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Abstract

The paper deals with �nding criteria for the Hausdor� convergence of sequences
of convolution operators on quasi�Banach spaces of periodic real�valued distributions
�generalized functions�� In particular� the criteria for convergence on the Hardy classes�
on the class of regular Borel measures� and on the class of pseudomeasures are found�
These assertions are special cases of the general result obtained for rather wide collec�
tion of spaces� The given result relies essentially on the explicit description of the set of
bounded convolution operators� acting from the �xed space of the mentioned collection
to the space L�� Solution to these problems became possible due to the introduction
of the notion a the canonical graph of an arbitrary distribution�

It is shown that the Hausdor� convergence on the class of distributions� containing
the space C� � is equivalent to absence for this class the �generalized� Gibbs phe�
nomenon�

The obtained results are applied to the study of the Hausdor� convergence of pro�
cesses of the summation of Fourier series by the Ces�aro and Vall�ee�Poussin methods�

AMS subject classi�cation� 	
A��� 	A	� �E�� 	A	�� 	�B
�� 	�F�
Key Words� the Hausdor� approximation� distributions� operators of convolution�
summation of Fourier series� bounded operators� duality and re�exivity

��� Introduction

The concept of the Hausdor� distance between functions as the Hausdor� distance between
their �complemented� graphs was generated in the sixties mainly due to works of Bulgarian
mathematicians� The state of art of this subject in the end of the seventies is re�ected in the
book by B�Sendov ���� The Hausdor� metrics has a number of attractive properties� In our
opinion� the main of these properties is its naturalness for human eyes� Roughly speaking�
functions are considered as close if their graphs are 	visually	 close �almost coincide�� From
this point of view the uniform metric was the predecessor of the Hausdor� metric� However�
natural area of its usage is restricted by the space of continuous functions� The Hausdor�
distance is used for measuring deviations between arbitrary bounded functions de
ned on

�The results of the paper were partly published without proofs in ����
yThis research was partially supported under Grant NSF KDI ���AO��
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a metric compactum� Thus� as it was mentioned in ���� in some sense the uniform distance
is a special� or to be more exact a limit case of the Hausdor� distance� On the space
of continuous functions the Hausdor� and uniform convergence are equivalent� This is an
essential distinction of the Hausdor� convergence and� for example� the convergence in the
integral metrics� It gives one more argument that the Hausdor� metrics is the nearest relative
of the uniform metric�

At the same time� absence of linearity is essential lack of function spaces with the Haus�
dor� metrics� In such spaces� if they contain discontinuous functions� it is essentially im�
possible to introduce operations of a linear space which are continuous with respect to the
metric� Moreover� the accepted in ��� approach assumes identifying the concept of a func�
tion and its complemented graph� It makes problematic the introduction of a natural linear
structure because objects of the operations are multi�valued functions �more precisely� their
graphs�� The lack of the linear structure does not create any di�culties for the problems
related to the best approximations� However� usually such approach does not allow to use
linear methods of approximations� at least for the spaces of functions which can have rather
massive sets of discontinuity points� In this connection it is necessary to mention paper ���
where the problem of the approximation of� so�called� H�continuous functions by positive
operators in the Hausdor� metrics was considered�

In our paper ���� we used other approach� We suggested to consider approximations by
linear �integral� operators of the form

Jn�f� �

Z b

a

f�t�Kn�x� t�dt

on the classical normed space of the functions essentially bounded on the segment �a� b��
However� we studied the convergence in the Hausdor� metrics �not in the uniform metric��
In ���� necessary and su�cient conditions for the kernels Kn� providing convergence Jn�f� to
f in the Hausdor� metric for all essentially bounded functions� were found�

To discuss the convergence in the Hausdor� metric it is necessary to introduce the concept
of a function graph properly� Such a de
nition of canonical graphs of the bounded function�
invariant with respect to the change of a function on a set of measure zero� was introduced in
���� The same de
nition without any change was used in ��� and ��� for integrable functions�
Canonical graphs of unbounded functions are not compact sets� Therefore� to measure
distance between unbounded functions it is necessary to compactify the axis of values by
means of contracting with a bounded strictly monotone function�

In ��� and ���� the criteria for convergence of convolution sequences

In�f� � f � �n �����

on the classes of ��periodic functions with summable pth power �� � p � �� and on the
class BV �functions of bounded variation� were found�

In ���� the convergence of Fourier series of functions of the Besov�Lizorkin�Triebel
classes was studied�

The goal of this work is studding the convergence of operator sequences ����� on quasi�
Banach spaces of periodic real�valued distributions �generalized functions�� Section � is
devoted to the problem of a reasonable de
nition of the �canonical� graph of a distribution�





In particular� it is shown that the Abel � Poisson sums of any distribution converge in
the Hausdor� metric� In Section � a special class of quasi�Banach spaces of distributions
is introduced� These spaces have a very important property� Their Fourier multipliers�
acting to the space of essentially bounded functions� are determined explicitly� In Sections
�� some general results for spaces of this class about the convergence of operator sequences
of the form ����� are obtained� In Section �� the criteria for the convergence of sequence
����� on the real Hardy spaces �Hp �� � p � ��� on the space of regular Borel measures
and on some other classes� containing the Dirac ��function� are obtained� In Section �� the
approximations on certain spaces which do not satisfy the requirements of Section � are
considered� In particular� a criterion for the convergence on the class �H� is found� Finally�
in Section �� relying on the general results� the convergence of various summation methods
of Fourier series on these spaces are studied�

We denote by T the unit circle with the natural metric� The distance between ��� �� � T
is de
ned to be the length of the shortest arc connecting �� and ��� We denote it by
j ��� �� j� In what follows all function spaces �spaces of distributions� are real�valued� but for
convenience sometimes we shall use the complex notation� As usual we denote by C � C �T��
C� � C��T� respectively the spaces of continuous and in
nitely di�erentiable functions�
Recall that a sequence fn � C� is called converging to f � C� in the topology of the space
C
� if kf �k�n � f �k�k� � � for all k � �� �� � � � � � where k � k� is the uniform norm� The
space C� consists of functions� whose Fourier coe�cients decrease faster any power�

The space of distributions �generalized functions� D on T is de
ned to be the set of all
bounded linear functionals on C� � Principal facts� concerning periodic distributions� can be
found in the book by R�Edwards ����� Chapter ��� Here we recall some of them�

The space D can be identify with the set of formal trigonometric series
P

n�Zcne
inx� where

Z is a set of integer numbers with coe�cients of temperate growth� i�e�� j cn j� O�jnjk�
as jnj � � for some natural k which can be di�erent for di�erent distributions� This
correspondence is set by the relations cn �� �f�n� �� f �einx�� where f � D � The requirement
of real�valuedness of a distribution coincides with the condition c�n � �cn� We say that a
sequence fn � D is convergent to f � D in D if fn���� f ��� for any function � � C� � or �it
is the same� if fn converges to f coe�cientwise� i�e�� �fn�k� � �f �k� for all k � Z� and there
exists p such that limn�� supk�Zj �fn�k�j�jkjp ��� It means that the Fourier coe�cients of
the sequence fn are majorized by coe�cients of some distribution� In view of the generalized
convergence� we put the sign 	�	 in the formula

f�x� �
X
n�Z

cne
inx �

X
n�Z

�f�n�einx

instead of 			� as it is accepted in the classical theory of Fourier series�
We denote by D�f � the generalized derivative of the distribution f �

D�f ��x� �
X
n�Z

in �f�n�einx�

Inde
nite integral of a distribution is a distribution only if �f��� � �� We denote by S�f � the
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primitive of such distribution�

S�f � �
X
n�Z
n���

�f�n�einx�

A convolution of two distributions f� and f� is de
ned to be the distribution

f�x� � f� � f� �x� ��
X
n�Z

�f��n� �f��n�e
inx�

Let
Pr�x� ��

X
n�Z

rjnjeinx� � � r � ��

be the Poisson kernel� then it is natural to reserve the notation P� for the ��function �the
Dirac measure�� Any distribution f�x� �

P
n�Zane

inx can be harmonically extended into
the unit disc of the complex plane by means of the formula

F �z� ��
X
n�Z

anr
jnjeinx � f � Pr�x� �� f

r�x��

where z is an arbitrary complex number of the unit disc� r and x are its absolute value and
argument correspondingly�

Let us recall that two distributions coincide on an open arc 	 
 T if they coincide as
functionals on any function � � C� � supp � 
 	�

For any � � C� and f � D the operation of pointwise multiplication is de
ned by the
formula

�cf���n� ��X
m�Z

���m� �f�n�m�

or by equivalent representation of f as the functional ��f��u� � f ��u� for any u � C� �
We denote by f
�g��� and 
x an arbitrary set of non�negative functions of C� for which

k
�k� � �� 
���� � � when j�� �j � �� and 
���� � � when j�� �j � ��
Recall main de
nitions related to the Hausdor� distance between functions� Let A and

B be two subsets of a metric space �X� ��� Then the Hausdor� distance between these sets
is de
ned to be

H�A�B� � inff j A 
 U��B�� B 
 U��A�g�
where U���� is an �neighbourhood of a set with respect to the metrics �� The compact
subsets �X� �� form a metric space with the metric H�

The complemented graph F �f� of� generally speaking� a multi�valued function f � T� R
�

is the smallest closed set convex with respect to the y�axis� containing the graph of the
function y � f�x�� We recall that a plane set is called convex with respect to the y�axixs if
together with any pair of points �x� y��� �x� y�� it contains whole segment connecting these
points� The Hausdor� distance between functions f and g is de
ned to be the Hausdor�
distance between their complemented graphs� H�f� g� � H�F �f�� F �g��� where a metrics on
the set � � T�R�� inducing the metrics H depends on the task� If we deal only with the
bounded functions� the Minkowski metric

���x�� y��� �x�� y��� � maxfjx�� x�j� jy� � y�jg
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is the most suitable� In this case� the set of all bounded periodic functions� whose graphs are
complemented� forms a metric space� If there is necessity to consider unbounded functions�
their complemented graphs are not compact sets� In ��� we proposed to replace the natural
metric on R� with the metric d�y�� y�� � j��y�� � ��y��j� where � is an arbitrary bounded
strictly increasing function� The topology of the real line R� does not depend on the choice
of the function �� Therefore� it is possible to take� for example� ��y� �  arctan y��� By
adding the points �� to R�� we get the compact set �R� with the metrics d� Then we de
ne
the metrics on � as follows

���x�� y��� �x�� y��� � maxfjx�� x�j� d�y�� y��g� ����

In this case� the set of all complemented graphs �or functions whose graphs are complement�
ed� forms a metric space�

In what follows we often shall use the same notation F �f� for the graph and the multi�
valued function F �f��x�� The current sense will be clear from a context�

� Canonical graphs of distributions

In ��� we introduced the concept of a canonical graph of an arbitrary measurable and 
nite
almost everywhere function� Let us recall that the canonical graph of such a function f
is de
ned to be the complemented graph of the restriction of f to the set of its points of
approximate continuity� The main argument for the bene
t of such de
nition is its invariancy
with respect to the change of the function f on a set of Lebesgue measure zero� This
argument is really crucial for integrable functions because functions of L�� di�ering on a
null set� coincide as distributions� At the same time� for arbitrary distributions such an
approach does not work for two reasons� At 
rst there is no the initial concept of a graph
of an arbitrary distribution� using which it would be possible to construct a complemented
graph� Secondly� even if it is possible with a reasonable manner to introduce the concept of
a distribution graph� changing it on a null set we can get the graph of other distribution�
The Dirac measure and the identical zero give such an elementary example�

Despite of the mentioned above di�culties it is possible to introduce the reasonable �at
least� from the point of view of the considered tasks� de
nition of the canonical graph of
a distribution� The main idea of such a de
nition bases on the possibility of harmonic
extension of any distribution from T into the unit disc� In this case� we have the regular
graph of such extension� It remains to take its closure and to extract the trace of the closure
on T� Now we implement this reasoning accurately�

Let f � D � F �z� � f � Pr���� Let us recall that the cluster set of the function F at
the point � � T �see� for example� ���� is de
ned to be the set C�F� ��� consisting of those
points � � �R� for which the sequence of complex numbers zn� satisfying conditions jznj � ��
zn � z� �jz�j � �� arg z� � ��� and limzn�z� F �zn� � �� exists�

De�nition ���� The canonical graph F ��f� of a distribution f is de�ne to be the graph of�
generally speaking� the multi�valued function C�F� ���

Naturally� we de
ne the Hausdor� distance between distributions as the Hausdor� dis�

tance between their canonical graphs� H��f� g� � H�F ��f�� F ��g��� We abbreviate fn
H�

�� f
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that fact that limn��H��fn� f� � �� Obviously� the set F ��f� is closed and convex with
respect to the y�axis� i�e�� it has all properties of a complemented graph� Therefore� it can be
approximated in the Hausdor� metric by graphs of continuous functions with an arbitrary
accuracy� The convergence of the Abel � Poisson sums on the class L� �see ���� implies the
equivalence of De
nition ��� and the corresponding de
nition in ����

Despite of its attraction� the distance H� has one essential lack� This distance is not a
metric on the space of distributions� A reason is the possibility of coincidence of canonical
graphs of two di�erent distributions� For example� all derivatives of the function P� have
identical canonical graphs� It is easy also to construct examples of bounded functions with
the same canonical graphs� Indeed� we take a set E 
 T such that for any arc 	 
 T we
have meas �	

T
E� � � and meas �	 nE� � �� Then the functions 
E and 
TnE have identical

canonical graphs� We note that on the set of canonical graphs the distance H� is a metric�
Thus� the distance H� does not 	feel	 the di�erence between some of distributions� Never�

theless� it turns out �see Theorem ��� below�� that all assertions which are proved in Sections
� and � for the distance H� remains in force for the stronger distance H� �see Section �� of
Hausdor��s type� The distance H� is a metric on D � The convergence in this metric means

the Hausdor� convergence f rn
H��� f r uniformly with respect to r� � � r � �� Observe that

the convergence in the metric H� implies the Hausdor� convergence of a sequence of the
corresponding functions of two variables harmonic in the unit disc�

In De
nition ���� it is unimportant that the distribution f is real�valued and belongs
to D � We need only the possibility of harmonic extension into the unit disc� So� we can
consider formal trigonometric series

P
n�Zcne

in� whose coe�cients satisfy the inequality

limn��
n
p
jcnj � �� as above f � However� in what follows� we restrict ourselves to considering

only quasi�Banach spaces with elements from D �
The values of the function C�F� x� are segments of the extended real line �R�� We denote

by ess sup f�x� the maximum value of C�F� x� at the point x � T� In particular� this value
can be equal to �� or ��� The value ess inf f�x� is introduced similarly� Thus� it is
convenient to give the de
nitions

ess sup
x�E

f�x� �� sup
x�E

ess sup f�x��

ess inf
x�E

f�x� �� sup
x�E

ess inf f�x��

for E 
 T and f � D � When E is an open arc and f is an essentially bounded function�
these de
nitions coincide with the classical de
nitions of essential upper and essential lower
bounds�

Theorem ���� For any f � D we have f r
H��� f as r� ��

Before to proceed to the proof of Theorem ���� we prove several elementary lemmas�

Lemma ���� If a distribution f vanishes on an open arc 	� then f � Pr ��� � � uniformly
on any closed arc 	� 
 	 as r� ��

Proof of Lemma ���� Let � be the Hausdor� distance between arcs 	 and 	�� We de
ne the
distributions �r �� 
����Pr� �r �� ���
���� �Pr� Obviously� Pr � �r��r� For any � � 	�� since
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f vanishes on 	� and the support of 
��� belongs to the �����neighborhood of zero� we have

f � �r��� � �� As f � D � there exist k  � and M � � such that kSk�f � �f ����k� �M ���
At the same time� for any natural l and � �� � we have DlPr��� � � as r � � uniformly
outside of any neighbourhood of zero� Besides� ���� 
���� � Pr�b���� �� It means that for
any  � � there exists r� � � such that for any r� � r � � we have

kDk���� 
���� � Pr�k� � �M� �f��� � ��� � 
���� � Pr�b��� � ��

Hence�

kf � �rk� � k �f��� � ���� 
���� � Pr�b��� � Sk�f � �f���� �Dk��r�k�
� � � kSk�f� �f ����k� � kDk��r�k� � � �M � �M � �

Therefore� for such r and � � 	� we have

jf � Pr���j � jf � �r���j � �

As was to be shown�

Lemma ���� Let f � D � then for any �� � T and � � � we have

lim
r��

inf
j����j��

f r��� � ess inf f����� �����

Proof of Lemma ���� Validity of Lemma ��� when ess inf f��� � �� as well as the left�
hand part of ����� is equal to �� is obvious� We conduct the proof by contradiction� Let
inequality ����� do not hold for some �� � T and � � � � Without loss of generality we can
suppose �� � �� ess inf f��� � �� We also assume that there is a sequence rn � � such that

An �� inf
j���j��

f rn��� � �� An � A � � �n����

The sequence f rn converges to f in D � Therefore� in view of continuity �in the topology of D �
of the operation of pointwise multiplication by a function of C� � the sequences �n � 
���f

rn

and �n � �� � 
����f
rn converge in D respectively to the distributions � � 
���f and

� � �� � 
����f � According to a maximum principle for harmonic functions� we have

inf
��r��
��T

�n � Pr��� � inf
��T

�n���  ��

From the generalized convergence of the sequence �n to � as n � � we have the uniform
convergence of the sequence �n � Pr��� to � � Pr��� on compact sets of the open unit disc�
Hence� �r��� is a non�negative harmonic function� i�e�� � is a positive measure� At the same
time� according to Lemma ��� for any  � � there exists r� such that for r� � r � � and
j�� �j � ��� we have j� ��� � Pr���j � � Therefore�

ess inf f���  inf
��r��
��T

�r��� � inf
��r��
j���j����

�r���  �� �

It follows from here that in view of arbitraryness of the choice of  we obtain ess inf f���  �
that contradicts our initial assumption� Lemma ��� is proved�
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Proof of Theorem ���� We need to prove that for any  � � there exists � � r� � � such
that for r� � r � � the inclusions

F ��f� 
 U��F �f � Pr��� ����

F �f � Pr� 
 U��F
��f���

where U���� is the �neighbourhood of a set with respect to metric ����� hold� Obviously�
validity of the last inclusion for r su�ciently close to � follows immediately from De
nition
���� We show the possibility of ful
llment of inclusion �����

Let us assume the contrary� Let there exist  � � and a sequence ri � � such that

F ��f� n U��F �f
ri�� �� ��

Then there exists the sequence f�xi� yi�g 
 T��R� such that �xi� yi� � F ��f�� �xi� yi� ��
U��F �f ri��� In view of the fact that F � �f� is a compact set with respect to metric �����
without loss of generality we suppose that this sequence converges to the point �x�� y�� �
F ��f� which locates below graphs of the functions f ri� Then for su�ciently big i and
j�� x�j � � we have f ri��� � y� � �� Hence�

lim
i��

inf
j��x�j����

f ri��� � y�  ess inf f�x��

that contradicts Lemma ���� Theorem ��� is proved�

� Bounded operators of convolution and linear func�

tionals

Here we consider a class of quasi�Banach spaces for which the general approach to studding
the convergence of operators of the form ����� in the Hausdor� metric is possible� The main
feature of these spaces is the simplicity of description of bounded operators of convolution
�or� in other terminology� Fourier multipliers�� acting from these spaces to the space L� �see
Lemma � below�� We shall see in what follows that it is useful for our tasks�

The majority of the statements of this section is very simple� We give their full proofs�
though it is probable that all or many of them were already considered in mathematical
literature�

Let X be a quasi�Banach space� X 
 D � For its quasi�norm� except for norms of the
spaces C � Lp �� � p ��� and M� we use the notation k � jXk� If the opposite is not stipu�
lated� the symbol 
� used with quasi�Banach spaces� will designate topologically continuous
embedding�

Remind that the sum of quasi�Banach spaces X� and X� is de
ned to be the quasi�Banach
space

Y � X� �X� �� ff � g j f � X�� g � X�g
with the quasi�norm

kh j Y k � inffkf j X�k� kg j X�k j f � X�� g � X�� h � f � gg�
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and the intersection of them is the space

Z � X� � X� �� ff j f � X�� f � X�g
with the quasi�norm kf j Zk � maxfkf j X�k� kf j X�kg�
De�nition ���� We denote by H a collection of quasi�Banach spaces X for which �at least�
after equivalent renormalization� the following conditions are ful�lled	
�a� C� 
 X 
 D 

�b� For any distribution f � X

kf j Xk � sup
r��

kf � Pr j Xk� ����

�c� The space X is invariant with respect to the shift of the argument� and for any f � X
we have kf�t� j Xk � kf��t� j Xk

�d� There are k � � and C � � such that for any distribution f � X

kf � sin nx j Xk � Cnkkf j Xk�
Condition �d� guarantees the continuity in X of the operator of multiplying by a function

of C� � This is necessary in the following sections� It will be seen� if we omit condition �d�
in De
nition ��� all results of this section stay valid�

The renormalization does not in�uence validness of conditions �a� and �c�� We give an
elementary example when the renormalization can be necessary to satisfy property �b�� Let
X be the space of essentially bounded functions� The norm of f � X in this space is set as
the sum of a regular uniform norm and exact upper bound of the values of discontinuities of
the function f � Obviously� such norm does not satisfy condition �b�� However� it is equivalent
to the uniform norm�

Let�s remark� that the class H contains overwhelming majority of classical quasi�Banach
real�valued spaces of periodic functions and distributions� So� for example� it contains the
Besov � Lizorkin � Triebel spaces Bs

p�q and Fs
p�q �in particular� the Lebesgue spaces L

p

�� � p � �� and the Hardy spaces �Hp � � � p � ���� BMO� BV �the functions of
bounded variation�� M �regular Borel measures�� real parts of the analytical Bergman and
Bloch classes� the classes of distributions �p �� � p � �� whose Fourier coe�cients satisfy
the inequality p

pjcnjp� and so on�
Let X � H� then we denote by �

X �or X�� the completion of the space C� in the quasi�
norm of the space X�

�

X�� ff � D j sup
r��

kf � Pr j Xk ��g�

Obviously� the embeddings C� 
 �

X 
 X 
 �

X 
 D are valid� The space X is separable only

in the case when X �
�

X� Besides� if f �
�

X � then kf � f r j Xk � � as r � � �the last is
explained in the proof of Lemma ����

Let X � H� then we denote by �X� or � �X�
�

X � a collection of all spaces Y � H such that

�

X 
 Y 
 �

X ���

�



We note that embeddings ��� themselves do not guarantee that Y belongs to H� Actu�
ally� let Y � C � BV� Let us partition T into n identical arcs 	i� enumerated for de
niteness
clockwise� Let function f � Y be equal to the identity on the arcs with even numbers and is
equal to zero on the arcs with odd numbers� Then kf j C �B Vk � n� kf �Pr j C � BVk � �
as r� �� It means� C � BV �� H� though� obviously� C 
 C � BV
 L

��

Lemma ���� The operation ��� breaks up H into equivalence classes�

Proof of Lemma ���� Obviously� it su�ces to prove that for any X� Y � H it follows from
belongness Y to �X� that

�

Y�
�

X� ����

�

Y�
�

X� ����

where the equality means the coincidence of quasi�normed spaces up to equivalent renormal�
ization�

We show that equality ���� holds� If f � �

Y � then kf � f r j Y k � �� It follows from

the embedding Y 
 �

X that there is a constant C� � � such that kf j Xk � C�kf j Y k and
kf � f r j Xk � C�kf � f r j Y k � � as r � �� Therefore�

�

Y

�

X�

Let f � �

X� Then the embedding
�

X
 Y implies the existence of a constant C� � � such
that kf j Y k � C�kf j Xk� Hence� kf � f r j Y k � C�kf � f r j Xk � � as r � �� Thus�
�

X

�

Y �

Let us prove equality ����� Let f � �

Y � then

C�kf j Y k � C� sup
r��

kf r j Y k  sup
r��

kf r j Xk � kf j Xk�

Consequently� f � �

X and
�

Y

�

X � Since f �
�

X� in similar way� we obtain kf j Xk  C�kf j
Y k� Lemma �� is proved�

In what follows� if the other is not stipulated� we consider only spaces from H�
We denote by M�X�L�� the set of bounded convolution operators �in the terms of ����

Chapter �� multiplier operators�� acting from the quasi�Banach space X 
 D to L�� and
denote by X� the space of continuous linear functionals in X�

Let us prove the main statement of this section�

Lemma ���� M�X�L�� �
� �

X
��
�

Remark� It is easy to prove that a set of compact convolution operators� acting from

X � H to L�� coincides with the space
� �

X
���
�

��



Proof of Lemma ���� We denote by T� ��� the operator T� � f�t� � f�� � t�� Let f � X�
g � X�� then hg� fi is de
ned to be the value of the linear functional g on the distribution f �

Let � �
� �

X
��
and norms of shift operators are bounded uniformly by the number C�

For any function � � C�

jh�� �ij �
�����X
n�Z

���n�����n�
����� � ���� j � �

X
����� � k� j Xk�

where the series converges absolutely� From here for any distribution f � X we have

k� � fk� � sup
r��

k� � f � Prk� � sup
r��

sup
��T

jh�� T� �f r�ij �

sup
r��

sup
��T

���� j � �

X
����� � kT� �f r� j Xk � C sup

r��

���� j � �

X
����� � kf r j Xk �
� C

���� j � �

X
����� � kf j Xk�

Conversly� let � �M�X�L�� and � � C� � then

jh�� �ij �
�����X
n�Z

���n�����n�
����� � j� � T�������j � k� � T����k� �

� k� jM�X�L��k � k� j Xk�

In view of the density of C� in
�

X we obtain���� j � �

X
����� � k� jM�X�L��k�

We note that for the validity of Lemma � properties �b� and �c� of De
nition �� are essential
and it is impossible to omit them� Indeed� let X be a sum of the space of continuously
di�erentiable functions C ��� and the singular component of the space BV� i�e�� those functions
of BV whose regular derivative are equal to zero almost everywhere� Obviously� such space

does not satisfy property �b�� Then
�

X � C ��� and X is invariant with respect to the shift of
the argument and the operator of derivation is a bounded functional on C ��� and is unbounded
as an operator acting from X in L�� The weighted space with the uniform norm� whose
continuous weight vanishes at some point� gives an example of space� non�invariant with
respect to the shift� satisfying ����� for which the statement of Lemma � is not valid�

Lemma ���� Let X �
�

X � � �
� �

X
��
� then f � � � C �

Proof of Lemma ���� At 
rst� we show that kf � f r j Xk � � as r � �� Let  � �
be an arbitrary number� Then there exists � � C� such that kf � � j Xk � ��� �r

converges to � in the topology of the space C� � Therefore� for r su�ciently close to � we
have k�r � � j Xk � ��� Hence�

kf � f r j Xk � C��kf � � j Xk � k�� �r j Xk� k�r � f r j Xk� �
C���� � �� � sup

r��
k��� f� � Pr j Xk� � C��

��



where C� is a constant� generally speaking� not equal to the identity because X is a quasi�
normed space�

Let g � f � �� then gr � f r � � and

kg � grk� � k�f � f r� � �k� � kf � f r j Xk � k� jM�X�L��k�

Since the 
rst multiplicand goes to zero as r � �� gr uniformly converges to g� Therefore�
g � C �
Lemma ���� M�X�L�� � H�

Proof of Lemma ���� Ful
llment of the embeddings C� 
 M�X�L�� 
 D follows immedi�
ately from the embeddings C� 
 X 
 D � from Lemma �� and from that fact D � �C� ���
D �M�C� �L���

We show the validity of condition �b� of De
nition ��� On the one hand�

k� jM�X�L��k � sup
n
k� � fk�

�� f � �

X� kf j Xk � �
o


sup
r��

sup
n
k� � f rk�

�� f � �

X� kf j Xk � �
o
�

sup
r��

sup
n
k�r � fk�

�� f � �

X� kf j Xk � �
o
� sup

r��
k�r jM�X�L��k� ����

On the other hand� for any  � � there exists a distribution f � �

X � kf j Xk � � such that
k� � fk�  k� jM�X�L��k �  and for r close enough to � we have

k� � fk� � k� � f rk� � k� � �f � f r�k� � k�r � fk� �  �
k�r jM�X�L��k�  � sup

r��
k�r jM�X�L��k� �

Combining the both inequalities� we obtain

k� jM�X�L��k � sup
r��

k�r jM�X�L��k� �

In view of arbitraryness of  � � it follows from here and from ���� that condition �b� of
De
nition �� holds�

Now we show that the class M�X�L�� is invariant with respect to the shift operator
T� ���� Let � �M�X�L��� � � T� Then

kT� ��� jM�X�L��k � sup
n
k� � T� �f �k�

�� f � �

X� kf j Xk � �
o
�

k� jM�X�L��k � kT� �f � j Xk � Ck� jM�X�L��k � kf j Xk�

Invariance with respect to the change of a variable t� t� � is shown similarly�
Let us show ful
llment of property �d� for � � M�X�L��� It is convenient to conduct

the proof in the complex form� We note that� in view of property �c�� property �d� remains

�



in force �with the same k but other C� if� in its statement� we replace the function sin nx by
the function cos nx� Thus� there is a constant C� � � such that for any f � X we have

kf � �� � sin nx�k� � kf � �� � zn�k� � kzn��f � z�n� � ��k� �
� kf � z�n j Xk � k� jM�X��L��k � C�kf j Xk � k� jM�X�L��k�

as was to be shown�

Banach spaces for which X �
�

X� H have a remarkable property which is close as a
matter of fact to the re�exivity� Let us formulate this property�

Lemma ���� Let X � H and X is a Banach space� Then

M�M�X�L���L�� �M�M�
�

X�L���L�� � X���� �
�

X �

Remark� Obviously� if X is a quasi�Banach �not Banach� space� the statement of Lemma
�� ceases to be valid� It follows from the fact that the space X���� is a Banach space�

Proof of Lemma ���� In view of Lemma � only the last equality requires the proof� Let
Y � X��� Z � Y ��� h � D � Bearing in mind that for any Banach space B and b � B we have

kb j Bk � supfhc� bi j kc j B�k � �g ����

�see� for instance� ����� Chapter �� and by Lemma ��� we obtain a chain of the equalities

kh j Zk � sup
r��

khr j Zk � sup
r��

supfhhr� gi j g � �

Y � kg j Y k � �g �

sup
r��

supfhh� gri j g � �

Y � kg j Y k � �g �
sup
r��

supfhhr� gi j g � Y� kg j Y k � �g � sup
r��

khr j Xk � kh j Xk�

Obviously� the assertion of Lemma �� follows from this� We note that we used ���� �which
is not valid for quasi�Banach spaces� in the penultimate equality�

Lemma ���� Let X�Y � H� Then X � Y � H and �X � Y �� �
�

X � �

Y �

Proof of Lemma ��� Let z � X � Y � Then

kz j X � Y k � maxfkz j Xk� kz j Y kg � maxfsup
r��

kzr j Xk� sup
r��

kzr j Y k�

Thus� condition �b� of De
nition �� is ful
lled� The validity of conditions �a�� �c�� �d� is
obvious�

The mentioned above example �C � BV� shows that the sum of two spaces from H can
do not belong any more to H�

Let h � �XTY ��� Then khr � h j X � Y k � � as r� ��

Hence� khr � h j Xk � � and khr � h j Y k � � as r� �� Therefore� h � �

X
T �

Y �

Conversely� let g � �

X
T �

Y � Then

kgr � g j X � Y k � maxfkgr � g j Xk� kgr � g j Y kg � � as r� �

because each of expressions in braces tends to zero� Hence� g � �X � Y � ��

��



In what follows we need the following modi
cation of the Banach � Steinhaus theorem�

Lemma ���� Let X�Y � H� f�ng�n�� 
 D and a sequence of the operators In �f� � �n � f
is unbounded as a sequence of operators acting from X to Y � Then there exists a distribution
f� � X such that

lim
n��

kIn�f�� j Y k ���

Remark� If each of operators of the sequence In ��� is bounded� or there is only a 
nite
number of unbounded operators� the statement of Lemma �� is a special case of the Banach
� Steinhaus theorem�

The statement of Lemma �� follows from the following lemma�

Lemma ��	� LetX�Y � H� � � D and the operator I�f� � ��f is unbounded as an operator
acting from X to Y � Then a set of distributions f � X for which k� � f j Y k � �� i�e��

� � f �� �

Y � is complementary to a set of the �rst category �or in the terms of ����� Chapter
�� is a residue of X��

Proof of Lemma ���� Fix an arbitrary sequence rn � �� We consider the sequence pn��� ��
Prn � � of the Abel � Poisson sums of the distribution �� Each of the operators Jn�f� �
pn�f��f is bounded as an operator acting from X to Y � On the other hand� these operators
are not bounded uniformly with respect to n� otherwise� they would converge to the bounded
operator� Therefore� by the Banach� Steinhaus theorem there exists a set E� being a residue
of X� on which the sequence of operators Jn���� acting from X to Y � is unbounded� For any
f � E 
 X the sequence Jn�f� converges to I�f� in the topology of the space D � As
lim
n��

kJn�f� j Y k ��� we have

kI�f� j Y k � sup
r��

kI�f� � Pr j Y k  lim
n��

kJn�f� j Y k ��

�or I�f� �� �

Y �� As was to be shown�

From Lemmas �� and �� we obtain an elementary necessary condition for the Hausdor�
convergence of operators ����� which gives some initial understanding about sequences of
operators which have pretension to be convergent�

Corollary ���� If we have �n � f H��� f for any distribution f � X � H� then

lim
n��

k�n jM�
� �

X
��
k ���

Proof of Corollary ���� Indeed� if X� Y are Banach spaces� according to the duality theorem
�sf������� ����� if X � Y is dense in the both spaces X and Y � then �X

T
Y �� � X� � Y ��

From here and Lemmas � and ��� we obtain

M�X � L��L�� � �X � L���� � X�� �M�

Hence� if lim
n��

k�n jM��
�

X ��k ��� then� according to Lemma ��� there exists f � X �L�
for which lim

n��
kf � �nk� �� that contradicts the Hausdor� convergence of f � �n to f �

��



We note that it follows from the mentioned duality theorem that if X��X� � H and

X� �
�

X�� X� �
�

X�� then X��X� � H� Actually� from Lemma �� we obtain Y� �� X��
� � H�

Y� �� X��
� � H� Then from Lemmas �� � �� we have X� � Y ��

� � X� � Y ��
� � Therefore�

X� �X� �
� �

Y � �
�

Y �

��
� H�

Let 	 be a closed arc of T� then denote by X� the set of those distributions of X whose
supports belong to 	� We note that X� with the norm of the space X itself is a Banach
space�

We denote by L�	 the set of distributions bounded on the arc ���� ��� It is possible to
introduce the seminorm

kf j L�	 k � ess sup
j���j�	

jf���j �� max
�
j ess sup
j���j�	

f���j� j ess inf
j���j�	

f���j
�

in L�	
In what follows we need one more modi
cation of the Banach � Steinhaus theorem�

Lemma ��
� Let X � H� 	 
 T is a closed arc� � � �� f�ng�n�� 
 D � and a sequence
of the operators In�f� � �n � f is unbounded as a sequence of operators acting from X� to
semi�normed spaces L�	 � Then there exists a distribution f� � X� such that

lim
n��

kIn�f�� j L��	k ���

Proof of Lemma ���� It is unessential for the Banach � Steinhaus theorem that the space
L�	 is seminormed� Therefore� in the case when all �for the exception of a 
nite number�
operators In�f� are bounded the statement of the lemma follows directly from the Banach
� Steinhaus theorem�

Let in
nitely many operators in the sequence In��� be unbounded� We obtain an analogue
of Lemma ��� Let the operator I�f� � � � f be unbounded as an operator acting from X�

to L�	 � We show that in this case for all f of some residue X� we have

kI�f� j L��	k ���

Fix an arbitrary sequence rn � �� We consider the sequence pn��� �� Prn �� of the Abel �
Poisson sums of the distribution �� Then each of the operators Jn�f� � Pn�f��f is bounded
as an operator acting from X to L�� the more so as operator acting from X� to L�	 � On the
other hand� these operators are unbounded in totality� The last follows� for example� from
Lemma ���� Therefore� by the Banach � Steinhaus theorem� there is a set E being a residue
of X� � on which a sequence of the operators Jn���� acting from X� to L�	 � is unbounded� On
the other hand� the sequence Jn�f� converges to I�f� in the topology of the space D � Thus�
we have

ess sup
j���j��	

jI�f����j  ess sup
j���j�	

jI�f����j  lim
n��

ess sup
j���j��	

jJn�f����j ���

for any f � E�
The assertion of Lemma �� follows from this�

��



Now we give one more statement about operators acting from X� to L�	 �

Lemma ����� Let Y 
 D be the space of distributions specifying the bounded operators of
convolution acting from X� to L�	 with the norm

k� j Y k � k� jM�X� �L
�
	 �k�

Then functions from C� are pointwise multipliers in Y �

Proof of Lemma ����� Let � � C� � It is convenient to carry out the proof in the complex
form� Obviously�

k�ein� � �� � f��� j L�	 k � ke�in� � �� � �ein�f����� j L�	 k �
k� � �ein�f���� j L�	 k � k� j Y k � kein�f j X�k �

Cnkk� j Y k � kf j X�k�

where C and k are constants from condition �d� of De
nition ��� From here in view of the
fact that ���n� decrease faster than any power� we have

k�� � �� � ��� j L�	 k �
�X

n�Z

j���n�j � Cnk
�
k� j Y k � kf j X�k�

Thus� the norm of the operator of multiplication by the function of C� is bounded by the
number C

P
n�Zj���n�jnk� as was to be shown�

� Convergence on classes of distributions� containing

the Dirac ��measure

De�nition ���� Let say that a sequence of operators of the form ����� converges	

�a� on g � D if In�g�
H��� g


�b� on the two distributions if it converges on the identity and on P� �the Dirac measure�

�c� on the set X 
 D if it converges for any f � X�

Theorem ���� The sequence of operators ����� converges on the class X �
�

X 
 C �or on
the class X � C� � if and only if the sequence �n converges to P� in the topology of the space
X��

Theorem ���� The sequence of operators ����� converges on the class M if and only if it
converges on the two distributions�

Remark� The assertion of Theorem �� almost literally repeats the criterion for conver�
gence of sequence ����� on the class BV �see ���� ����� The di�erence is that instead of the
convergence on P� the convergence on the function S�P� � �� or� easier speaking� on the
step�functions was required�

��



Theorem ���� Sequence ����� converges on the space of distributions X� P� � X� if and
only if the following two conditions hold simultaneously	

�a� Sequence ����� converges on the two distributions

�b� For any � � � and f � X

lim
n��

k���� 
���n� � fk� � ��

Theorem ���� Sequence ����� converges on the space of distributions X �
�

X� P� � X� if
and only if the following two conditions hold simultaneously 	

�a� Sequence ����� converges on the two distributions

�b� For any � � �

lim
n��

k���� 
���n� j X�k ���

The following statement follows immediately from Theorem ��� and from the fact that �

�Hp�� � B
��p��
��� �sf�� ����� Chapter ��

Corollary ���� Sequence ����� converges on the space �Hp �� � p � �� if and only if the
following two conditions hold simultaneously	

�a� Sequence ����� converges on the two distributions

�b� For any � � �

lim
n��

k���� 
���n� j B��p��
��� k ���

The next statement is a little bit less obvious�

Corollary ���� Sequence ����� converges on the space of pseudomeasures �� if and only if
the following two conditions hold simultaneously	

�a� The sequence ����� converges on the two distributions

�b� For anyone � � �

lim
n��

k���� 
���n� j ��k � ��

The su�ciency of the conditions of Corollary �� is obvious because condition �b� implies
condition �b� of Theorem ���� The necessity of condition �a� is obvious� and the necessity of
condition �b� is a consequence of the Schur theorem �sf� ����� Chapter ��� according to which�
in ��� the convergence in norm is equivalent to the weak convergence� Indeed� we initially
can suppose that for any � � �

lim
n��

k���� 
���n� j ��k ���

Otherwise� we would come to the contradiction with condition �b� of Theorem ���� Therefore�
at least for big n� �� � 
���n � ��� But then� if there is no convergence of this sequence to
zero in the norm of ��� i�e�� condition �b� is not ful
lled� there exists a continuous functional
on �� �pseudomeasure f� whose values on the given sequence do not tend to zero� In the
language of convolutions it means that

��� � 
���n� � f��� �� �� It contradicts condition �b� of Theorem ����

��



Theorem ���� Sequence ����� converges on the class D if and only if the following two
conditions hold simultaneously	

�a� Sequence ����� converges on the two distributions

�b� For any � � � the sequence �� � 
���n converges to zero in the topology of the space

C
� �

Validity of Theorem ��� is obvious and we shall not conduct its proof here� The proofs
of Theorems �� � �� are based on the following auxiliary statements�

Lemma ���� Let �n converge in D to P�� Then for any  � � and f � D and su�ciently
large n we have

F ��f� 
 U��F
��f � �n���

Lemma ���� Let sequence ����� converge on the two distributions and supp �n 
 �an� bn��
an � �� bn � � as n��� then it converges on D �

We remind the de
nition of the Steklov functions of a distribution f � Let

Vh��� �

�
���h�� j�� �j � h�
� j�� �j � h�

Then the distribution

Sh���f ���� �� vh � f��� �
X
n�Z

sin nh

nh
�f�n�ein�

is called the Steklov function of the 
rst order of the distribution f � The Steklov functions
of the kth order are de
ned as follows�

Sh�k�f ���� �� Sh���Sh�k���f ����� �
X
n�Z

	
sin nh

nh


k

�f�n�ein��

From Lemma ���� we have an obvious corollary�

Corollary ���� The Steklov functions of any order converge on D as h� ��

Remark� For any distribution f and su�ciently large k its Steklov functions are contin�
uous� The given corollary means that the Steklov functions could be used for an equivalent
de
nition of canonical graphs�

Lemma ��	� Let f � D � �� � T� � � �� Then

lim
���

inffess sup f � ���� j � � �� k�k� � �� supp � 
 ��� �g  ess sup f�����

Lemma ��
� Let sequence ����� converge on the class X� Then for any � � � and f � X
we have

lim
n��

k��� 
���n � fk� � ��

��



Lemma ����� Let �n � D and X �
�

X� Then kf � �nk� � � for any f � X if and only if
the following two conditions hold	

�a� kP � �nk� � � for any trigonometric polynomial P 

�b� lim

n��
k�n j X�k ���

Proof of Lemma ��� We assume the contrary� Let the statement of Lemma ��� be not valid
for some f � D � Then� it is easy to see� there exist � � � and �� � T such that either
�a� lim

n��
ess sup j���� j�� f � �n��� � ess sup f����

or
�b� lim

n��
ess inf j����j�� f � �n��� � ess inf f����

holds� For de
niteness we suppose that condition �a� holds�
Obviously� without loss of generality it is possible to assume that �� � � and for all n

ess sup
j���j��

f � �n��� � �� �����

ess sup f��� � � ����

Otherwise� we extract an appropriate subsequence� subtract the constant from f � and trans�
late the argument�

The sequences 
����f � �n� and �� � 
�����f � �n� converge in D respectively to 
���f
and �� � 
����f � In view of ����� and the uniform convergence on compact sets of the open
unit disc we obtain that �
���f� � Pr��� � � for any � � r � �� � � T� Therefore� 
���f
is a negative measure� At the same time� the distribution �� � 
����f vanishes on �����
neighborhood of zero� Consequently� from Lemma ��� we obtain ess sup f��� � � that
contradicts ����� Lemma ��� is proved�

Proof of Lemma ���� Let f � D and  is an arbitrary positive number� We need to show
that for su�ciently large n the inclusions

F ��f� 
 U��F
��In�f���� �����

F ��In�f�� 
 U��F
��f�� �����

hold� The ful
llment of inclusion ����� follows from Lemma ���� Let us show validity of
������ We assume the contrary� Let there be  � � and somehow large n for which inclusion
����� is not valid� Then it is easy to see that there are a point �� and a sequence �n for which
either
�a� lim

n��
ess sup �f � �n���n� � ess sup f�����

or
�b� lim

n��
ess inf �f � �n���n� � ess inf f����

is valid� For de
niteness we assume that condition �a� is ful
lled� Then� naturally�

ess sup f��� ���

��



We also suppose that �� � � and ess sup f��� � �� In view of the fact that the set F ��f� is
closed and convex with respect to the y�axis� for any � � � there exists � � � such that for
the case j�� �j � � we have

ess sup f��� � ess sup f��� � ��

We assume that

lim
n��

ess sup �f � �n���n� � ess sup f��� � �� �����

Obviously� �n can be represented in the form �n � �n��n� where f�ng are positive measures�
satisfying the conditions Lemma ���� and f�ng 
 C� is a sequence of negative functions�
converging to zero in the topology of the space C� � Therefore� there are N� such that for
n � N� we have

kf � �nk� � �� �����

and N� such that for n � N� we have supp �n � ������ ���� and
k�nk� � � � ����ess sup f��� � ���� �����

We represent f as the sum f � 
���f � �� � 
����f �� f� � f�� It turns out that f� � M
because this distribution is bounded from above� Consequently� the measure f� can be
represented as a sum of positive and negative components � and �� � � �� � � �� and
k�k� � ess sup f��� � �� From here and from ����� � ����� for n � maxfN�� N�g we obtain

ess sup
j���j����

f � �n��� � f � �n � kf � �nk� �

� � �n � � � �n � f� � �n � � � � � �n � � � �n � � �
k�k� � k�nk� � � � �� � �ess sup f��� � ���� � ����ess sup f��� � ���� �

ess sup f��� � ��

Thus� for su�ciently large n inequality ����� does not hold� The obtained contradiction
completes the proof of Lemma ����

Proof of Lemma ���� Obviously� the expression under the sign of a limit is a monotonically
decreasing function of � Therefore� the limit in the assertion of Lemma ��� exists� In the
case of the opposite inequality� there exists a sequence �n� satisfying conditions of Lemma
��� and not converging on f � It contradicts Lemma ���� Moreover� it is easy to see that it
contradicts Lemma ��� simultaneously�

Proof of Lemma ���� Let us assume the contrary� We assume that there are � � � and
f � X� for which

lim
n��

k�n � fk� � ��

where �n � �� � 
���n� Obviously� by shifting the argument of f if it is necessary� without
loss of generality we can initially consider that for an arbitrary beforehand given � � � we
have

lim
n��

ess sup
j���j�	

j�n � f���j � ��

�



We shall assume also that � � ���� Obviously� taking an arbitrary in
nitely di�erentiable
resolution of the identity f�ig on T whose supports supp �i belong to arcs of length not
exceeding ����� we obtain that at least for one of the functions g � f � �i� as well as for f �
the inequality

lim
n��

ess sup
j���j�	

j�n � g���j � �� �����

holds�
If

supp g � ���� �� � �� �����

then g is the required function on which the contradictory is achieved� i�e�� �n � g
H�

�� g�
It follows directly from the fact that supp
��n � supp g � � and� hence� 
��n � g��� �
� for su�ciently small �� Therefore� ����� is not valid� Obviously� in this case supp g �
��������� ������� � �� Let 	 is an arc� length of which does not exceed ����� which
contains the support of g�

Let �n � �� � 
���� � �n� In view of the fact that supp ��n � �n� � 	 � � we obtain

that if lim
n��

ess sup j���j�	 j�n � g���j � �� then by analogy with the previous reasoning g is

the required function� leading us to the contradiction� Therefore�

lim
n��

ess sup
j���j�	

j�n � g���j � �� ������

According to Lemma �� the sequences of operators Jn�f� � �n � g is bounded as a sequence
acting from X� to L�	 because otherwise there is a distribution h � X� for which

lim
n��

ess sup
j���j��	

j�n � h���j ���

that leads to contradiction�
At last� recalling that �� � 
�� � �n � �n� from ������ and from Lemma ��� we obtain

lim
n��

ess sup
j���j�	

j�n � g���j � �

that contradicts ������ The proof of Lemma ��� is completed�

Proof of Lemma ����� The proof of the su�ciency of conditions �a� and �b� is standard�
We omit it� The necessity of condition �a� is obvious� The necessity of condition �b� is
consequence of Lemmas � and ���

Proof of Theorem ���� The necessity of the convergence on the two distributions is obvious�
We show the su�ciency� From the convergence on the ��function we obtain that �n can
be represent in the form of the sum �n � �n � �n� where k�nk� � �� It follows from the
convergence on the identity that the sequence �n can be chosen satisfying the conditions of

Lemma ���� Therefore� for any measure f we have f � �n
H��� f as n��� Since

kf � �n � f � �nk� � kf � �nk� � kfk� � k�nk� � �

as n��� then f � �n H��� f � Theorem �� is proved�

�



Proof of Theorem ���� We show the su�ciency� Let f � X� Fix an arbitrary sequence of
numbers i � �� We choose a sequence �n by induction� We suppose �� � �� If we already
chose the numbers f�kgnk�� and �n � l� we set �n�� � l if

sup
m�n

k���� 
�l����m� � fk�  �l

or
inf
m�n

k
�l���mk� � � � �l�
and we set �n�� � l�� otherwise�

Let �n � �n � �n� where �n � 
�n�n� Then the sequence �n satis
es the conditions of

Lemma ��� and� consequently� �n � f H��� f � At the same time� according to the choice of �n
we have

k�n � fk� � k���� 
�n� � �n� � fk� � ��

Therefore� �n � f H��� f � As was to be shown�
The necessity of condition �a� is obvious� and the necessity of condition �b� was proved

in Lemma ����

Proof of Theorem ���� Let conditions �a� and �b� of Theorem ��� hold� From condition
�a� we have ful
llment of condition �a� of Lemma ����� This lemma implies ful
llment of
condition �b� of Theorem ���� Thus� the su�ciency of the conditions of Theorem ��� is
proved�

The necessity of condition �b� is obvious� The necessity of condition �b� follows from
Lemma ���� and Theorem ����

Proof of Theorem ���� We show the su�ciency� For positive integers r we denote by DkM
the space of distributions for which Sk�f � �f���� � M� and we denote by SkL� the space
of functions for which Dk�f � � L� �i�e�� in other notations this is the Sobolev space W k

���
Then �DkM��� � SkL��

Let f� be an arbitrary distribution� Then there is k such that f� � DkM� The convergence
of the sequence �n � ���
���n to zero in the topology of the space C� means� in particular�
that the norms k�n j SkL�k tend to zero for any k� It follows from this that condition �b�
of Theorem ��� for X � DkM holds� It means the sequence ����� converges on f �

The proof of the necessity we conduct by contradiction� If for some � � � the sequence
�n � �� � 
���n does not converge to zero in the topology of the space C� it means� that
there exists a positive integer k� such that a sequence of the norms k�n j Sk

L
�k does not

converge to zero� We take the minimum possible k�� Then taking the distribution Dk�P��
as f � we obtain kf � �nk� �� �� That contradicts condition �b� of Theorem ���� Thus� the
sequence can not be converging on the class DkM and� especially� on D �

� Convergence on classes �H� and c�

The spaces �H� and c� �� ����� �besides� obviously�
�

c�� ��� c�� � ��� do not contain ��
function and� consequently� do not satisfy the conditions of Theorems ��� and ���� Therefore�





they require separate consideration� We explain the reasons why we consider here these
spaces�

The cases of the spaces �Hp � Lp �� � p � �� were considered in ��� and ��� �see
Theorem C below�� and the case � � p � � we considered in Section �� The space �H�

remains the only blank in the scale of the spaces �Hp �� � p ��� and we� naturally� would
like to 
ll in this blank�

As to the space c�� it has the same meaning for the space �� as the space L� for the
space M or C for L��

Besides� the assertions of criteria for the convergence on these spaces have more complex
form than assertions for the spaces containing P�� and� it seems� they could serve as a sample
for obtaining general results for quasi�Banach spaces which were not under consideration in
Section ��

We recall that L log L 
 L is the space of �real�valued� functions on T for which the
function jf j �maxf�� log jf jg is integrable� We denote by expL the space of continuous linear
functionals on L log L� More detail information about these spaces can be found� for example�
in ���� and �����

Let � is a ��periodic function� ��x� � � � x� x � ��� ��� Obviously� � � S�P� � ���
The sequence ����� is called converging on the two functions if it converges in the Hausdor�
metric on the identity and on the function � �see ��� and �����

Let � be a regular Borel measure on T� Then we denote by �� and �� respectively the
positive and and negative components in the Jordan decomposition � � �� � ���

���E� � ���E n ���� ���� ���E��

where E 
 T�
Theorem A ����� The sequence of operators ����� converges on the class BV if and only
if it converges on the two functions�

Theorem B ����� The sequence of operators ����� converges on the class L� if and only
if the following two conditions hold	

�a� The sequence ����� converges on the two functions

�b� For any � � � we have lim

n��
measE��

��n�E� � ��

Theorem C ����� The sequence of operators ����� converges on the class Lp �� � p ���
if and only if the following two conditions hold	

�a� The sequence ����� converges on the two functions

�b� For any � � � we have lim

n��
k��nkq ��� where q � p��p � �� �q �� for p � ���

Theorem ���� The sequence of operators ����� converges on the class �H� if and only if
the following three conditions hold	

�a� The sequence ����� converges on the two functions

�b� For any � � � we have lim

n��
k�� � 
���n j BMOk ��


�c� lim
n��

k��n j expLk ���

�



Theorem ���� The sequence of operators ����� converges on the class c� if and only if the
following three conditions hold	

