs phenomenon on classes X € H. Following [5],
we give a definition of the (generalized) Gibbs phenomenon. We say that for the sequence
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of operators (0.1) the Gibbs phenomenon occurs on the function f if there exists a point
6y € T such that one of the inequalities

lim lim esssup L,(f)() > esssup f(6o),

d—=0n—oo |9790 |<5

lim lim essinf I,,(f)(#) < essinf f(6o)

d=0 oo 16.60]<8
holds. The difference with the corresponding definition in [5] consists in the absence of
requirement of summability of the distributions f and I,,(f). It is not necessary here because
we gave the definitions of essential upper and lower bounds for an arbitrary distribution.

The canonical graphs of distributions can have non-zero area and even contain whole

domains, so it would be natural to call the given phenomenon as the external Gibbs phe-
nomenon because in this case the approximating sequence of the canonical graphs comes out
of the canonical graph of the approximated function on the non-zero distance. We say that
for the sequence of operators (0.1) the internal Gibbs phenomenon occurs on the function f
if there exist § > 0 and Ay € T such that one of the inequalities

lim esssup [,(f)(0) < esssup f(6o),

n—0oo |9,90 |<5

lim essinf I,(f)(#) < essinf f(6o),

n—00 |9790 |>5

hold.

Obviously, sequence (0.1) converges on an arbitrary fixed distribution if and only if both
internal and external Gibbs phenomena are absent. It is natural to say that the corresponding
Gibbs phenomenon is absent on the class of distributions X if it is absent on every f € X.

It was shown in [5] that sequence (0.1) converges on the classes BV and L? (1 < p < o0)
if and only if the (external) Gibbs phenomenon is absent, i.e., for these classes the absence
of the external Gibbs phenomenon implies the absence of the internal one. It turns out, this
property is universal and does not depend on topological properties of the space.

Theorem 5.3. Let X be an arbitrary set of distributions, X O C*. Then the sequence of
operators (0.1) converges on the set X if and only if the (external) Gibbs phenomenon does
not occur on it.

Proof of Theorem 5.3. Obviously, the convergence on the set X implies the absence of the
external Gibbs phenomenon.

We show the converse fact. Let the external Gibbs phenomenon for sequence (0.1) on
set X does not occur. The convergence of sequence (0.1) on C* follows immediately from
here. Hence, according to Theorem 3.1, the sequence p,, converges to P; in the generalized
sense. It follows from here and Lemma 3.6 that the internal Gibbs phenomenon also does
not occur. Thus, sequence (0.1) converges on the set X. As it was required. O

We introduce a new distance of Hausdorft’s type mentioned in Section 1. Let f,g € D,
then

HO(f,g) :==sup H(f",g") (=sup H*(f",g")).

r<1 r<1
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The distance H" is a metrics. Obviously, the convergence of a sequence of distributions with
respect to the distance H" implies the convergence in the sense of the distance H*.

It turns out, despite of distinctions of the distances H* and HU, the convergence of
sequence (0.1) on a class X € H takes or does not take place simultaneously.

Theorem 5.4. Let X € H. Then sequence (0.1) converges on the class X with respect to
the distance H* if and only if it converges on this class with respect to the distance HO.

Proof of Theorem 5.4. Obviously, it suffices to show that the convergence of (0.1) with re-
spect to the distance H* implies the convergence in the metric H=. We assume the contrary.
Let sequence (0.1) converge on the space X € H in H* and do not converge in the metrics
HY. f € X is a function on which there is no convergence in H-. Then there exist a
sequence of natural numbers ny " co and a sequence of real numbers r;, 0 < rp < 1, such
that for some g5 > 0 we have

H(f™, L, (f™)) > eo. (5.4)

The sequence p,, converges to Py in D. It follows from here that L,(f) (more precisely, the
sequence of harmonic extensions into the unit disc) uniformly converges to f on compact
sets. Therefore, the sequence 7 has a unique limit point which is equal to 1.

It follows from Theorem 1.1 and from (5.4) that for sufficiently large k we have

H(f, L,(f™)) > €o. (5.5)

Hence, for every such k either

F(L (f") [\ U(F*(£) # @ (5.6)

or

F () (YU F (Lo (™)) # © (5.7)

takes place. According to Theorem 3.1, the sequences p,, converges to P; in . The same
can be told about the sequence p,, * P,,. Hence, it follows from Lemma 3.6 that (5.7) cannot
be satisfied for infinite number of the indexes k.

In the case when (5.6) is valid for infinite number of the indexes k, there exist 6y € T
and a sequence #;, — 4 such that we have either

I}i—m esssup I, (f™(6x)) > esssup f(6o) (5.8)
— 00

or
lim essinf I,,, (f™(61)) < essinf f(fo).
k—o0
For definiteness we assume that (5.8) is satisfied. In view of the convergence of the sequence
of operators (0.1) on constants without loss of generality we can suppose that the left-hand
part of inequality (5.8) is positive and the right-hand part is negative. Moreover, there is
§ > 0 such that esssup 545 f(¢) <O0.
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We represent the Poisson kernel P, in the form P, = v + sq, where v = x5/5 - P, As
the sequence f * p,, converges in D and g, converges to zero in the topology of the space
C>*, we get the uniform convergence of the sequence F * p,,, * 3¢, to zero. Hence, it follows
from (5.8) that we have

I}i—m eSS SUP fhn, * [k g (6r) > 0. (5.9)
— 00
In view of the convergence of the sequence of operators (0.1) on f the inequality

esssup pu, * f(#) <0
6,80]<8/2

is valid for sufficiently large k. In view of positivity of the function vy it contradicts (5.9).
Theorem 5.4 is proved. O

6 Applications to summation of Fourier series

We begin with the consideration of summation processes by the Cesaro methods (C, ).

Recall main definitions. For a # —1, —2,... and positive integers n the numbers
(a+1)-...-(a+n) n®
A% = =0~ ——— 6.1
n n| n ]__‘(Oé + 1)7 ( )
where I' (+) is the gamma-function, is called the Cesaro numbers (sf., [14]). The Cesaro sums
for a function f is defined to be trigonometric polynomials o%(f) = f * K&, where

ZA“ 1D, (6.2)

and D, (t) is the Dirichlet kernel,

1 - sin(n + 1/2)t
D.(t):=| = t)|] = ——.
(t) <2+;cosy> 2sint/2

By applying the Abel transform to (6.2) several times, we obtain the well-known Kogbetliantz
formula (see [13] and [14], ChapterIII)

K (t) =
6it/2 ; B ot
S AT A 6.3
¥\ 242sint/2 1—6—“5 +Z n+k (1= +Z et ([ =gy ) |+ (63

where $(z) is an imaginary part of the complex number z. In view of (6.1) the series in the
last expression converges only if M > a. Nevertheless, formula (6.3) makes a sense even in
the case m < a because for ¢ # 0 this series is summable to a finite number by the Abel —
Poisson method.
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Theorem 6.1. Let X is either M or £*. Then the Cesdro method (C, ) converges on X
of and only if a > 1.

Proof of Theorem 6.1. The necessity of the condition a > 1 follows from the results of papers
[3] — [5], where it was shown that for @ < 1 the convergence is absent even on the class L>.

The convergence of the method (C,«) for & > 1 on the class M follows from Theorem
3.2 due to the convergence of the method (C, a) on the two distributions.

The sufficiency of the condition « > 1 for X = £~ we deduce from relation (6.3) for
m > a. Let § be an arbitrary positive number. We show that |[(1 — xs5)K2 | £} — 0 as
n — 0o. Let us consider three addends of formula (6.3).

Let ¢k (t) = e /AY, 1 (t) = (1 —xs5(t))e™/?(1—e*)=*/(2sin t/2). Obviously, || | £] —

0 as n — oo, and since ¥ € C*, we have
|1t l | £ — 0 as n — oo. (6.4)
Let
P2k = Az_l__,’:/Ag, PPR(E) = (1 — xs(t))e?(1 — )% /(2sint/2), k=1,2,...,m.

Then, obviously,

2k 0 as n — oo. 6.5
b,

Therefore, ||¢2* | £2|| — 0 as n — co. In view of the fact that all 1)** belong to C* we have

m
Zqﬁik Cqp?F ‘ M = 0 as n — oo. (6.6)
k=1

As it was mentioned above, for m > a the series ¢,(t) = Yoo AZ " le™™ converges

absolutely. Obviously, the norms ||¢,, | £!|| are bounded in the aggregate. Therefore, denoting
by ¢ the function ¢,/A¥, we obtain |[#> | £}|] = 0 as n — oco. Since ¥3(t) = (1 —
xs(t))et?(1 — e*)=™/(2sint/2) € C*, then

|2 - 4p® | 41| — 0 as n — oo. (6.7)
Joining (6.4), (6.6) and (6.7), we obtain
e O e F (e R e B W L S R [ A A R R
k=1

as n — oco. As was to be shown.

O

Corollary 6.1. The Cesaro method (C,a) converges on the class £ (2 < p < o0) if and
only if a > 1.

Obviously, the necessity of the condition « > 1 follows from the embeddings > C L C
P and its sufficiency follows from Theorem 6.1.
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Theorem 6.2. The Cesdro method converges on the class ®RHP (0 < p < 1) if and only if
(¢) «>1,1/2<p<1;
(b)a>1/p—1,0<p<1/2

Proof of Theorem 6.2. According to Corollary 3.1 of Theorem 3.4, we just need to estimate
the norms ||(1 — xs) K5 | B}Xéﬁ;l | for the fixed § > 0. We show that for this estimation of the
norms only the first term of relation (6.3) is important. Acting by analogy with the proof
of Theorem 6.1, we obtain from (6.5) that

lim [[¢2* - 4® | BYESH[ =0
n—o00 !

for any k = 1,2,... ,m. Obviously, for any positive integer [ and sufficiently large m the
series Y o0 ANTmle™ ig the Fourier series of a function which is continuously differentiable

[ times. It follows from here that lim ||¢2 - 3 | B}Xéﬁ;lH < oo for sufficiently large m.
n—0oo

We estimate the first term. Let the number 1/p is fractional and [1/p] is its whole
part. We differentiate the function ¢, (t) = ¢™*/A® [1/p] — 1 times. Then the derivative
DW/PI=V[g, (#)] = (in)/P)~Leint /A% is bounded in the norm of the space B}Xéﬁ;[l/p]_l if con-
ditions (a) or (b) are valid. It is unbounded if conditions (a) and (b) are not valid. In the
case when 1/p is integer greater than 1, we need to differentiate [1/p] — 2 times the function
¢, and to estimate the Zygmund norm of the obtained function or (that is the same), the
norm in BY, .

The case p = 1 follows from the embeddings L™ C RH! C L' in view of the fact that
the condition « > 1 is necessary and sufficient for the convergence on the classes > and

L. O

We proceed to the consideration of summation of Fourier series by the Vallée-Poussin
methods. We recall that the Vallée-Poussin kernel with integer parameters m and k, 0
< m < k, 1s defined to be the trigonometric polynomial

ko

VE(t) = Y D;(t)/(k — m).

%

I
3

In [3] - [5], the following theorem was proved.

Theorem D. The Vallée-Poussin method with the kernels {V,"" }>2, where k, — oo, con-
verges on the class P if and only if:

(a) m, = o(ky,) if p = oo;

(b) mn = O(KZPT) if 1 < p < co.
Theorem 6.3. The Vallée-Poussin method converges on the classes M, L™ and RHP(1/2 <
p < 1) if and only if m, = o(Vkn).

We recall two useful formulae for the representation of the Vallée-Poussin kernels:

1 sin® m,t/2 — sin® k,t/2

Mn t — . .
Ve (t) k., —m, sin? t/2 ’ (6.8)
1 cos m,t — cos k,t
mn () = : " n ‘
Vi () 2(kn, — my,) sint/2 7 (6.9)
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Proof of Theorem 6.3. To prove the necessity we show that in the case when the condition
m,, = o(v/k,) does not hold, the sequence of the Vallée-Poussin operators does not converge
on the Dirac d-measure. Let there exist C' > 0 and a sequence of positive integers n; # oo
such that m,, > Vk;. Obviously, we can assume that My, < kn,/2 because in the case of
fulfillment of the converse inequality for infinite number of the indexes [ it follows from the
result by G.Natanson [17] that for the operator sequence the classical Gibbs phenomenon
occurs. For simplification of the notation we omit the index [.

By substituting ¢ = ¢,, = 2x /k,, in formula (6.8), we obtain

V() = - sin®(mmnfkn) _ ((ema/ke)(2/7))* om (C>2‘

(kp, — my,)sin® 7 [k, ([ Ky )? 72k,

™

It contradicts the convergence of the sequence of operators (0.1) on P;.

To prove the sufficiency, at first, we show the convergence on the two distributions. The
convergence on the identity is obvious. We show the convergence on P;. Indeed, it is easy to
see from (6.8) that outside an arbitrary neighborhood of zero the sequence (Vn’fb:’l)—l— uniformly
converges to zero. On the other hand, according to (6.8), we have

Fon\ sin’ (myt/2) m;, (0(vkn))?
(an) = _(kn —my) sin? t/2 = _kn —m., = _kn — 0(\/5)

as n — oo. Consequently, the convergence on the class M is proved.
Let us show the convergence on the class £*. Indeed, we have

=o(1)

|(cos mut — cos knt)/(2(kn — my)) | £ — 0, as n — oo.

At the same time, for any § > 0 we have (1 — xs)/(sin®¢/2) € C*. Thus, according to (6.9)
and from the boundedness on £*° of the operator of multiplication by a function from C*,
we have |[(1 — x5)VF» | £]] — 0 as n — oo. Now the convergence on the class I follows
from Corollary 3.2 of Theorem 3.4.

Let us show the sufficiency of the condition m, = o(+/k,) for the convergence on the
class RH'Y/2. To prove it we need to show that for any § > 0 we have

lim [[(1 = x5) Ve | B ol < o0 (6.10)
n—+00 ?

The space B!

so.00 coincides with the Zygmund space. We need to prove the uniform bound-
edness of derivatives of the function (1 — xs)V%". Indeed,

| (cos mpt — cosknt) /(2(kn — my)) |< (M + k) [/ (2(Kn — my)) <1

and ((1—xs)/(sin®t/2)) € C*. Inequality (6.10) follows from here and from (6.9). Theorem
6.3 1s proved. O

Theorem 6.4. The Vallée-Poussin method does not converge on any class RHP(0 < p <
1/2) for any set of the parameters {k,} and {m,}.

Remark. Due to already proved Theorem 6.3, the given result is not unexpected. Indeed,
from our point of view "the best” of the Vallée-Poussin methods is the Fejer method. How-
ever, according to Theorem 6.3, it can provide the convergence only on the class RH/2.
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Proof of Theorem 6.4. The fulfillment of the inequality
Lim x5V | BYESH| < o0
n—00 ’

for any d > 0 is necessary for the convergence. For p < 1/2 it means that derivatives of
the functions ngrﬁ:’l have to be uniformly bounded with respect to the norm of one of the
Zygmund —Lipshitz classes. However, obviously, the function

(cos mut — cos knt)'/(2(k,, — my,)) =

= (ky sin k,t — my, sinm,t)/(2(k, — my,))

is not bounded as a sequence of any of the Lipschitz classes. Multiplication by the function
(1 — xs)/sin®¢/2 can not correct this property. Theorem 6.4 is proved. O
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