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Abstract

This paper surveys how the concept of crossing number, which used to
be familiar only to a limited group of specialists, emerges as a significant
graph parameter. This paper has dual purposes: first, it reviews founda-
tional, historical, and philosophical issues of crossing numbers, second, it
shows a new lower bound for crossing numbers. This new lower bound
may be helpful in estimating the crossing number of complete graphs.

1 Foundational issues

Pach and Téth [36] noted that although researchers seem to agree in what they
understand under the concept of “crossing number”, “drawings” are defined in a
variety of ways in the literature, and the possibility is there that some definitions
might not be equivalent. Pach and Téth [36] introduced two new versions of
the crossing number problem, and there is a fourth version, implicitly present
in Tutte [52]. First I give a careful definition of three classes of drawings, in
which all four kind of crossing numbers can be conveniently set.

A drawing D of a finite graph G on the plane is an injection ¢ from the
vertex set V(G) into the plane, and a mapping of the edge set E(G) into the
set of simple plane curves (i.e. homeomorphic images of the interval [0, 1]), such
that the curve corresponding to the edge e = uv has endpoints ¢(u) and ¢(v),
and contains no other vertices.

We also speak about the images of vertices as vertices, and about the curves
as edges. The number of crossings cr(D) in the drawing D is the sum of the
number of intersection points of all unordered pairs of interiors of edges (i.e.
endpoints are not counted in the intersections).

A drawing D is normal if it satisfies (i) and (ii):

(i) any two of the curves have finitely many points in common

(i) no two curves have a point in common in a tangential way, i.e. if we define
locally the “left side” and the “right side” of the curves at the common point,
both curves are present at both sides of each in every small neighborhood of
that point

1Research partially supported by the NSF Grant 0072187 and the Hungarian NSF Grant
T 032455.



Assumption (ii) allows for speaking about points of crossing instead of points
of intersection. For normal drawings in most cases we will also assume (iii):
(iil) no three curves cross each other in the same point

Requirement (iii) is convenient, since using it one can simplify the definition
of cr(D) to the number of points of crossing in the drawing. Also, some proof
techniques about crossing numbers introduce a new planar graph from a drawing
D by introducing a new vertices of degree 4 in the points of crossing. However,
many drawings in applications, especially straight line drawings, do not satisfy
(iii). Notice that if (iii) fails and some k curves cross each other in a normal
drawing in a single point, this can easily be transformed locally into a drawing
where any two of the k curves cross each other once, and the number of crossings
in the drawing does not change. Therefore we assume (iii) for normal drawings
and it will not cause any problem that some drawings that we use fail (iii).

A drawing D is nice, if it is normal, and in addition satisfies

(iv) no two adjacent edges (i.e. edges sharing an endpoint) cross
(v) any two edges cross at most once

The crossing number CR(G) of the graph G is the minimum of ¢r(D) over
all drawings of G. We call a drawing D optimal if it realizes cr(D) = CR(G). It
is easy to see that an optimal drawing must satisfy (i) and (ii), and a little work
shows that it also must satisfy (iv) and (v). Therefore, we have an equivalent
definition of CR(G): the minimum of ¢r(D) over all normal, nice drawings of
G.

We show (v) first. Assume that the curves p and ¢ corresponding to edges
UZ and XY cross in points R and 7. Call p1,p2,ps and q1,q2,qs the pieces
of p and ¢ determined by R and T, with ps and g denoting the RT sections.
Redefine the curves as

p'=p1UgUps  and ¢ =q Upy Ugs. (1)

Now we can eliminate the tangential intersections of p’ and ¢’ at R and T. A
problem is that p’ and ¢’ may not be simple curves (i.e we may have created
self-crossings), but we can shortcut them, and this does not increase the number
of crossings in the drawing. The proof of (iv) is similar, use the shared endvertex
for R, and T for a crossing point. p; or p3 (¢1 or g3) degenerates for a point.
The surgery (1) works again.

Pach and Téth [36] introduced two new variant of the crossing number prob-
lem:
the pairwise crossing number CR-PAIR(G) is equal to the minimum number
of unordered pairs of edges that cross each other at least once (i.e. they are
counted once instead of as many times they cross), over all normal drawings of
G
the odd crossing number CR-ODD(QG) is equal to the minimum number of un-
ordered pairs of edges that cross each other odd times, over all normal drawings
of G

In Tutte’s work [52] another kind of crossing number is implicit:
the independent-odd crossing number CR-IODD(G) is equal to the minimum
number of unordered pairs of non-adjacent edges that cross each other odd
times, over all normal drawings of G

The following chain of inequalities is obvious from the definitions:



CR-IODD(G) < CR-ODD(G) < CR-PAIR(G) < CR(G). (2)

No example of strict inequality is known. Pach [34] considers the problem if all
these numbers are always equal as the most important open problem on crossing
numbers.

The smallest graphs with CR(G) = 1 are K5 and K3 3. For these graphs we
have

Theorem 1.1 [Chojnacki [13] 1934]
CR-IODD(K5) = 1 = CR-IODD(K3.3)

For other proofs and generalizations, see [52, 36]).

It is clear that if similar crossing number problems are posed for the sphere
instead of the plane, stereographic projection shows that the corresponding pla-
nar and spheric crossing numbers are always equal. Crossing number problems
can be posed on orientable and non-orientable surfaces of higher genus, and
many of the results discussed in this paper generalizes for them, see [44, 48, 39].

It is not the purpose of the present paper to give a comprehensive survey
of the literature of crossing numbers. Much of the literature falls into one of
two categories: the first investigates exact values of crossing numbers or makes
lower bounds on crossing numbers based on information on the crossing number
of a certain small graph, the second tries to prove bounds based on structural
properties of the graph. We call the first the theory of small graphs, the second
the theory of large graphs. During the early history of crossing numbers the
theory of small graphs existed only. For more information on the early history
and the theory of small graphs, see White and Beineke [55], for the modern
history and the theory of large graphs, see Shahrokhi, Sykora, Székely and Vrto
[48], and for the most recent results see Pach [34]. A bibliography of papers on
crossing numbers by L. Vrto is available online [54].

2 Theory of small graphs

2.1 Turan’s Brick Factory Problem

It was Paul Turdn who introduced the concept of crossing numbers. Turdn [51]
tells about how he posed the problem, while in a forced labor camp in World
War II: “There were some kilns where the bricks were made and some open
storage yards where the bricks were stored. All the kilns were connected by
rail with all storage yards. ... the trouble was only at crossings. The trucks
generally jumped the rails there, and the bricks fell out of them; in short this
caused a lot of trouble and loss of time ... the idea occured to me that this loss
of time could have been minimized if the number of crossings of the rails had
been minimized. But what is the minimum number of crossings?”

Put in technical terms, Turdn’s Brick Factory Problem is: what is the cross-
ing number CR(K,, ) of the complete bipartite graph K, m ¢

Place |n/2] vertices to negative positions on the z-axis, [n/2] vertices to
positive positions on the z-axis, [m/2| vertices to negative positions on the y-
axis, [m/2] vertices to positive positions on the y-axis, and draw nm edges by



straight line segments to obtain a drawing of K, ,,. It is not hard to check that
the following formula gives the number of crossings in this particular drawing;:

Blxenlalsey| .

Zarankiewicz’s Crossing Number Conjecture is that the drawing described above
is optimal.

Féary’s theorem [19] telling that planar graphs can be drawn using straight
line segments for edges and Zarankiewicz’s Crossing Number Conjecture may
suggest that optimal drawings can be done using straight line segments for edges.
This is not the case. Guy showed that first for Ky [24], and later Bienstock and
Dean [10, 11] constructed graphs with crossing number four for any number k,
such that drawings of those graphs using straight line segments for edges have
more crossings than k.

The conjectured crossing number of the complete graph K, is

Bl ‘

We show a drawing with this number of crossings for even n, the construction
is due to Guy [25] and Blazek and Koman [5]: take a soup can, which is home-
omorphic to a sphere, place n/2 vertices equidistantly on the perimeter of the
top disk and on the perimeter of the bottom disk, respectively. Draw a K, ,
with straight line segments on the top disk and on the bottom disk, respectively.
From one point of the bottom disk, draw shortest helical curves to all vertices
of the top disk. Repeat this for all n/2 vertices on the bottom disk. Although
this is not a straight line drawing of K, interestingly, the curves that we use
are “geodetic” on the soup can.

It is usually not hard to come up with drawings of graph whose optimality
is intuitively clear. The difficulty lies in proving matching lower bounds for the
crossing numbers. In the old days, every lower bound depended somehow on
lower bounds (or exact values) obtained for the crossing number of some small
graphs.

2.2 Euler’s formula

The simplest lower bound for the crossing number of a simple graph with n > 2
vertices and m edges is
m — 3n + 6. (5)

This immediately follows from Euler’s polyhedral formula, and already gives
CR(K5) > 1. A counterpart of this formula for triangle-free graphs CR(G) >
m — 2n + 4, which proves CR(K33) > 1. Formula (5) can give interesting lower
bounds for small graphs only, since the magnitude of the crossing number can
be as large as m?. It was Pach and Téth who observed that (5) sets a lower
bound for all four crossing numbers in (2), and this extends to all lower bounds
which solely depend on (5). We shortly reproduce their proof for the smallest
crossing number, CR-IODD(G). If m < 3n — 6, then there is nothing to prove.
If m > 3n — 5, then G is non-planar, and hence contains by Kuratowski’s



Theorem a subdivision of a K5 or a K33 (in fact both). Hence in any normal
drawing of G there is a normal subdrawing of a K5 or a K3 3. By Theorem 1.1,
there are two vertex disjoint paths of G which cross each other an odd number
of times. Hence, there is an edge e from the first path and an edge f from the
second path that cross each other odd times. If formula (5) holds for G — e,
then it holds for G, and the base case for this induction proof is m = 3n — 5.

2.3 The standard counting method

A basic technique to obtain a lower bound for the crossing number of a larger
graph from that of a sample graph is the standard counting method. We take
a hypothetic {normal,nice, optimal} drawing of the large graph, find many
copies of the sample graph in it, each exhibiting as many crossings as its
crossing number, add up those numbers, and divide by the largest multiplicity
with which a crossing may have been counted in different copies of the sample
graph. Make this more tangible by the following example: CR-IODD(K,,) >
(1 + o(1))n*/120. Take a normal drawing of K,,. Any 5 vertices span a nor-
mal subdrawing of a K5, which exhibit at least one pair of non-adjacent edges
crossing odd times. We find at least total of (g) such edge pairs, and every such
edge pair occurs in exactly in (n — 4) 5-tuples of vertices. The claim follows.

Applying the standard counting argument for K, ; with sample graph=K,,,
or for K11 n+1 with sample graph=K,, ,,, one obtains that

and — (6)

are nondecreasing and bounded. Therefore the sequences in (6) have a limit,
which provides asymptotic formulae CR(K,) ~ cin* and CR(K,,) ~ can*
[41, 55]. However, the values of ¢; and c; are not known. The drawings shown
above imply ¢; < é and ¢y < and if the drawings are optimal, equalities
hold.

D. J. Kleitman showed that (3) holds for m < 6 [27] and also proved that the
smallest counterexample to the Zarankiewicz’s conjecture must occur for odd n
and m. D. R. Woodall used elaborate computer search to show that (3) holds
for K77 and Kyg. Thus, the smallest unsettled instances of Zarankiewicz’s
conjecture are K711 and Kyg. Woodall’'s result for K79 implies % < ¢z by
a standard counting argument. Kleitman’s cited result [27] allows us to use
K, _¢,6 as a sample graph to count crossings in K,,, and one obtains % < cg.
Applying the standard counting argument to K,, with sample graph K|, /2| [n/2]
[41] shows, that if c; = 1 then ¢; = é. The converse of this implication is not
known.

L
167

2.4 Miscellanea

The graph minor community also has an interest in crossing numbers. Their
usual approach is characterization in terms of excluded minors. Robertson and
Seymour [43] calls a graph H singly crossing provided H is a minor of a graph
that can be drawn on the sphere with at most one crossing. They show that a
graph is singly crossing if and only if it does not have one of 41 explicitly given
graphs as a minor.



For computing crossing numbers of specific graphs, ad hoc methods are often
needed. For example, there is a longstanding conjecture of Harary, Kainen and
Schwenk [20], which states that for n > m > 3, the crossing number of the
Cartesian product of two cycles, CR(C,, x Cy,) is n(m — 2). There is a simple
drawing with this number of crossings, the difficulty lies in proving that n(m—2)
crossings are, in fact, needed. Proving the conjecture for different small values of
n and m took separate, highly technical papers; and the case n = m = 8 is still
open [9, 42, 28, 40, 3, 4]. Richter and Thomassen [40] introduced here the most
general approach so far: consider n red closed curves and m blue closed curves,
where each may cover certain points twice, such that every blue curve intersects
every red curve, and no point of the plane is covered three times. What is then
the minimum number of intersection points of curves? This problem is rather
geometric than graph theoretic, and is a better subject to inductive arguments
than the Cartesian product of two cycles.

Shahrokhi, Sykora, Székely and Vrfo [46] showed CR(C,, x Cy,) = Q(nm)
applying basic results on posets to certain posets arising from drawings of this
graph, but this already belongs to the theory of large graphs.

3 Theory of large graphs

The modern history started with Leighton’s thesis [30]. Leighton introduced
methods to set lower bounds for crossing numbers which instead of crossing
numbers of small graphs, depended on certain parameters of the large graphs.
He introduced three methods that become classic: lower bounds in terms of
number of edges, bisection width, and graph embedding.

3.1 Number of edges
Ajtai et al. [2] and Leighton [30] independently discovered that for graphs with

m > cn edges, the crossing number is at least

3
orEG) > © 2" 7)
The maximum constant factor in (7) is 6—14, achieved at selecting ¢ = 4. It follows
from the argument after (5) that (7) holds for all four crossing numbers in (2).
The original proofs of (7) went by induction, a folklor probabilistic proof can
be found in [48] and also made it to the Book [1].

For ¢ = 4, Pach and Téth [37] improved 6%1 to ﬁ, but this improved lower
bound is not known to extend for all kinds of crossing numbers.

Erdés and Guy [17] conjectured (7) (although those who proved it were not
aware of it), and even more. If k(n,m) denotes the minimum crossing number
of graphs with n vertices and m edges, they conjectured that lim x(n, m)n?/m3
has a limit if m/n — oco. Recently, Pach, Spencer and Téth [39] proved this
conjecture if, in addition, n?/m — oo is assumed, and observed that some
additional restriction is needed. The value of this limit is not known.

3 n?’

3.2 Bisection width

We define here the bisection width b(G) of a graph G as the smallest number
of edges between two classes of vertices V; and V,, which make a bipartition of



V(G) with |Vi],|Va| > |V|/3. Leighton [30] proved the following theorem:
Theorem 3.1 [Leighton [30] 1983] For any graph G of bounded degree,

CR(G) + n = Q(b(G)?).

Proof. Consider a drawing of G with CR(G) crossings. Introduce a new vertex
at each crossing to obtain a graph H with N = n+ CR(QG) vertices drawn in the
plane without crossings. Assign weight 0 to each new vertex and weight of 1/n
to all other vertices. Since, G has bounded degree, H has also bounded degree.
One can apply the Lipton-Tarjan separator theorem [33] to find a separating
set S'in H, |S| < /8(n + CR(QG)), such that one finds in V(H) \ S two sets of
vertices, A and B, with no edges between A and B, and the weights of A and
B do not exceed 2/3. Since G is degree bounded, the number of edges adjacent
to S is O(y/n + CR(G)). Having deleted those edges, we can add the points of
S either to A or B to obtain A’ and B’ with weight at least 1/3, and between
A" and B’ we have in H at most O(y/n + CR(G)) edges.

Theorem 3.1 was generalized by Pach, Shahrokhi, and Szegedy [38] the
Gazit-Miller separator theorem: Let d;,i € V(G) denote the degrees of the
vertices in the G, then

(1.58)2 (160R(G) +)° d?) > b(G)>.
icV

3.3 Graph embedding

Let Gy = (V1, E1) and G2 = (Va, E3) be two graphs, |Vi| < |Va|. An embedding
w, of G1 in G4 is a pair of injections ¢, 1) with

¢: V1=V

¥ : E1 — {set of all paths in G2}

such that if wv € E; then ¢(uv) is a path between ¢(u) and ¢(v). For any
e € E5 and any u € V5, define

po(e) = [{f€EBL:ecy(f)}] and
my(u) = [{feBr:uey(f)}].

Moreover, we define,

po = maxp,(e), and
m, = maxm,(u).
u€Vy

We refer to p, and m, as the edge congestion and vertex congestion of w,
respectively. Leighton [30] introduced the concept of graph embedding and used
this technique for deriving lower bounds on the crossing number of the perfect
shuffle and the mesh of trees and other degree bounded graphs. Shahrokhi and
Székely [47] applied Leighton’s approach to arbitrary graphs and gave estimates
of embedding K, into a large class of symmetric graphs. Further generalization
was obtained by Shahrokhi, Sykora, Székely and Vrto [44], [45].



Theorem 3.2 [47] Let G = (V,E) and H = (V', E’) be graphs with |V'| <
|[V| =n and let w be an embedding of H into G. Then

emer> S -5 (32

This theorem is usually applied with H = K,, or H = K,, ,,. The embedding

method yields, for example, the crossing number of n-dimensional hypercube
the tight lower bound Q(4™) [44].

3.4 Computational complexity

Garey and Johnson [21] proved that testing CR(G) < k is NP-complete, Pach
and Téth [36] extended this to CR-PAIR and CR-ODD. The reduction uses
the NP-completeness of Linear Arrangement. Testing planarity, and therefore
testing CR(G) < k for any fixed k can be done in polynomial time—introduce
at most k new vertices for crossing points in all possible ways and test planarity.
Leighton and Rao [31] designed the first provably good approximation algorithm
for crossing numbers. This algorithm approximates n + C'R(G) within a factor
of log® n for degree bounded graphs (and therefore provides little information on
small crossing numbers). A recent paper Even, Guha, and Schieber [18] reduced
the factor to log3 n. We know nothing that would exclude the possibility of
approximation within a constant multiplicative factor.

4 Corroborating Lakatos

K. Zarankiewicz and K. Urbanik independently claimed and published that
CR(K,, ) was actually equal to (3), their proof was reprinted in a book [6],
cited, and used in follow-up papers. Kainen and Ringel discovered a flaw in the
proof and the flaw withstood all attempts for correction. Richard Guy deserves
much credit for rectifying this confused state of art [25] and also for pointing out
“much more sweeping assumptions than the overt hypotheses of the theorem”
in some other crossing number papers [26].

Imre Lakatos, who applied the Popperian epistemology to mathematics, car-
ried out his arguments [29] on the paradigmatic example of Euler’s polyhedral
formula. Actually, crossing numbers, closely connected to Euler’s polyhedral
formula by (5), could also have served as his paradigmatic example.

In a recent paper Pach and Téth [36] scrutinize the very definition of crossing
numbers! They point out that some authors might have thought of CR-PAIR
instead of CR.

How is it possible that decades in research of crossing numbers passed by
and no major confusion resulted from these foundational problems? The an-
swer is the following: the conjectured optimal drawings are usually normal and
nice, and the lower bounds—as (5,7)—usually also apply for all kind of crossing
numbers.

5 Applications of crossing numbers

Many concepts have been introduced in the literature which measure quan-
titatively “how far” a non-planar graph is from being a planar graph: genus,



crossing number, thickness, splitting number, skewness, vertex deletion number,
etc. [65, 48]. Computing these quantities (or their slight variations) is known
or conjectured to be NP-hard [21], and apart from this, with the exception of
genus and crossing number, there is not much to tell about them.

So far, only familiarity with the genus was a must for every discrete mathe-
matician. Now the crossing number aligns with the genus, since it has applica-
tions and is connected to other areas of mathematics.

Ringel discovered that the Turdn number T'(n,5,4) sets a lower bound for
the crossing number of the complete graph on n vertices. Consider an optimal
(normal, nice) drawing of the complete graph. Define a 4-uniform hypergraph
on the vertex set of the complete graph by the quadruplets of vertices of pairs
of crossing edges. Since K is non-planar, any 5 element subset of vertices does
contain an edge of the 4-uniform hypergraph.

Leighton’s interest in crossing numbers was motivated by VLSI, and he used
the crossing number to set lower bound for the VLSI layout area of the graph.
In fact, the relevance of crossing number for engineering was well-known already
in the pre-VLSI “transistor age” [6].

Székely [50] used the cited theorem of Ajtai et al. [2] and Leighton [30]
to give a new proof for the Szemerédi—Trotter theorem, which tells how many
incidences can be among n points and m lines in the plane. The proof consists of
comparing the lower bound (7) to an upper bound, coming from a given drawing,
for a certain graph. This crossing number method also yielded simple proofs
[50] for the best available results regarding two classic Erdds problems: Given
n points in the plane, how many unit distances can be among them? Given n
points in the plane, what is the least number of distinct distances among them?
Just in a couple of years, the crossing number method gave a number of other
applications to discrete geometry [35, 7, 37|, etc. Surprisingly, this crossing
number method is also cited in number theory, see [14, 15, 16, 32, 23, 8].

Pach, Spencer and T6th [39] proved a conjecture of Simonovits, improving
the bound of (7). If G has girth > 2r and m > 4n, then

CR(G) = Q(’Z—f) (8)

and proved an even more general theorem for graphs G satisfying a monotone
graph property. Since m? > CR(G), (8) immediately implies that a graph with
girth > 27 has at most O(n”é) edges, which is the best known result, tight
within a constant multiplicative factor for » = 2,3,5. This may be thought of
as an unfair application, since the proof in [39] uses these facts from extremal
graph theory, but this is a new genuine connection between crossing numbers
and extremal graph theory.

6 Formulae for CR-I0DD

To have a graph parameter that we cannot even asymptotically evaluate for
complete graphs is rather annoying. In addition, knowing the crossing num-
bers of complete graphs would immediately imply improved lower bounds on
the crossing numbers of many other graphs, either by the standard counting
argument or by graph embedding.



The present section yields formulae for CR-IODD, which are far from ob-
vious how to evaluate, but give a hope to evaluate CR-IODD for complete
graphs.

6.1 Tutte’s theory

Earlier, Tutte [52] introduced an algebraic theory of crossing numbers and
proved Chojnacki’s Theorem 1.1 from this theory. Tutte’s theory is very com-
plicated, since it tries to follow closely not just crossing numbers but drawings.
Tutte studies normal drawings. Denoting the vertex set by V = {1,2,...,n},
he defines two orientation for every edge, connecting vertices ¢ and j, ¢j and
ji. The orientation ij defines locally a left side and and a right side of the
curve, as if we were facing j on the curve. Tutte denotes by A(ij, kl), for two
non-adjacent oriented edges ij and kl, the difference of the following two num-
bers: number of left-to-right crossings that oriented edge ¢j does on kl and the
number of right-to-left crossings that oriented edge ij does on kl. He observes
that A(i7, kl) has the same parity as the number of crossings of ij and kl, and
fixing an orientation for every edge, he suggests the lower bound

min > A, kD), (9)

normal drawings

(where summation goes for unerdered pairs of non-adjacent edges) for the cross-
ing number, and poses the question if equality holds. It is clear that CR-
ODD <(9)< CR. There is an enigmatic sentence of Tutte “We are taking the
view that crossings of adjacent edges are trivial, and easily get rid of.” We
interpret this sentence as a philosophical view and not a mathematical claim.

Pach and Téth [36] had some formulae, or rather discrete integer programs,
for the value of CR-ODD, which involved pairs of edges. Tutte, and Pach and
Téth described how their respective formulae transform when an edge is “pulled
over” a vertex, a generic step to move from one drawing to another. I am not
aware of any paper which draws further conclusions on crossings numbers from
Tutte’s theory. There seems to be a trade-off between getting tangible results
and following faithfully the drawing. Our results, presented next, is a mod 2
version of Tutte’s theory. This requires only maintaining information on (edge,
vertex) type pairs, which simplifies everything. We show how these results can
be used to prove Chojnacki’s Theorem 1.1.

6.2 The new results

Assume now, that the vertices Ay, A, ..., A, of a graph G are put in this cyclic
order on a circle S. We say that the two non-adjacent edges of G, say XY and
UZ are in acyclic order, if the cyclic order of S restricted to these 4 vertices
is X,U,Y,Z or X,Z Y, U. Otherwise, two edges are in cyclic order. These
relations are clearly symmetric. Under bipartition of a set we understand its
unordered partition into two subsets, one of which may be empty. We use the
notation || for a bipartition, and write U||V to express that U and V belong
to different classes, and —||UV to express that U and V belong to the same
class. For every edge XY € E(G), consider an arbitrary bipartition ||xy of
V(G)\ {X,Y}, and define now the relations O and P as follows:

{ 1 if XY and UZ are in cyclic order,

o(XY, Uz
(XY, ) 0 otherwise.

(10)

10



1 if Ul|xy Z,

P(XY,Uz) = {0 otherwise, i.e. if —||xyUZ holds. (1D

Note that O does not change if we interchange the values of X and Y and/or U
and Z, or the edge XY with the edge UZ. P does not change if we interchange
the values of X and Y and/or U and Z, however, may change if we interchange
the pair XY with the pair UZ. Let

B={||lxy: XY € E(G)} (12)
denote a set of bipartitions. Define

(XY, UZ) = [1-O(XY,UZ)|[l - P(XY,UZ)|[1 - P(UZ,XY)]

+ [1-O(XY,UZ)|P(XY,UZ)P(UZ,XY)

+ OXY,UZ)[1—- P(XY,UZ)|P(UZ,XY)

+ O(XY,UZ)P(XY,UZ)|[1 — P(UZ,XY)] (13)

Note that cr does not change if we interchange X and Y, U and Z, or XY and
UZz.

Theorem 6.1 We have

CR-IODD(G)=min Y er(XY,U2), (14)
XY, UZCEE(G)

where the summation goes for unordered pairs of non-adjacent edges, and the
minimization goes for all possible sets of bipartitions.

Here we show a reformulation of Theorem 6.1 that we hope will be evaluated
for complete graphs. This is just a quartic expression evaluated on +1 values,
which is highly symmetric in the case of complete graphs.

Theorem 6.2 Let N denote the number of unordered pairs of non-adjacent
edges in G. For every AB € E(Q) let Qap : V(G)\ {4,B} — {-1,+1} be
a function , such that Qap = Qpa, and Q = {Qap : AB € E(G)}. Now we
have CR-IODD(G) =

D omax Y 0(XVUZ)Qxy ()@xy(2)Qus(X)Qua(Y), (15)

2
XY,UZEE(G)

where the summation goes for unordered pairs of non-adjacent edges.

6.3 Proof to Chojnacki’s Theorem 1.1

In order to show that Theorem 6.1 is a promising combinatorial approach to
crossing numbers, we give an unexpectedly purely combinatorial proof to Cho-
jnacki’s Theorem 1.1.

Proof. We need to prove CR-IODD > 1. Consider the vertices of K5 in the
cyclic order 1,2,3,4,5. Assume that (14) equals zero. Then, the summation
has to be termwise zero, for all pairs of non-adjacent edges all four terms in
every cr formula. (All summations in this proof, even if not spelled out, go for
non-adjacent edges.) Observe that the summation (14) goes for 15 unordered

11



pairs of non-adjacent edges. Note that for 10 of them O = 1, and and for 5 of
them O = 0. Hence we have in (14) for a certain P, resulting from bipartitions,

0 = > ([1 — P(XY,UZ)|[1 - P(UZ, XY)]

{XY,UZ}
O(XY,UZ)=0

+ P(XY,UZ)P(UZ, XY))

+ > <[1 - P(XY,UZ)P(UZ,XY)

{XY,UZ}
O(XY,UZ)=1

+ P(XY,UZ)]1 - PUZ, XY)]) : (16)

where the summations still go for unordered pairs of unordered pairs. Using
the abbreviation P, = P(XY,UZ) and P, = P(UZ, XY), a generic term in the
first sum is 1 4+ 2P, P, — P; — P>, while a generic term in the second sum is
—2P, Py + Py + P5. Therefore, taking (16) mod 2 yields

0=5+> > P(XY,UZ) mod?2. (17)
XY UZ

We are going to evaluate the summation in the right-hand side of (17) in a
different way. Observe that any bipartition ||xy of 3 elements is either 3:0 or
2:1, and in both of them the number of separated pairs is even. Recall that
P(XY,UZ) = 1 iff ||xy has U and Z in different classes. Therefore for an
arbitrary XY, >, P(XY,UZ) = 2kxy. ;From here,

Y > P(XY,UZ) = 2k. (18)

XY Uz

Substituting (18) into the right-hand side of (17), we obtain 0 = 1 mod 2 by
(18), a contradiction.

In order to prove the theorem for K3 3, start with a copy of K3 3 in which the
colorclasses are {1,3,5} and {2,4,6}, respectively. Put the vertices into cyclic
order 1,2,3,4,5,6. K33 has 9 edges, and 18 unordered pairs of non-adjacent
edges. It is easy to see that for 3 of them O = 0 and for 15 of them O =1. We
call the colorclasses of K3 3 Red and White vertices. We repeat a slight variation
of the counting argument above. Formula (14) turns into an 18 term summation,
and we end up with an analogue of (16), where the first summation goes for
{XY,UZ}: XY € E(K33),UZ € E(K33),0(XY,UZ) = 0, and the second
summation goes for {XY,UZ}: XY € E(K33),UZ € E(K33),0(XY,UZ) =
1. Again, we are going to do calculations mod 2. First we need that for an
arbitrary XY € E(K33),

Y P(XY,UZ)=2kxy. (19)
UZEE(K3,3)

To prove (19), we study how many Red-White vertex pairs a bipartition P
can separate. The possibilities are RR||WW, RW||RW, R||RWW, W|[WRR,
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—||[RRWW; in each case the number of separated Red-White vertex pairs is
even. Summing up (19), we obtain

> Y P(XY,UZ) =2k (20)

XY€EE(Ks,3) UZEE(K3,3)

Evaluating the analogue of (16) mod 2, we obtain the analogue of (17):

0=3+ Y Y P(XY,UZ) mod 2 (21)
XY€EE(K3,3) UZEE(K3,3)

by and (20) we have a contradiction again.

7 Proofs

Let us be given four points A, B, C, D in this cyclic order on a circle S in the
plane R?. Call a,b,c,d the four rays, perpendicular to S, which connect the
points A, B, C, D to co and stay outside the circle. Then, a,d,c,b is the cyclic
order of the rays at oo. Assume now that X,Y € {4,B,C,D}, X # Y are
connected by a simple curve q. This simple curve may intersect the rays  and
y several times, however, we assume that at intersection points different from
X and Y “crossing” happens, i.e. “tangential situation” is not allowed. The
following Lemma is easy to see:

Lemma 7.1 Consider U,Z ¢ qUxUy, U # Z, and a simple curve r connecting
U and Z, such that it does not pass through any of the points X,Y,c0, and
intersection points of x,y, and q, and not “tangential” to q. Then, the parity of
the number of crossings of r and q is independent of the selection of r.

We say that a simple curve ¢ (as above) separates U and Z, if ¢ and r crosses odd
number of times, when r is selected according to the conditions of Lemma 7.1.
Another easy Lemma claims that

Lemma 7.2 “Not being separated by q” is an equivalence relation on R? \ {qU
x Uy} with two classes.

We use the notation Ul|,Z if U and Z are in different equivalence classes, and
—|qUZ,if U and Z are in the same equivalence class. jFrom now on we use this
notation only for {U,Z} = {A,B,C,D}\ {X,Y}.

Assume now that another simple curve, p, connects U and Z, with similar
conditions that ¢ satisfied for X and Y. Assume that p and ¢ have finitely
many points in common, and at any points in common the curves cross, i.e. no
touching situation is allowed. Now we claim the following simple Lemma.

Lemma 7.3 If the cyclic order induced by S on the four points is X,U,Y,Z or
X,Z,Y,U, and either

—qUZ and —|,XY or
UlgZ and X|,Y,

13



then p and q crosses odd many times. If the cyclic order induced by S on the
four points is X, Y, U,Z, X,Y,Z, U, X,Z,U,Y or X,U,Z,Y, and either
—4UZ and X|,Y or
UlgZ and —|,XY,

then p and q crosses, again, odd many times.

Note that the conditions in the two parts of Lemma 7.3 read in terms of Section 6
as if we had XY and UZ edges in a graph, and they were in acyclic order and
cyclic order, respectively. We freely extend the O relation in (10) for unordered
pairs of unordered pairs of points on S, all four points distinct. We introduce

N 1 ifU|,2Z,
PHXY,UZ) = {0 otherwise, i.e. if —|,UZ holds. (22)
Lemma 7.3 immediately implies the next Lemma:
Lemma 7.4 The value of the quantity
CR(p,q) = [1-OXY,UZ)|[1-P (XY, UZ)|[l-P(UZ,XY)]

+ [1-0(XY,UZ)|P"(XY,UZ)P*(UZ,XY)

+ OXY,UZ)[l1-P*(XY,UZ)P*(UZ,XY)

+ OXY,UZ)P*(XY,UZ)]1-P*(UZ,XY)] (23)

is 1, if p and q crosses odd times, and 0 otherwise.

Proof to Theorem 6.1: Any drawing of graph G can be transformed, without
changing which edges cross how many times, into a new drawing, such that the
vertices Ay, Ao, ..., A, are in this cyclic order on a circle S. ;From now on we
study such a drawing D. Lemma 7.4 above applies to any pair of non-adjacent
edges of G, where edge XY € E(G) represented by curve ¢, and edge UZ is
represented by curve p in the drawing. Then the actual number of unordered
pairs of non-adjacent pairs of edges, which cross odd times, is

> CR(p,q), (24)

where the summation goes for non-adjacent pairs of edges, p, ¢ are the curves
realizing two generic non-adjacent edges in the drawing. Observe that every
drawing induces a set of bipartitions as required in (12), and every set of biparti-
tions in (12) easily can be induced by a graph drawing under the correspondence
which defines B by ||xy = |q- Under this equivalence formula (24) coincides
with the minimum of (14) over all drawings, and we finished the proof.

Proof to Theorem 6.2: Write Pxy(UZ) = 1, if U||xy Z, and Pxy(UZ) = -1
otherwise. It is easy to see from (13) that

(XY, UZ) =1 — oxv,vz) Pl f )Puz(XY)
+ o(xY,Uz) = PXY(U?PUZ XY) (o)

Observe that Pxy, which is defined on pairs of vertices, can be written in terms
of QQxy, which is defined on vertices, such that Qxy = 1 on one class of the

14



bipartition ||xy, and Q@xy = —1 on the other class, since then Pxy(UZ) =
Qxy(U)Qxy(Z). There is a bijective correspondence between B’s and equiva-
lence classes of Q’s, where O~ Q' if and only for all edges AB, Qap = Qs 5.
Rewriting (25) in terms of Q, we obtain (15).
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