�a� Sequence ����� converges on the two functions

�b� For any � � � we have lim

n��
k�� � 
���n j ��k ��


�c� k lim
n��

��n k� ���

The appearance of condition �c� selects these two assertions from all considered above
and in ���� As we shall see in proofs� the reason of the appearance of condition �c� is that�
in these spaces� there are elements which cannot be represented as the sum of positive and
negative distributions� belonging to the same space�

At the same time� maximum of spaces embedded in �H�� possessing this property� is
the space L log L �sf�� ����� Chapter ��� Thus� there is an understandable reason for the
appearance of the space expL �M�L log L�L�� in the statement of Theorem ���� Similarly�
such the space for c� is the space of continuous measuresM�� i�e�� measures without a discrete
component� Then L� 
M� 
M� Consequently� L� �M�M��L

���
We note that the condition such as conditions �c� of Theorems ��� and �� could appear

in the assertions of Section �� However� in Theorems ��� � ��� it� actually� appeared 	hidden	
in condition �a��

Proof of Theorem ���� The generalized convergence of the sequence �n to P� follows from
a condition a�� Hence� according to Lemma ���� for any 
xed  � � when n is su�ciently
large� we have

F ��f� 
 U��F
��In�f����

We show that for su�ciently large n the converse inclusion

F ��In�f�� 
 U��F
��f��

takes place� Let us partition the circle T into k equal arcs 	i of length � � ��k � ��� We
denote by mi and Mi the essential upper and lower bounds of f on the union of the ith and
adjacent with it arcs� and fi is the restriction of f to this set� M �� maxfj mi j� j Mi jg�
where the last maximum is taken only over 
nite values� Let d is a number such that the
inequalities

mi � d � g�x� �Mi � d

on all the arcs 	i implies the inclusion

F ��g� 
 U��F
��f���

We choose numbers �� and N� so that for n � N�� � � � � �� and x � 	i �i � �� � � � � � k�
we have

Mi � d�� � �
� � �n�� � f�x� �Mi � d��� �����

For those i for which at least one of the numbers mi and Mi is 
nite� fi belongs to the space
L log L� The norm of this space is absolutely continuous with respect to Lebesgue measure�
i�e�� if f � L log L� then for any  � � there is � � � such that the inequality measE � �

�



�E 
 T� implies k
E � f j L log Lk � � Therefore� there exist �� and N� such that for any fi
the inequality measE � �� implies

k
E � fi j L log Lk � d��K� ����

where K � supn�N�
k��n j expLk ��� At the same time� it is easy to show from conditions

�a� and �b� that for any � � � and f � �H� the sequence k�� � 
���n � fk� converges to
zero� Consequently� there is N� such that for n � N� we have

k�� � 
����n � fk� � d��� �����

where �� � minf��� ��� ��g�
Thus� if i is such that at least one of the numbers mi and Mi is 
nite� according to �����

� ������ for all N � maxfN�� N�� N�g and x � 	i we have

�n � f�x�� � �
�� � �n�� � f�x� � �
�� � �n�� � f�x� � ��� 
��� � �n � f�x� �
Mi � d�� � k�
�� � �n�� j expLk � kfi j L log Lk� k�� � 
��� � �n � fk� �

Mi � d�� � �d��K� �K � d�� �Mi � d�

Similarly� we obtain �n�f�x� � mi�d� It completes the proof of the su�ciency of conditions
�a� � �c��

The necessity of condition �a� is obvious� and the necessity of condition �b� follows from
Lemma ����� Let us show the necessity of condition �c��

We assume the contrary� Let condition �c� of Theorem ��� does not hold� Then� obviously�
for any � � � we have

lim
n��

k�
� � �n�� j expLk ��� �����

Indeed� if it is not so� condition �b�� the necessity of which is already proved� would be not
valid�

Let  � sup k�nk�� Obviously� it is possible without loss of generality to assume that
 ��� We construct the required function f which leads to contradiction in the form of a
sum of series f �

P�
n�� gn� We introduce the notation fm ��

Pm
n�� gn� hm ��

P�
n�m gn� Let

M be an arbitrary positive number� �n � �n��� We construct a sequence of the functions
gn and a sequence of natural numbers ln ��� proceeding from the following conditions�

�� gn is a continuous non�positive function supported on the interval �an� bn�� where
an � cn � �n� bn � cn � �n� cn � 

Pn��
k�� �n� n � �� �� � � � � � c� � ��

� gn � �ln�cn�  M � n � �� �� � � � � �
�� maxx�	an�bn
 j fn�� � �ln�x�� j� M��� n � �� �� � � � � �
�� kgn j L log Lk ��n��� n � �� �� � � � � �
�� kgn j L log Lk � �kM

���

k�n

 C
� where �k is Lebesgue measure of the set

Ak �� fx � �ak� bk� j gk � �lk�x��Mg�
�k � �� k � �� �� � � � � n� �� n � �� � � � � � C is a constant of embedding of the space L log L
in L��

We need the following assertion�

�



Lemma ���� Let � be a regular Borel measure on T and k
������ � �� j expLk � K� Then
there exists a continuous non�positive function �� equal to zero outside the interval ���� ���
for which k� j L log Lk � �� � � ���� � K�

We omit the proof of this lemma because it repeats the proof of Lemma � of ��� almost
literally�

We construct the functions gn and the numbers ln by induction� We choose the number
l� satisfying the condition k
	������
 ���l� j expLk �M � Then� according to Lemma ���� there
exists a continuous function g�� satisfying conditions ��� � and ��� As g� ��ln is a continuous
function� we have �� � ��

Let�s assume we have conducted constructing for n � �� �� � � � �m� �� Then the function
gm and the number lm are chosen as follows�

In view of continuity of the function fm��� the sequence of operators ����� converges on it
uniformly and� therefore� for su�ciently large lm condition �� holds� By ������ for su�ciently
large lm the inequality

k
	��m��m
 � ��lm j expLk  M �max
�
m���

���

M�k
�  C
m�k

� k � �� �� � � � �m� �
�
�

holds too� Then� according to Lemma ���� there is a continuous non�positive function g�m
which is equal to zero outside the interval ���m� �m� and satis
es the inequalities g�m��lm��� 
M and

kg�m j L log Lk � min

�
�m���

�kM

���
� 

k�m

 C
� k � �� �� � � � �m� �

�
�

We take the function g�m�x� cm� as above gm�x�� Thus� the possibility of construction of the
sequences of the functions gn and the numbers ln� satisfying conditions �� � ��� is proved�

According to condition ��� the function f belongs to the space L log L� kf j L log Lk � �
and f � �� We study behavior of the function f � �ln on the set An�

According to condition ���

khn��k� � Ckhn�� j L log Lk � �nM

���
� �
 
�

Therefore� from the Chebyshev inequality we obtain

meas fx � T j jhn�� � �ln�x��j M��g � �khn�� � �lnk�
M��

�
� �� � khn��k� � k�lnk��M � �n��

It follows from here and from �� and �� that there is a set of the Lebesgue measure �n� on
the interval �an� bn� such that we have

f � �ln�x� � fn�� � �ln�x� � gn � �ln�x� � hn�� � �ln�x��  �M�� �M �M�� �M�

at any point x of this set� Therefore� H��f ��ln� f� M�� That contradicts the convergence
of sequence ����� on the class �H�� Theorem ��� is proved�

Similarly it is possible to obtain the following statement which we give without the proof�

�



Theorem ���� The sequence of operators ����� converges on the class L log L if and only if
the following two conditions hold	

�a� Sequence ����� converges on the two functions

�b� For any � � � we have lim

n��
k��n � �� � 
����n j expLk ���

Remark� Obviously� in the assertion of condition �b� of Theorem ��� the function 
� � C�
can be replaced with the characteristic function of the interval 
�������

Proof of Theorem ���� Validity of the inclusion F ��f� 
 U��F ��f�� for large n can be proved
in the same manner as the proof of the previous theorem� We show the converse inclusion

F ��In�f�� 
 U��F
��f��� �����

According to condition �c�� there are a positive number K and a positive integer n� such
that for n � n� we have

��n �x�� � �K� �����

As usually� we partition T into k arcs 	i of length � � ��� We denote by Mi and mi

the essential upper and lower bounds of the function f on the union of 	i with the adjacent
arcs� We choose d � � such that ful
llment of the inequalities mi�d � I�f��x� �Mi�d on
all the arcs 	i implies ������ It follows from conditions �a� and �b� that for su�ciently large
n� �n are measures and there exist the numbers �� and N� such that for n � N�� � � � � ���
x � 	i �i � �� � � � � � k� we have

mi � d�� � �
� � �n�� � f�x� � Mi � d��� �����

Distributions of c� bounded from above or from below are continuous measures� There�
fore� for those i for which either mi or Mi are 
nite the restriction of f to the union 	i with
adjacent arcs is a continuous measure� Consequently� according to ������ there is �� such
that for all �� � � � � ��� and x � 	i we have

jf � �
��n�
��x��j � d�� �����

for n bigger certain N��
From conditions �a� and �b�� according to Lemma ��� we obtain that by 
xing �� �

minf��� ��g� for n greater certain N� and when � � � � �� we have

k��� 
���n � fk� � d��� �����

Collecting ����� � ������ we obtain ������ The su�ciency is proved�
The necessity of condition �a� is obvious and the necessity of condition �b� follows from

Lemmas ��� and ����� In the case of invalidity of condition �c� there exists a function
f � L� 
 c� on which sequence ����� diverges� This fact is an immediate consequence of the
criterion for the convergence on the class L� �see ���� �����

�



� The Gibbs phenomenon and convergence

As it was already mentioned above� in ��� we obtained results for the spaces BV and Lp

which were similar to the results of Sections � � �� Besides� for these spaces two other
kinds of results were obtained� At 
rst� it was shown that the convergence takes place
if and only if the generalized Gibbs phenomenon does not occur� The de
nition of the
generalized Gibbs phenomenon will be given below� Secondly� it turns out that not only
the sequence of the convoluting kernels is 	suitable	 for the given spaces �if they satisfy
the appropriate conditions� but the converse fact also takes place� If we 
x a set of the
kernel sequences� satisfying conditions of the criterion� then the spaces� on which the given
sequences of operators converge� are determined� in fact� uniquely� Here we show that the
given assertions are� somewhat� universal even in a little bit strengthened form�

De�nition ���� A distribution f is called essentially unbounded everywhere� if

ess sup f�x� � ��� ess inf f�x�� � ���

i�e�� the distribution f is essentially unbounded both from above and from below on any arc�

We note that the similar concept was introduced in ��� only for summable functions�

Theorem ���� Let X � H be a Banach space and either X �
�

X or X �
�

X � A distribution
f is not essentially unbounded everywhere and f �� X� Then there exists a sequence of
operators ������ converging on X and not converging on f �

Remark� Generally speaking� Theorem ��� ceases to be valid for quasi�Banach spaces� It
is caused by the fact that Lemma �� is not valid for them�

This theorem strengthens the statements from ��� because in that paper we imposed
the initial limitations on f � So� for example� in the assertion for X � BV we assumed that
f � L�� and in the case X � Lp �� � p � �� we assumed that f is a summable function�
Proof of Theorem ���� Let f �� X and be not essentially unbounded everywhere� Then it
is easy to see that there is a point �� � T at which either � � ess sup f���� � � or
�� � ess inf f���� ��� For determinancy we assume �� � � and the former holds�

If f �� �

X �in particular� it happens if X �
�

X�� according to Lemmas � and ��� f ��
M�X���L��� Hence� there exists a sequence of distributions �n� k�n j X��k � �� such that
f ��n � C and f ��n���� �� as n��� We take an arbitrary sequence n � � such that
n�f ��n����� ��� Then the sequence of operators ����� with the kernels �n � P�� n�n

converges on the class X because for any distribution h � X� according to Lemma �� we
have

kh � �n�n�k� � nkh j Xk � k�n j X��k � nkh j Xk � ��

At the same time� obviously� there is no convergence on f �

Let f � �

X and f �� �

X � In view of the fact that the distribution f cannot be approximated
with an arbitrary accuracy in the norm of the space X by functions of C� � there is C � �
such that

kf � f r j Xk � C� �����

�



Let rk � � � ��k� k � �� � � � � Then in view of ����� and Lemma ��� for any k there exists
a distribution �k�

k�k jM�X�L��k � �� ����

such that k�f � f rk� ��kk� � kf � �P�� Prk� ��kk� � C� By ����� we obtain that there is
a distribution �� such that j��k�n�j � j����n�j� Hence� the sequence �P��Prk � ��k converges
in D to zero� and in particular� it converges to zero coe�cientwise�

On the other hand� according to the de
nition of spaces of H and by Lemma ��� we
have

k�P� � Prk � � �k jM�X�L��k � k�k jM�X�L��k� kPrk � �k jM�X�L��k � � �����

Thus� denoting by �k the sequence �P��Prk � ��k� we obtain kf � �kk� � C� For every k we
can choose an appropriate r� � � r � �� so that for the function �k � �k � Prk the inequality
kf � �kk� � C holds� In this case the function f��k becomes continuous� We denote by
�k the functions obtained of �k by the shift of an argument and� may be� by the change of
a sign� We choose the distributions �k so that the inequality f � �k��� � C holds� Then�
obviously� �k � P� � �k is the required sequence of kernels of the operators ������ Indeed�

the divergence on f is obvious� The convergence on X ��
�

X� follows from the convergence
of a sequence of the operators Jn�g� � g � �k to zero on polynomials and from boundedness
�according to ������ of the norms k�k jM�X�L��k� Theorem ��� is proved�

The comprehensive answer to a question what happens if a distribution f is essentially
unbounded everywhere gives the following assertion�

Theorem ���� Let a sequence �n converge to P� in D and f is a distribution essentially
unbounded everywhere� Then

f � �n H��� f�

Remark� Theorem �� contains a certain paradox� consisting in the fact that the gener�
alized convergence to P� guarantees the Hausdor� convergence on 	very good	 distributions
of C� �see Theorem ���� and on 	very bad	 functions essentially unbounded everywhere�
There is no guarantee for all remaining distributions because always there exists a space

X �
�

X �� C� � X � H� which does not contain the given distribution� For example� we can
take as above X the space of k times continuously di�erentiable functions for su�ciently
large k�

Corollary ���� For any essentially unbounded everywhere distribution the conclusion of
Theorem ��� ceases to be valid�

Indeed� if sequence ����� converges on the class X � H� it converges on the class C� �
Hence� by Theorem ���� it converges to P� in D � Therefore� it follows from Theorem �� that
it converges on any distribution essentially unbounded everywhere�

Theorem �� follows immediately from Lemma ����
We proceed now to considering the Gibbs phenomenon on classes X � H� Following ����

we give a de
nition of the �generalized� Gibbs phenomenon� We say that for the sequence

�



of operators ����� the Gibbs phenomenon occurs on the function f if there exists a point
�� � T such that one of the inequalities

lim
���

lim
n��

ess sup
j����j��

In�f���� � ess sup f�����

lim
���

lim
n��

ess inf
j����j��

In�f���� � ess inf f����

holds� The di�erence with the corresponding de
nition in ��� consists in the absence of
requirement of summability of the distributions f and In�f�� It is not necessary here because
we gave the de
nitions of essential upper and lower bounds for an arbitrary distribution�

The canonical graphs of distributions can have non�zero area and even contain whole
domains� so it would be natural to call the given phenomenon as the external Gibbs phe�
nomenon because in this case the approximating sequence of the canonical graphs comes out
of the canonical graph of the approximated function on the non�zero distance� We say that
for the sequence of operators ����� the internal Gibbs phenomenon occurs on the function f
if there exist � � � and �� � T such that one of the inequalities

lim
n��

ess sup
j���� j��

In�f���� � ess sup f�����

lim
n��

ess inf
j���� j��

In�f���� � ess inf f�����

hold�
Obviously� sequence ����� converges on an arbitrary 
xed distribution if and only if both

internal and external Gibbs phenomena are absent� It is natural to say that the corresponding
Gibbs phenomenon is absent on the class of distributions X if it is absent on every f � X�

It was shown in ��� that sequence ����� converges on the classes BV and Lp �� � p ���
if and only if the �external� Gibbs phenomenon is absent� i�e�� for these classes the absence
of the external Gibbs phenomenon implies the absence of the internal one� It turns out� this
property is universal and does not depend on topological properties of the space�

Theorem ���� Let X be an arbitrary set of distributions� X � C� � Then the sequence of
operators ����� converges on the set X if and only if the �external� Gibbs phenomenon does
not occur on it�

Proof of Theorem ���� Obviously� the convergence on the set X implies the absence of the
external Gibbs phenomenon�

We show the converse fact� Let the external Gibbs phenomenon for sequence ����� on
set X does not occur� The convergence of sequence ����� on C� follows immediately from
here� Hence� according to Theorem ���� the sequence �n converges to P� in the generalized
sense� It follows from here and Lemma ��� that the internal Gibbs phenomenon also does
not occur� Thus� sequence ����� converges on the set X� As it was required�

We introduce a new distance of Hausdor��s type mentioned in Section �� Let f� g � D �
then

H��f� g� �� sup
r��

H�f r� gr� �� sup
r��

H��f r� gr���

��



The distance H� is a metrics� Obviously� the convergence of a sequence of distributions with
respect to the distance H� implies the convergence in the sense of the distance H��

It turns out� despite of distinctions of the distances H� and H�� the convergence of
sequence ����� on a class X � H takes or does not take place simultaneously�

Theorem ���� Let X � H� Then sequence ����� converges on the class X with respect to
the distance H� if and only if it converges on this class with respect to the distance H��

Proof of Theorem ���� Obviously� it su�ces to show that the convergence of ����� with re�
spect to the distance H� implies the convergence in the metric H�� We assume the contrary�
Let sequence ����� converge on the space X � H in H� and do not converge in the metrics
H�� f � X is a function on which there is no convergence in H�� Then there exist a
sequence of natural numbers nk �� and a sequence of real numbers rk� � � rk � �� such
that for some � � � we have

H�f rk � Ink�f
rk �� � �� �����

The sequence �n converges to P� in D � It follows from here that In�f� �more precisely� the
sequence of harmonic extensions into the unit disc� uniformly converges to f on compact
sets� Therefore� the sequence rk has a unique limit point which is equal to ��

It follows from Theorem ��� and from ����� that for su�ciently large k we have

H�f� Ink�f
rk �� � �� �����

Hence� for every such k either

F �Ink�f
rk ��

�
U��F

��f�� �� � �����

or

F ��f�
�

U��F �Ink�f
rk ��� �� � �����

takes place� According to Theorem ���� the sequences �n converges to P� in D � The same
can be told about the sequence �nk �Prk � Hence� it follows from Lemma ��� that ����� cannot
be satis
ed for in
nite number of the indexes k�

In the case when ����� is valid for in
nite number of the indexes k� there exist �� � T
and a sequence �k � �� such that we have either

lim
k��

ess sup Ink�f
rk ��k�� � ess sup f���� �����

or
lim
k��

ess inf Ink�f
rk ��k�� � ess inf f�����

For de
niteness we assume that ����� is satis
ed� In view of the convergence of the sequence
of operators ����� on constants without loss of generality we can suppose that the left�hand
part of inequality ����� is positive and the right�hand part is negative� Moreover� there is
� � � such that ess sup j����j�� f��� � ��

��



We represent the Poisson kernel Prk in the form Prk � �k ��k� where �k � 
��� �Prk � As
the sequence f � �nk converges in D and �k converges to zero in the topology of the space
C� � we get the uniform convergence of the sequence F � �nk � �k to zero� Hence� it follows
from ����� that we have

lim
k��

ess sup �nk � f � �k��k� � �� �����

In view of the convergence of the sequence of operators ����� on f the inequality

ess sup
j����j����

�nk � f��� � �

is valid for su�ciently large k� In view of positivity of the function �k it contradicts ������
Theorem ��� is proved�

� Applications to summation of Fourier series

We begin with the consideration of summation processes by the Ces!aro methods �C����
Recall main de
nitions� For � �� ����� � � � and positive integers n the numbers

A

n ��

��� �� � � � � � ��� n�

n"
� C�n�
�

n � n


��� � ��
� �����

where � ��� is the gamma�function� is called the Ces!aro numbers �sf�� ������ The Ces!aro sums
for a function f is de
ned to be trigonometric polynomials �
n�f� � f �K


n � where

K

n �t� �

nX
���

A
��
n��D��t��A



n� ����

and Dn�t� is the Dirichlet kernel�

Dn�t� ��

�
�


�

nX
���

cos �t

�
�
sin�n � ���t

 sin t�
�

By applying the Abel transform to ���� several times� we obtain the well�known Kogbetliantz
formula �see ���� and ����� ChapterIII�

K

n �t� �

�
�

eit��

A

n sin t�

�
eint

�� � e�it�m
�

mX
k��

A
�k
n�k

�

��� e�it�k
�

�X
���

A
�m��
n�m��

e��t

�� � eit�m

��
� �����

where ��z� is an imaginary part of the complex number z� In view of ����� the series in the
last expression converges only if M � �� Nevertheless� formula ����� makes a sense even in
the case m � � because for t �� � this series is summable to a 
nite number by the Abel �
Poisson method�

�



Theorem ���� Let X is either M or ��� Then the Ces�aro method �C��� converges on X
if and only if �  ��

Proof of Theorem ��� The necessity of the condition �  � follows from the results of papers
��� � ���� where it was shown that for � � � the convergence is absent even on the class L��

The convergence of the method �C��� for �  � on the class M follows from Theorem
�� due to the convergence of the method �C��� on the two distributions�

The su�ciency of the condition �  � for X � �� we deduce from relation ����� for
m � �� Let � be an arbitrary positive number� We show that k�� � 
��K


n j ��k � � as
n��� Let us consider three addends of formula ������

Let ��n�t� � eint�A

n� �

��t� � ���
��t��eit�����eit��
�� sin t��� Obviously� k��n j ��k �
� as n��� and since � � C� � we have

k����n j ��k � � as n��� �����

Let

���kn � A
�k
n�k�A



n� ���k�t� � �� � 
��t��e

it���� � eit��k�� sin t��� k � �� � � � � �m�

Then� obviously�

���kn � � as n��� �����

Therefore� k���kn j ��k � � as n��� In view of the fact that all ���k belong to C� we have�����
mX
k��

���kn � ���k
�� �������� � as n��� �����

As it was mentioned above� for m � � the series �n�t� �
P�

���A

�m��
n�m��e

�i�t converges
absolutely� Obviously� the norms k�n j ��k are bounded in the aggregate� Therefore� denoting
by ��n the function �n�A



n� we obtain k��n j ��k � � as n � �� Since ���t� � �� �


��t��eit����� eit��m�� sin t�� � C� � then

k��n � �� j ��k � � as n��� �����

Joining ������ ����� and ������ we obtain

k�� � 
��K


n j ��k � k��n � �� j ��k�

mX
k��

k���kn � �� j ��k� k��n � �� j ��k � �

as n��� As was to be shown�

Corollary ���� The Ces�aro method �C��� converges on the class �p � � p � �� if and
only if �  ��

Obviously� the necessity of the condition �  � follows from the embeddings L� 
 L� 

�p� and its su�ciency follows from Theorem ����

��



Theorem ���� The Ces�aro method converges on the class �Hp �� � p � �� if and only if
�a� �  �� �� � p � �

�b� �  ��p � �� � � p � ���

Proof of Theorem ��� According to Corollary ��� of Theorem ���� we just need to estimate
the norms k���
��K



n j B��p��

��� k for the 
xed � � �� We show that for this estimation of the
norms only the 
rst term of relation ����� is important� Acting by analogy with the proof
of Theorem ���� we obtain from ����� that

lim
n��

k���kn � �� j B��p��
��� k � �

for any k � �� � � � � �m� Obviously� for any positive integer l and su�ciently large m the
series

P�
���A


�m��
n�m��e

�i�t is the Fourier series of a function which is continuously di�erentiable

l times� It follows from here that lim
n��

k��n � �� j B��p��
��� k �� for su�ciently large m�

We estimate the 
rst term� Let the number ��p is fractional and ���p� is its whole
part� We di�erentiate the function �n�t� � eint�A


n ���p� � � times� Then the derivative

D�	��p
�����n�t�� � �in�	��p
��eint�A

n is bounded in the norm of the space B

��p�	��p
��
��� if con�

ditions �a� or �b� are valid� It is unbounded if conditions �a� and �b� are not valid� In the
case when ��p is integer greater than �� we need to di�erentiate ���p��  times the function
�n and to estimate the Zygmund norm of the obtained function or �that is the same�� the
norm in B�

����
The case p � � follows from the embeddings L� 
 �H� 
 L� in view of the fact that

the condition �  � is necessary and su�cient for the convergence on the classes L� and
L
��

We proceed to the consideration of summation of Fourier series by the Vall#ee�Poussin
methods� We recall that the Vall#ee�Poussin kernel with integer parameters m and k� �
� m � k� is de
ned to be the trigonometric polynomial

V k
m�t� �

k��X
i�m

Di�t���k �m��

In ��� � ���� the following theorem was proved�

Theorem D� The Vall�ee�Poussin method with the kernels fV mn

kn
g�n��� where kn ��� con�

verges on the class Lp if and only if	
�a� mn � o�kn� if p ��


�b� mn � O�k
p��p���
n � if � � p ���

Theorem ���� The Vall�ee�Poussin method converges on the classesM� L� and �Hp��� �
p � �� if and only if mn � o�

p
kn��

We recall two useful formulae for the representation of the Vall#ee�Poussin kernels�

V mn

kn
�t� �

�

kn �mn
� sin

�mnt� � sin� knt�
sin� t�

� �����

V mn

kn
�t� �

�

�kn �mn�
� cosmnt� cos knt

sin� t�
� �����

��



Proof of Theorem ��� To prove the necessity we show that in the case when the condition
mn � o�

p
kn� does not hold� the sequence of the Vall#ee�Poussin operators does not converge

on the Dirac ��measure� Let there exist C � � and a sequence of positive integers nl �� �
such that mnl �

p
kl� Obviously� we can assume that mnl � knl� because in the case of

ful
llment of the converse inequality for in
nite number of the indexes l it follows from the
result by G�Natanson ���� that for the operator sequence the classical Gibbs phenomenon
occurs� For simpli
cation of the notation we omit the index l�

By substituting t � tn � ��kn in formula ������ we obtain

V mn

kn
�tn� � � sin���mn�kn�

�kn �mn� sin
� ��kn

� ����mn�kn�������

kn���kn��
� � m�

n

��kn
� �

	
C

�


�

�

It contradicts the convergence of the sequence of operators ����� on P��
To prove the su�ciency� at 
rst� we show the convergence on the two distributions� The

convergence on the identity is obvious� We show the convergence on P�� Indeed� it is easy to
see from ����� that outside an arbitrary neighborhood of zero the sequence


V kn
mn

��
uniformly

converges to zero� On the other hand� according to ������ we have
V kn
mn

��  � sin��mnt��

�kn �mn� sin
� t�

 � m�
n

kn �mn
 � �o�

p
kn���

kn � o�
p
kn�

� o���

as n��� Consequently� the convergence on the class M is proved�
Let us show the convergence on the class ��� Indeed� we have

k�cosmnt� cos knt����kn �mn�� j ��k � �� as n���

At the same time� for any � � � we have ���
����sin
� t�� � C� � Thus� according to �����

and from the boundedness on �� of the operator of multiplication by a function from C� �
we have k�� � 
��V kn

mn
j ��k � � as n � �� Now the convergence on the class l� follows

from Corollary �� of Theorem ����
Let us show the su�ciency of the condition mn � o�

p
kn� for the convergence on the

class �H���� To prove it we need to show that for any � � � we have

lim
n��

k��� 
��V
kn
mn
j B�

���k ��� ������

The space B�
��� coincides with the Zygmund space� We need to prove the uniform bound�

edness of derivatives of the function �� � 
��V kn
mn
� Indeed�

j �cosmnt� cos knt�����kn �mn�� j� �mn � kn����kn �mn�� � �

and ����
����sin
� t��� � C�� Inequality ������ follows from here and from ������ Theorem

��� is proved�

Theorem ���� The Vall�ee�Poussin method does not converge on any class �Hp�� � p �
��� for any set of the parameters fkng and fmng�
Remark� Due to already proved Theorem ���� the given result is not unexpected� Indeed�
from our point of view 	the best	 of the Vall#ee�Poussin methods is the Fejer method� How�
ever� according to Theorem ���� it can provide the convergence only on the class �H����

��



Proof of Theorem ��� The ful
llment of the inequality

lim
n��

k
�V
kn
mn
j B��p��

��� k ��

for any � � � is necessary for the convergence� For p � �� it means that derivatives of
the functions 
�V

kn
mn

have to be uniformly bounded with respect to the norm of one of the
Zygmund �Lipshitz classes� However� obviously� the function

�cosmnt� cos knt�����kn �mn�� �

� �kn sin knt�mn sinmnt����kn �mn��

is not bounded as a sequence of any of the Lipschitz classes� Multiplication by the function
��� 
��� sin

� t� can not correct this property� Theorem ��� is proved�

References

��� B�Sendov� 	Hausdor� approximations	� Kluwer� Dortrecht� �����

�� P�P� Korovkin� Experiment of axiomatic construction of certain problems of the approx�
imation theory of functions one variable� Uchenye Zapiski Kalininskogo gos� ped� inst�
�
 ������� �� � ����

��� A�P� Petukhov� On approximation of functions by singular integrals in the Hausdor�
metric� Mat� Sb� ��� ����� ������� �� � � �in Russian�� English transl� in Math�
USSR � Sb� �� �������

��� A�P� Petukhov� On approximation of functions by convolution operators in the Hausdor�
metric� Dokl� Akad� Nauk SSSR ��� ������ ��� � ��� �in Russian�� English transl� in
Russian Acad� Sci� Dokl� Math� �� ������� ��� � ���

��� A�P� Petukhov� On the convergence of sequences of convolution operators in the Haus�
dor� metric� Algebra i Analiz� � ������� �� � ��� �in Russian�� English transl� in St�
Petersburg Math� J� � ������� ��� � ����

��� A�P� Petukhov� On approximation of periodic distributions in the Hausdor� metric�
Rossiisk� Akad� Nauk Dokl� ��� ������� � � � �in Russian�� English transl� in Russian
Acad� Sci� Dokl� Math� �
 ������� ��� � ����

��� A�P� Petukhov� Convergence of Fourier series for functions in the classes of Besov�
Lizorkin�Triebel� Mat� Zametki� �� ������� �� � �� �in Russian�� English transl� in
Math� Notes �� ������� ��� � ����

��� R�Edwards� 	Fourier series� a modern introduction	� nd ed�� Springer�Verlag� Berlin�
Heidelberg� and New York� ����

��� E�F�Collingwood and A�J�Lohwatter� 	The Theory of Cluster Sets�	 Cambridge Univ�
Press� Cambridge� �����

��



���� L�V� Kantorovich� G�P�Akilov� 	Functional analysis�	 Pergamon Press� Oxford� ����

���� J�L�Lions and J�Peetre� Sur une classe d$espaces d$interpolation� Inst� Hautes Etudes
Sci� Publ� �
 ������� � � ���

��� J%oran Bergh and J%orgen L%ofstr%om� 	Interpolation spaces�	 Springer�Verlag� Berlin� Hei�
delberg� and New York� �����

���� Kogbetliantz E� Analogies entre les s #eries trigonom#etriques et les s#eries sph#eriques�
Ann� de l�Ecole Nor� Sup� ���� �� ������ �� � ���

���� A�Zygmund� 	Trigonometric series�	 nd ed�� Cambridge Univ� Press� Cambridge� �����

���� M�A�Krasnosel�skij and Ya�B�Rutickij� 	Convex Functions and Orlicz spases�	 Gronin�
gen� Neterland� P�Noordho� Ltd� ����

���� Paul Koosis� Introduction to Hp spaces� Cambridge Univ� Press� Cambridge� �����

���� G�I�Natanson� The Gibbs phenomenon for Vall#ee�Poussin sums� Studies of Modern Prob�
lems in the Constructive Theory of Functions �V�I�Smirnov� ed��� Fizmatgiz� Moscow�
����� �� � ���

���� Hans Triebel� 	Theory of function spaces�	 Akademische Verlag� Geest&Portig� Leipzig�
�����

��


